1932

Abstract

Genetically engineered corn and cotton that produce insecticidal toxins derived from the bacterium (Bt) have been used to manage insect pests in the United States and elsewhere. In some cases, this has led to regional suppression of pest populations and pest eradication within the United States, and these outcomes were associated with reductions in conventional insecticides and increased profits for farmers. In other instances, pests evolved resistance to multiple Bt traits, compromising the capacity of Bt crops to manage pests and leading to increased feeding injury to crops in the field. Several aspects of pest biology and pest–crop interactions were associated with cases where pests remained susceptible versus instances where pests evolved resistance. The viability of future transgenic traits can be improved by learning from these past outcomes. In particular, efforts should be made to delay resistance by increasing the prevalence of refuges and using integrated pest management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120220-105502
2023-01-23
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120220-105502.html?itemId=/content/journals/10.1146/annurev-ento-120220-105502&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akbar W, Gowda A, Ahrens JE, Stelzer JW, Brown RS et al. 2018. First transgenic trait for control of plant bugs and thrips in cotton. Pest Manag. Sci. 75:867–77
    [Google Scholar]
  2. 2.
    Anderson JA, Ellsworth PC, Faria JC, Head GP, Owen MDK et al. 2019. Genetically engineered crops: importance of diversified integrated pest management for agricultural sustainability. Front. Bioeng. Biotechnol. 7:24
    [Google Scholar]
  3. 3.
    Andow DA, Olson DM, Hellmich RL, Alstad DN, Hutchison WD. 2000. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa population of European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 93:26–30
    [Google Scholar]
  4. 4.
    Andow DA, Pueppke SG, Schaafsma AW, Gassmann AJ, Sappington TW et al. 2016. Early detection and mitigation of resistance to Bt maize by western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 109:1–12
    [Google Scholar]
  5. 5.
    Arends B, Reisig DD, Gundry S, Huseth AS, Reay-Jones FPF et al. 2021. Effectiveness of the natural resistance management refuge for Bt-cotton is dominated by local abundance of soybean and maize. Sci. Rep. 11:17601
    [Google Scholar]
  6. 6.
    Bacheler JS, Mott DW, Morrison DE. 1997. Efficacy of grower-managed Bt cotton in North Carolina.. See Reference 39 858–61
  7. 7.
    Bagwell RD, Graves JB, Holloway JW, Leonard BR, Burris E et al. 1997. Status of insecticide resistance in tobacco budworm and bollworm in Louisiana during 1996.. See Reference 39 1282–89
  8. 8.
    Balaško MK, Mikac KM, Bažok R, Lemic D. 2020. Modern techniques in Colorado potato beetle (Leptinotarsa decemlineata Say) control and resistance management: history review and future perspectives. Insects 11:581
    [Google Scholar]
  9. 9.
    Banerjee R, Hasler J, Meagher R, Nagoshi R, Hietala L et al. 2017. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci. Rep. 7:10877
    [Google Scholar]
  10. 10.
    Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P et al. 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25:1322–26
    [Google Scholar]
  11. 11.
    Bibb JL, Cook D, Catchot A, Musser F, Stewart SD et al. 2018. Impact of corn earworm (Lepidoptera: Noctuidae) on field corn (Poales: Poaceae) yield and grain quality. J. Econ. Entomol. 111:1249–55
    [Google Scholar]
  12. 12.
    Bilbo TR, Reay-Jones FPF, Reisig DD, Greene JK. 2019. Susceptibility of corn earworm (Lepidoptera: Noctuidae) to Cry1A.105 and Cry2Ab2 in North and South Carolina. J. Econ. Entomol. 112:1845–57
    [Google Scholar]
  13. 13.
    Blanco CA. 2012. Heliothis virescens and Bt cotton in the United States. GM Crops Food 3:201–12
    [Google Scholar]
  14. 14.
    Blanco CA, Andow DA, Abel CA, Sumerford DV, Hernandez G et al. 2009. Bacillus thuringiensis Cry1Ac resistance frequency in tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 102:381–87
    [Google Scholar]
  15. 15.
    Bowen D, Yin Y, Flasinski S, Chay C, Bean G et al. 2021. Cry75Aa (Mpp75Aa) insecticidal proteins for controlling the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), isolated from the insect-pathogenic bacterium Brevibacillus laterosporus. Appl. Environ. Microbiol. 87:e02507–20
    [Google Scholar]
  16. 16.
    Burkness EC, Dively G, Patton T, Morey AC, Hutchison WD. 2010. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: implications for resistance management. GM Crops Food 1:337–43
    [Google Scholar]
  17. 17.
    Calles-Torrez V, Knodel JJ, Boetel MA, French BW, Fuller BW, Ransom JK. 2019. Field-evolved resistance of northern and western corn rootworm (Coleoptera: Chrysomelidae) populations to corn hybrids expressing single and pyramided Cry3Bb1 and Cry34/35Ab1 Bt proteins in North Dakota. J. Econ. Entomol. 112:1875–86
    [Google Scholar]
  18. 18.
    Carrière Y, Crickmore N, Tabashnik BE. 2015. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. Biotechnol. 33:161–68
    [Google Scholar]
  19. 19.
    Carrière Y, Crowder DW, Tabashnik BE. 2010. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3:561–73
    [Google Scholar]
  20. 20.
    Carrière Y, Dennehy TJ, Pedersen B, Haller S, Ellers-Kirk C et al. 2001. Large-scale management of insect resistance to transgenic cotton in Arizona: Can transgenic insecticidal crops be sustained?. J. Econ. Entomol. 94:315–25
    [Google Scholar]
  21. 21.
    Carrière Y, Ellers-Kirk C, Sisterson MS, Antilla L, Whitlow M et al. 2003. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. PNAS 100:1519–23
    [Google Scholar]
  22. 22.
    Catangui MA, Berg RK. 2006. Western bean cutworm, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), as a potential pest of transgenic Cry1Ab Bacillus thuringiensis corn hybrids in South Dakota. Environ. Entomol. 35:1439–52
    [Google Scholar]
  23. 23.
    Cattaneo MG, Yafuso C, Schmidt C, Huang C-Y, Rahman M et al. 2006. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. PNAS 103:7571–76
    [Google Scholar]
  24. 24.
    Cinereski JE, Chiang HC. 1968. The pattern of movements of adults of the northern corn rootworm inside and outside of corn fields. J. Econ. Entomol. 61:1531–36
    [Google Scholar]
  25. 25.
    Coates BS, Abel CA, Swoboda-Bhattarai KA, Palmquist DE, Montezano DG et al. 2020. Geographic distribution of Bacillus thuringiensis Cry1F toxin resistance in western bean cutworm (Lepidoptera: Noctuidae) populations in the United States. J. Econ. Entomol. 113:2465–72
    [Google Scholar]
  26. 26.
    Crespo ALB, Spencer TA, Alves AP, Hellmich RL, Blankenship EE et al. 2009. On-plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. Pest Manag. Sci. 65:1071–81
    [Google Scholar]
  27. 27.
    Crespo ALB, Spencer TA, Tan SY, Siegfried BD. 2010. Fitness costs of Cry1Ab resistance in a field-derived strain of Ostrinia nubilalis. J. Econ. Entomol. 103:1386–93
    [Google Scholar]
  28. 28.
    Deitloff J, Dunbar MW, Ingber DA, Hibbard BE, Gassmann AJ. 2016. Effects of refuges on the evolution of resistance to transgenic corn by the western corn rootworm, Diabrotica virgifera virgifera LeConte. Pest Manag. Sci. 72:190–98
    [Google Scholar]
  29. 29.
    Del Pozo-Valdivia AI, Reisig DD, Braswell L, Greene JK, Roberts P, Taylor SV. 2021. Economic injury levels for Bt-resistant Helicoverpa zea (Lepidoptera: Noctuidae) in cotton. J. Econ. Entomol. 114:747–56
    [Google Scholar]
  30. 30.
    Denholm I, Rowland MW. 1992. Tactics for managing pesticide resistance in arthropods: theory and practice. Annu. Rev. Entomol. 37:91–112
    [Google Scholar]
  31. 31.
    Dhurua S, Gujar GT. 2011. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 67:898–903
    [Google Scholar]
  32. 32.
    DiFonzo C. 2022. The handy Bt trait table for U.S. corn production Rep. AgriLife, Texas A&M Univ., College Station https://agrilife.org/lubbock/files/2022/02/BtTraitTable-March2022.pdf
  33. 33.
    Dively GP, Kuhar TP, Taylor S, Doughty HB, Holmstrom K et al. 2021. Sweet corn sentinel monitoring for lepidopteran field-evolved resistance to Bt toxins. J. Econ. Entomol. 114:307–19
    [Google Scholar]
  34. 34.
    Dively GP, Venugopal PD, Bean D, Whalen J, Holmstrom K et al. 2018. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. PNAS 115:3320–25
    [Google Scholar]
  35. 35.
    Dively GP, Venugopal PD, Finkenbinder C. 2016. Field-evolved resistance in corn earworm to Cry proteins expressed in transgenic sweet corn. PLOS ONE 11:e0169115
    [Google Scholar]
  36. 36.
    Dorman SJ, Hopperstad KA, Reich BJ, Kennedy G, Huseth AS. 2021. Soybeans as a non-Bt refuge for Helicoverpa zea in maize-cotton agroecosystems. Agric. Ecosyst. Environ. 322:107642
    [Google Scholar]
  37. 37.
    Dorman SJ, Hopperstad KA, Reich BJ, Majumder S, Kennedy G et al. 2021. Landscape-level variation in Bt crops predict Helicoverpa zea (Lepidoptera: Noctuidae) resistance in cotton agroecosystems. Pest Manag. Sci. 77:5454–62
    [Google Scholar]
  38. 38.
    Downes S, Kriticos D, Parry H, Paull C, Schellhorn N, Zalucki MP. 2017. A perspective on management of Helicoverpa armigera: transgenic Bt cotton, IPM, and landscapes. Pest Manag. Sci. 73:485–92
    [Google Scholar]
  39. 39.
    Duggar CP, Richter DA 1997. Proceedings of the Beltwide Cotton Conference Memphis, TN: Natl. Cotton Counc.
  40. 40.
    Dunbar MW, Gassmann AJ. 2013. Abundance and distribution of western and northern corn rootworm (Diabrotica spp.) and prevalence of rotation resistance in eastern Iowa. J. Econ. Entomol. 106:168–80
    [Google Scholar]
  41. 41.
    Dunbar MW, O'Neal ME, Gassmann AJ. 2016. Effects of field history on corn root injury and adult abundance of northern and western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 109:2096–104
    [Google Scholar]
  42. 42.
    Eichenseer H, Strohbehn R, Burks JC. 2008. Frequency and severity of western bean cutworm (Lepidoptera: Noctuidae) ear damage in transgenic corn hybrids expressing different Bacillus thuringiensis Cry toxins. J. Econ. Entomol. 101:555–63
    [Google Scholar]
  43. 43.
    Farhan Y, Smith JL, Schaafsma AW. 2019. Susceptibility of different instars of Striacosta albicosta (Lepidoptera: Noctuidae) to Vip3A, a Bacillus thuringiensis (Bacillaceae: Bacillales) protein. J. Econ. Entomol. 112:2335–44
    [Google Scholar]
  44. 44.
    Fitt GP. 1989. The ecology of Heliothis species in relation to agroecosystems. Annu. Rev. Entomol. 34:17–52
    [Google Scholar]
  45. 45.
    Flagel L, Lee YW, Wanjugi H, Swarup S, Brown A et al. 2018. Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A.105 insecticidal proteins. Sci. Rep. 8:7255
    [Google Scholar]
  46. 46.
    Fleming D, Musser F, Reisig D, Greene J, Taylor S et al. 2018. Effects of transgenic Bacillus thuringiensis cotton on insecticide use, heliothine counts, plant damage, and cotton yield: a meta-analysis, 1996–2015. PLOS ONE 13:e0200131
    [Google Scholar]
  47. 47.
    Fritz ML, DeYonke AM, Papanicolaou A, Micinski S, Westbrook J, Gould F. 2018. Contemporary evolution of a Lepidopteran species, Heliothis virescens, in response to modern agricultural practices. Mol. Ecol. 27:167–81
    [Google Scholar]
  48. 48.
    Gassmann AJ. 2016. Resistance to Bt maize by western corn rootworm: insights from the laboratory and the field. Curr. Opin. Insect Sci. 15:111–15
    [Google Scholar]
  49. 49.
    Gassmann AJ. 2021. Resistance to Bt maize by western corn rootworm: effects of pest biology, the pest-crop interaction and the agricultural landscape on resistance. Insects 12:136
    [Google Scholar]
  50. 50.
    Gassmann AJ, Carrière Y, Tabashnik BE. 2009. Fitness costs of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 54:147–63
    [Google Scholar]
  51. 51.
    Gassmann AJ, Petzold-Maxwell JL, Clifton EH, Dunbar MW, Hoffmann AM et al. 2014. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. PNAS 111:5141–46
    [Google Scholar]
  52. 52.
    Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW. 2011. Field-evolved resistance to Bt maize by western corn rootworm. PLOS ONE 6:e22629
    [Google Scholar]
  53. 53.
    Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW. 2012. Western corn rootworm and Bt maize: challenges of pest resistance in the field. GM Crops Food 3:235–44
    [Google Scholar]
  54. 54.
    Gassmann AJ, Shrestha RB, Kropf AL, St. Clair CR, Brenizer BD 2020. Field-evolved resistance by western corn rootworm to Cry34/35Ab1 and other Bacillus thuringiensis traits in transgenic maize. Pest Manag. Sci. 76:268–76
    [Google Scholar]
  55. 55.
    González JCS, Kerns DL, Head GP, Yang F 2021. Status of Cry1Ac and Cry2Ab2 resistance in field populations of Helicoverpa zea in Texas, USA. Insect Sci. 29:487–95
    [Google Scholar]
  56. 56.
    Gould F. 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43:701–26
    [Google Scholar]
  57. 57.
    Gould F, Blair N, Reid M, Rennie TL, Lopez J, Micinski S. 2002. Bacillus thuringiensis-toxin resistance management: stable isotope assessment of alternate host use by Helicoverpa zea. PNAS 99:16581–86
    [Google Scholar]
  58. 58.
    Graham SH, Stewart SD. 2018. Field study investigating Cry51Aa2.834_16 in cotton for control of thrips (Thysanoptera: Thripidae) and tarnished plant bugs (Hemiptera: Miridae). J. Econ. Entomol. 111:2717–26
    [Google Scholar]
  59. 59.
    Gray ME, Sappington TW, Miller NJ, Moeser J, Bohn MO. 2009. Adaptation and invasiveness of western corn rootworm: intensifying research on a worsening pest. Annu. Rev. Entomol. 54:303–21
    [Google Scholar]
  60. 60.
    Head G, Jackson RE, Adamczyk J, Bradley JR, Van Duyn J et al. 2010. Spatial and temporal variability in host use by Helicoverpa zea as measured by analyses of stable carbon isotope ratios and gossypol residues. J. Appl. Ecol. 47:583–92
    [Google Scholar]
  61. 61.
    Huang F, Qureshi JA, Meagher RL Jr., Reisig DD, Head GP et al. 2014. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PLOS ONE 9:e112958
    [Google Scholar]
  62. 62.
    Hughson SA, Spencer JL. 2015. Emergence and abundance of western corn rootworm (Coleoptera: Chrysomelidae) in Bt cornfields with structured and seed blend refuges. J. Econ. Entomol. 108:114–25
    [Google Scholar]
  63. 63.
    Hutchison W, Burkness E, Mitchell P, Moon R, Leslie T et al. 2010. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–25
    [Google Scholar]
  64. 64.
    Ingber DA, Gassmann AJ. 2015. Inheritance and fitness costs of resistance to Cry3Bb1 corn by western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 108:2421–32
    [Google Scholar]
  65. 65.
    ISAAA 2019. Global Status of Commercialized Biotech/GM Crops in 2019: Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier Ithaca, NY: ISAAA
  66. 66.
    Jakka SRK, Shrestha RB, Gassmann AJ. 2016. Broad-spectrum resistance to Bacillus thuringiensis toxins by western corn rootworm (Diabrotica virgifera virgifera). Sci. Rep. 6:27860
    [Google Scholar]
  67. 67.
    James C. 1997. Global Status of Transgenic Crops in 1997. ISAAA Briefs 5 Ithaca, NY: ISAAA
  68. 68.
    James C. 2009. Global Status of Commercialized Biotech/GM Crops: 2009 ISAAA Brief 41 Ithaca, NY: ISAAA
  69. 69.
    Johnson MW, Stinner RE, Rabb RL. 1975. Ovipositional response of Heliothis zea (Boddie) to its major hosts in North Carolina. Environ. Entomol. 4:291–97
    [Google Scholar]
  70. 70.
    Jurat-Fuentes JL, Heckel DG, Ferré J. 2021. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 66:121–40
    [Google Scholar]
  71. 71.
    Khajuria C, Ivashuta S, Wiggins E, Flagel L, Moar W et al. 2018. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLOS ONE 13:e0197059
    [Google Scholar]
  72. 72.
    Layton MB, Williams MR, Andrews G, Stewart SD. 1996. Severity and distribution of the 1995 tobacco budworm outbreak in Mississippi. In Proceedings of the Beltwide Cotton Conference, Vol. 2, ed. CP Dugger, DA Richter, pp. 820–22. Memphis, TN: Natl. Cotton Counc.
    [Google Scholar]
  73. 73.
    Levine E, Oloumi-Sadeghi H. 1991. Management of diabroticite rootworms in corn. Annu. Rev. Entomol. 36:229–55
    [Google Scholar]
  74. 74.
    Li G, Reisig D, Miao J, Gould F, Huang F, Feng H. 2016. Frequency of Cry1F non-recessive resistance alleles in North Carolina field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae). PLOS ONE 11:e0154492
    [Google Scholar]
  75. 75.
    Liu L, Schepers E, Lum A, Rice J, Yalpani N et al. 2019. Identification and evaluations of novel insecticidal proteins from plants of the class Polypodiopsida for crop protection against key lepidopteran pests. Toxins 11:383
    [Google Scholar]
  76. 76.
    Liu Y-B, Tabashnik BE, Dennehy TJ, Patin AL, Sims MA et al. 2001. Effects of Bt cotton and Cry1Ac on survival and development of pink bollworm (Lepidoptera: Gelechiidae). J. Econ. Entomol. 94:1237–42
    [Google Scholar]
  77. 77.
    Mahon RJ, Olsen KM, Downes S, Addison S. 2007. Frequency of alleles conferring resistance to the Bt toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 100:1844–53
    [Google Scholar]
  78. 78.
    Mason CE, Rice ME, Calvin DD, Van Duyn JW, Showers WB et al. 1996. European Corn Borer: Ecology and Management Ames, IA: Iowa State Univ.
  79. 79.
    Meihls LN, Higdon ML, Siegfried BD, Miller NJ, Sappington TW et al. 2008. Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection. PNAS 105:19177–82
    [Google Scholar]
  80. 80.
    Meinke LJ, Souza D, Siegfried BD. 2021. The use of insecticides to manage the western corn rootworm, Diabrotica virgifera virgifera, LeConte: history, field-evolved resistance, and associated mechanisms. Insects 12:112
    [Google Scholar]
  81. 81.
    Moar W, Roush R, Shelton A, Ferré J, MacIntosh S et al. 2008. Field-evolved resistance to Bt toxins. Nat. Biotechnol. 26:1072–74
    [Google Scholar]
  82. 82.
    Montezano DG, Hunt TE, Specht A, Luz PMC, Peterson JA. 2019. Survival and development of Striacosta albicosta (Smith) (Lepidoptera: Noctuidae) immature stages on dry beans, non-Bt, Cry1F, and Vip3A maize. Insects 10:343
    [Google Scholar]
  83. 83.
    Naik VCB, Kumbhare S, Kranthi S, Satija U, Kranthia KR. 2018. Field-evolved resistance of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), to transgenic Bacillus thuringiensis (Bt) cotton expressing crystal 1Ac (Cry1Ac) and Cry2Ab in India. Pest Manag. Sci. 74:2544–54
    [Google Scholar]
  84. 84.
    Naranjo SE. 1991. Movement of corn rootworm beetles, Diabrotica spp. (Coleoptera: Chrysomelidae), at cornfield boundaries in relation to sex, reproductive status, and crop phenology. Environ. Entomol. 20:230–40
    [Google Scholar]
  85. 85.
    Naranjo SE, Ellsworth PC. 2010. Fourteen years of Bt cotton advances IPM in Arizona. Southwest. Entomol. 35:437–44
    [Google Scholar]
  86. 86.
    Natl. Acad. Sci. Eng. Med. 2016. Genetically Engineered Crops: Experiences and Prospects Washington, DC: Natl. Acad. Press
  87. 87.
    Onstad DW, Meinke LJ. 2010. Modeling evolution of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to transgenic corn with two insecticidal traits. J. Econ. Entomol. 103:849–60
    [Google Scholar]
  88. 88.
    Ostrem JS, Pan Z, Flexner JL, Owens E, Binning R, Higgins LS. 2016. Monitoring susceptibility of western bean cutworm (Lepidoptera: Noctuidae) field populations to Bacillus thuringiensis Cry1F protein. J. Econ. Entomol. 109:847–53
    [Google Scholar]
  89. 89.
    Panwar BS, Kaur J, Kumar P, Kaur S. 2018. A novel cry52Ca1 gene from an Indian Bacillus thuringiensis isolate is toxic to Helicoverpa armigera (cotton boll worm). J. Invertebr. Pathol. 159:137–40
    [Google Scholar]
  90. 90.
    Paolino AR, Gassmann AJ. 2017. Assessment of inheritance and fitness costs associated with field-evolved resistance to Cry3Bb1 maize by western corn rootworm. Toxins 9:159
    [Google Scholar]
  91. 91.
    Pereira EJG, Storer NP, Siegfried BD. 2008. Inheritance of Cry1F resistance in laboratory-selected European corn borer and its survival on transgenic corn expressing the Cry1F toxin. Bull. Entomol. Res. 98:621–29
    [Google Scholar]
  92. 92.
    Petzold-Maxwell JL, Jaronski ST, Clifton EH, Dunbar MW, Jackson MA, Gassmann AJ. 2013. Interactions among Bt maize, entomopathogens and rootworm species (Coleoptera: Chrysomelidae) in the field: effects on survival, yield and root injury. J. Econ. Entomol. 106:622–32
    [Google Scholar]
  93. 93.
    Petzold-Maxwell JL, Meinke LJ, Gray ME, Estes RE, Gassmann AJ. 2013. Effect of Bt maize and soil insecticides on yield, injury, and rootworm survival: implications for resistance management. J. Econ. Entomol. 106:1941–51
    [Google Scholar]
  94. 94.
    Petzold-Maxwell JL, Siegfried BD, Hellmich RL, Abel CA, Coates BS et al. 2017. Fitness costs associated with Cry1F resistance in the European corn borer. J. Appl. Entomol. 141:67–79
    [Google Scholar]
  95. 95.
    Qureshi JA, Buschman LL, Throne JE, Ramaswamy SB. 2005. Adult dispersal of Ostrinia nubilalis Hübner (Lepidoptera: Crambidae) and its implications for resistance management in Bt maize. J. Appl. Entomol. 129:281–92
    [Google Scholar]
  96. 96.
    Reay-Jones FPF, Reisig DD 2014. Impact of corn earworm injury on yield of transgenic corn producing Bt toxins in the Carolinas. J. Econ. Entomol. 107:1101–9
    [Google Scholar]
  97. 97.
    Reinders JD, Hitt BD, Stroup WW, French BW, Meinke LJ. 2018. Spatial variation in western corn rootworm (Coleoptera: Chrysomelidae) susceptibility to Cry3 toxins in Nebraska. PLOS ONE 13:e0208266
    [Google Scholar]
  98. 98.
    Reinders JD, Reinders ER, Robinson EA, French BW, Meinke LJ. 2021. Evidence of western corn rootworm (Diabrotica virgifera virgifera LeConte) field-evolved resistance to Cry3Bb1 + Cry34/35Ab1 maize in Nebraska. Pest Manag. Sci. 78:1356–66
    [Google Scholar]
  99. 99.
    Reisig DD. 2017. Factors associated with willingness to plant non-Bt maize refuge and suggestions for increasing refuge compliance. J. Integr. Pest Manag. 8:9
    [Google Scholar]
  100. 100.
    Reisig DD, DiFonzo C, Dively G, Farhan Y, Gore J, Smith J. 2021. Best management practices to delay the evolution of Bt resistance in lepidopteran pests without high susceptibility to Bt toxins in North America. J. Econ. Entomol. 115:10–25
    [Google Scholar]
  101. 101.
    Reisig DD, Huseth AS, Bacheler JS, Aghaee M-A, Braswell L et al. 2018. Long-term empirical and observational evidence of practical Helicoverpa zea resistance to cotton with pyramided Bt toxins. J. Econ. Entomol. 111:1824–33
    [Google Scholar]
  102. 102.
    Reisig DD, Kurtz R. 2018. Bt resistance implications for Helicoverpa zea (Lepidoptera: Noctuidae) insecticide resistance management in the United States. Environ. Entomol. 47:1357–64
    [Google Scholar]
  103. 103.
    Reisig DD, Reay-Jones FPF. 2015. Inhibition of Helicoverpa zea (Lepidoptera: Noctuidae) growth by transgenic corn expressing Bt toxins and development of resistance to Cry1Ab. Environ. Entomol. 44:1275–85
    [Google Scholar]
  104. 104.
    Roush RT. 1998. Two-toxin strategies for management of insecticidal transgenic crops: Can pyramiding succeed where pesticide mixtures have not?. Philos. Trans. R. Soc. Lond. B 353:1777–86
    [Google Scholar]
  105. 105.
    Roush RT, McKenzie JA. 1987. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32:361–80
    [Google Scholar]
  106. 106.
    Schellenberger U, Oral J, Rosen BA, Wei J-Z, Zhu G et al. 2016. A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Science 354:634–37
    [Google Scholar]
  107. 107.
    Schlum KA, Lamour K, de Bortoli CP, Banerjee R, Emrich SJ et al. 2021. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genom. 22:179
    [Google Scholar]
  108. 108.
    Schrader PM, Estes RE, Tinsley NA, Gassmann AJ, Gray ME. 2016. Evaluation of adult emergence and larval root injury for Cry3Bb1-resistant populations of the western corn rootworm. J. Appl. Entomol. 141:41–52
    [Google Scholar]
  109. 109.
    Seymour M, Perera OP, Fescemyer HW, Jackson RE, Fleischer SJ, Abel CA. 2016. Peripheral genetic structure of Helicoverpa zea indicates asymmetrical panmixia. Ecol. Evol. 6:3198–207
    [Google Scholar]
  110. 110.
    Shelton AM. 2021. Bt eggplant: a personal account of using biotechnology to improve the lives of resource-poor farmers. Am. Entomol. 67:52–59
    [Google Scholar]
  111. 111.
    Shrestha RB, Dunbar MW, French BW, Gassmann AJ. 2018. Effects of field history on resistance to Bt maize by western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). PLOS ONE 13:e0200156
    [Google Scholar]
  112. 112.
    Shrestha RB, Gassmann AJ. 2020. Inheritance and fitness costs of Cry3Bb1 resistance in diapausing field strains of western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 113:2873–82
    [Google Scholar]
  113. 113.
    Shrestha RB, Jakka SRK, French BW, Gassmann AJ. 2016. Field-based assessment of resistance to Bt corn by western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 109:1399–409
    [Google Scholar]
  114. 114.
    Siegfried BD, Hellmich RL. 2012. Understanding successful resistance management: the European corn borer and Bt corn in the United States. GM Crops Food 3:184–93
    [Google Scholar]
  115. 115.
    Siegfried BD, Rangasamy M, Wang H, Spencer T, Haridas CV et al. 2014. Estimating the frequency of Cry1F resistance in field populations of the European corn borer (Lepidoptera: Crambidae). Pest Manag. Sci. 70:725–33
    [Google Scholar]
  116. 116.
    Smith JL, DiFonzo CD, Baute TS, Michel AP, Krupke CH. 2019. Ecology and management of the western bean cutworm (Lepidoptera: Noctuidae) in corn and dry beans—revision with focus on the Great Lakes region. J. Integr. Pest Manag. 10:27
    [Google Scholar]
  117. 117.
    Smith JL, Farhan Y, Schaafsma AW. 2019. Practical resistance of Ostrinia nubilalis (Lepidoptera: Crambidae) to Cry1F Bacillus thuringiensis maize discovered in Nova Scotia, Canada. Sci. Rep. 9:18247
    [Google Scholar]
  118. 118.
    Smith JL, Lepping MD, Rule DM, Farhan Y, Schaafsma AW. 2017. Evidence for field-evolved resistance of Striacosta albicosta (Lepidoptera: Noctuidae) to Cry1F Bacillus thuringiensis protein and transgenic corn hybrids in Ontario, Canada. J. Econ. Entomol. 110:2217–28
    [Google Scholar]
  119. 119.
    Smith RH. 1997. An extension entomologist's 1996 observations of Bollgard (Bt) technology. See Reference 39 856–58
  120. 120.
    St. Clair CR, Gassmann AJ 2021. Linking land use patterns and pest outbreaks in Bt maize. Ecol. Appl. 31:e02295
    [Google Scholar]
  121. 121.
    St. Clair CR, Head GP, Gassmann AJ 2020. Comparing populations of western corn rootworm (Coleoptera: Chrysomelidae) in regions with and without a history of injury to Cry3 corn. J. Econ. Entomol. 113:1839–49
    [Google Scholar]
  122. 122.
    St. Clair CR, Head GP, Gassmann AJ 2020. Western corn rootworm abundance, injury to corn, and resistance to Cry3Bb1 in the local landscape of previous problem fields. PLOS ONE 15:e0237094
    [Google Scholar]
  123. 123.
    Stern VM, Smith RF, van den Bosch R, Hagen KS. 1959. The integrated control concept. Hilgardia 29:81–101
    [Google Scholar]
  124. 124.
    Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD et al. 2010. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103:1031–38
    [Google Scholar]
  125. 125.
    Storer NP, Van Duyn JW, Kennedy GG. 2001. Life history traits of Helicoverpa zea (Lepidoptera: Noctuidae) on non-Bt and Bt transgenic corn hybrids in eastern North Carolina. J. Econ. Entomol. 94:1268–79
    [Google Scholar]
  126. 126.
    Tabashnik BE, Biggs RW, Higginson DM, Henderson S, Unnithan DC et al. 2005. Association between resistance to Bt cotton and cadherin genotype in pink bollworm. J. Econ. Entomol. 98:635–44
    [Google Scholar]
  127. 127.
    Tabashnik BE, Brévault T, Carrière Y. 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 6:510–21
    [Google Scholar]
  128. 128.
    Tabashnik BE, Carrière Y. 2017. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 35:926–35
    [Google Scholar]
  129. 129.
    Tabashnik BE, Carrière Y. 2019. Global patterns of resistance to Bt crops highlighting pink bollworm in the United States, China, and India. J. Econ. Entomol. 112:2513–23
    [Google Scholar]
  130. 130.
    Tabashnik BE, Dennehy TJ, Carrière Y. 2005. Delayed resistance to transgenic cotton in pink bollworm. PNAS 102:15389–93
    [Google Scholar]
  131. 131.
    Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y. 2008. Field-evolved resistance to Bt toxins—reply. Nat. Biotechnol. 26:1074–76
    [Google Scholar]
  132. 132.
    Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y. 2008. Insect resistance to Bt crops: evidence versus theory. Nat. Biotechnol. 26:199–202
    [Google Scholar]
  133. 133.
    Tabashnik BE, Gould F. 2012. Delaying corn rootworm resistance to Bt corn. J. Econ. Entomol. 105:767–76
    [Google Scholar]
  134. 134.
    Tabashnik BE, Liesner LR, Ellsworth PC, Unnithan GC, Fabrick JA et al. 2021. Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States. PNAS 118:e2019115118
    [Google Scholar]
  135. 135.
    Tabashnik BE, Patin AL, Dennehy TJ, Liu Y, Carrière Y et al. 2000. Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. PNAS 97:12980–84
    [Google Scholar]
  136. 136.
    Tang JD, Collins HL, Metz TD, Earle ED, Zhao JZ et al. 2001. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J. Econ. Entomol. 94:240–47
    [Google Scholar]
  137. 137.
    Tinsley NA, Estes RE, Gray ME. 2013. Validation of a nested error component model to estimate damage caused by corn rootworm larvae. J. Appl. Entomol. 137:161–69
    [Google Scholar]
  138. 138.
    US Environ. Prot. Agency. 1998. Final report of the FIFRA scientific advisory panel subpanel on Bacillus thuringiensis (Bt) plant-pesticides and resistance management Rep. US Environ. Prot. Agency Washington, DC: http://archive.epa.gov/scipoly/sap/meetings/web/pdf/finalfeb.pdf
    [Google Scholar]
  139. 139.
    US Environ. Prot. Agency 2011. Biopesticide registration action document: MON 89034 x TC1507 x MON 88017 x DAS-59122-7 (SmartStax®) B.t Corn Seed Blend. Rep. US Environ. Prot. Agency Washington, DC: https://www3.epa.gov/pesticides/chem_search/reg_actions/pip/smartstax-seedblend.pdf
    [Google Scholar]
  140. 140.
    US Environ. Prot. Agency 2020. Current and previously registered Section 3 plant-incorporated protectant (PIP) registrations Rep. US Environ. Prot. Agency Washington, DC: http://www.epa.gov/ingredients-used-pesticide-products/current-previously-registered-section-3-plant-incorporated
  141. 141.
    US Environ. Prot. Agency 2021. Notice of pesticide registration: Bt11 × MIR604 × TC1507 × 5307 and Bt11 × MIR162 × MIR604 × TC1507 × 5307 5% Refuge Seed Blend Corn Rep. US Environ. Prot. Agency Washington, DC: https://www3.epa.gov/pesticides/chem_search/ppls/067979-00039-20210218.pdf
  142. 142.
    USDA Econ. Res. Serv 2020. Recent trends in GE adoption Rep. Econ. Res. Serv., US Dept. Agric. Washington, DC: https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption.aspx
  143. 143.
    Vélez AM, Spencer TA, Alves AP, Moellenbeck D, Meagher RL et al. 2013. Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae). Bull. Entomol. Res. 103:700–13
    [Google Scholar]
  144. 144.
    Vyavhare SS, Kerns D. 2019. Bt cotton Rep. AgriLife Ext., Texas A&M Univ. College Station: https://lubbock.tamu.edu/files/2019/03/ENTO067rvsd.pdf
  145. 145.
    Wang Y, Wang J, Fu X, Nageotte JR, Silverman J et al. 2019. Bacillus thuringiensis Cry1Da_7 and Cry1B.868 protein interactions with novel receptors allow control of resistant fall armyworms, Spodopterafrugiperda (J.E. Smith). Appl. Environ. Microbiol. 85:e00579–19
    [Google Scholar]
  146. 146.
    Wangila DS, Gassmann AJ, Petzold-Maxwell JL, French BW, Meinke LJ. 2015. Susceptibility of Nebraska western corn rootworm (Coleoptera: Chrysomelidae) populations to Bt corn events. J. Econ. Entomol. 108:742–51
    [Google Scholar]
  147. 147.
    Welch KL, Unnithan GC, Degain BA, Wei J, Zhang J et al. 2015. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. J. Invertebr. Pathol. 132:149–56
    [Google Scholar]
  148. 148.
    Wilson LJ, Whitehouse MAE, Herron GA. 2018. The management of insect pests in Australian cotton: an evolving story. Annu. Rev. Entomol. 63:215–37
    [Google Scholar]
  149. 149.
    Yang F, González JCS, Little N, Reisig D, Payne G et al. 2020. First documentation of major Vip3Aa resistance alleles in field populations of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Texas, USA. Sci. Rep. 10:5867
    [Google Scholar]
  150. 150.
    Yang F, González JCS, Sword GA, Kerns DL. 2021. Genetic basis of resistance to the Vip3Aa Bt protein in Helicoverpa zea. Pest Manag. Sci. 77:1530–35
    [Google Scholar]
  151. 151.
    Yang F, Kerns DL, Little NS, González JCS, Tabashnik BE. 2021. Early warning of resistance to Bt toxin Vip3Aa in Helicoverpa zea. Toxins 13:618
    [Google Scholar]
  152. 152.
    Zukoff SN, Ostlie KR, Potter B, Meihls LN, Zukoff AL et al. 2016. Multiple assays indicate varying levels of cross resistance in Cry3Bb1-selected field populations of the western corn rootworm to mCry3A, eCry3.1Ab, and Cry34/35Ab1. J. Econ. Entomol. 109:1387–98
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120220-105502
Loading
/content/journals/10.1146/annurev-ento-120220-105502
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error