1932

Abstract

Environmental pharmaceuticals represent a threat of emerging concern for marine ecosystems. Widely distributed and bioaccumulated, these contaminants could provoke adverse effects on aquatic organisms through modes of action like those reported for target species. In contrast to pharmacological uses, organisms in field conditions are exposed to complex mixtures of compounds with similar, different, or even opposing therapeutic effects. This review summarizes current knowledge of the main cellular pathways modulated by the most common classes of environmental pharmaceuticals occurring in marine ecosystems and accumulated by nontarget species—including nonsteroidal anti-inflammatory drugs, psychiatric drugs, cardiovascular and lipid regulator agents, steroidal hormones, and antibiotics—and describes an intricate network of possible interactions with both synergistic and antagonistic effects on the same cellular targets and metabolic pathways. This complexity reveals the intrinsic limits of the single-chemical approach to predict the long-term consequences and future impact of pharmaceuticals at organismal, population, and community levels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040821-075606
2022-01-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-040821-075606.html?itemId=/content/journals/10.1146/annurev-marine-040821-075606&mimeType=html&fmt=ahah

Literature Cited

  1. Aherne GW, Hardcastle A, Nield AH. 1990. Cytotoxic drugs and the aquatic environment: estimation of bleomycin in river and water samples. J. Pharm. Pharmacol. 42:741–42
    [Google Scholar]
  2. Al-Habsi AA, Massarsky A, Moon TW. 2016. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio). Comp. Biochem. Physiol. B 199:87–96
    [Google Scholar]
  3. Alhayek S, Preuss CV. 2021. Beta 1 receptors. StatPearls Treasure Island, FL: StatPearls https://www.ncbi.nlm.nih.gov/books/NBK532904
    [Google Scholar]
  4. Ali AM, Rønning HT, Sydnes LK, Alarif WM, Kallenborn R, Al-Lihaibi SS. 2018. Detection of PPCPs in marine organisms from contaminated coastal waters of the Saudi Red Sea. Sci. Total Environ. 621:654–62
    [Google Scholar]
  5. Almeida Â, Silva MG, Soares AMVM, Freitas R. 2020a. Concentrations levels and effects of 17α-ethinylestradiol in freshwater and marine waters and bivalves: a review. Environ. Res. 185:109316
    [Google Scholar]
  6. Almeida Â, Solé M, Soares AMVM, Freitas R. 2020b. Anti-inflammatory drugs in the marine environment: bioconcentration, metabolism and sub-lethal effects in marine bivalves. Environ. Pollut. 263:114442
    [Google Scholar]
  7. Álvarez-Muñoz D, Rodríguez-Mozaz S, Maulvault AL, Tediosi A, Fernández-Tejedor M et al. 2015. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. Environ. Res. 143:56–64
    [Google Scholar]
  8. Ambrosio AF, Soares-da-Silva P, Carvalho CM, Carvalho AP. 2002. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem. Res. 27:121–30
    [Google Scholar]
  9. Amenyogbe E, Chen G, Wang Z, Lu X, Lin M, Lin AY 2020. A review on sex steroid hormone estrogen receptors in mammals and fish. Int. J. Endocrinol. 2020.5386193
    [Google Scholar]
  10. Aris AZ, Shamsuddin AS, Praveena SM. 2014. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ. Int. 69:104–19
    [Google Scholar]
  11. Bacchi S, Palumbo P, Sponta A, Coppolino MF. 2012. Clinical pharmacology of non-steroidal anti-inflammatory drugs: a review. Antiinflamm. Antiallergy Agents Med. Chem. 11:52–64
    [Google Scholar]
  12. Bagnis S, Fitzsimons MF, Snape J, Tappin A, Comber S. 2019. Impact of the wastewater-mixing zone on attenuation of pharmaceuticals in natural waters: implications for an impact zone inclusive environmental risk assessment. Sci. Total Environ. 658:42–50
    [Google Scholar]
  13. Balbi T, Montagna M, Fabbri R, Carbone C, Franzellitti S et al. 2018. Diclofenac affects early embryo development in the marine bivalve Mytilus galloprovincialis. Sci. Total Environ. 642:601–9
    [Google Scholar]
  14. Beardmore JA, Mair GC, Lewis RI. 2001. Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture 197:283–301
    [Google Scholar]
  15. Bebianno MJ, Gonzalez-Rey M 2015. Ecotoxicological risk of personal care products and pharmaceuticals. Aquatic Ecotoxicology: Advancing Tools for Dealing with Emerging Risks C Amiard-Triquet, J-C Amiard, C Mouneyrac 383–416 London: Academic
    [Google Scholar]
  16. Ben YJ, Fu CX, Hu M, Liu L, Wong MH, Zheng CM. 2019. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environ. Res. 169:483–93
    [Google Scholar]
  17. Bidel F, Di Poi C, Budzinski H, Pardon P, Callewaert W et al. 2016. The antidepressant venlafaxine may act as a neurodevelopmental toxicant in cuttlefish (Sepia officinalis). Neurotoxicology 55:142–53
    [Google Scholar]
  18. Biel-Maeso M, Baena-Nogueras RM, Corada-Fernández C, Lara-Martín PA. 2018. Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). Sci. Total Environ 612:649–59
    [Google Scholar]
  19. Bindu S, Mazumder S, Bandyopadhyay U. 2020. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem. Pharmacol. 180:114147
    [Google Scholar]
  20. Binelli A, Parolini M, Cogni D, Pedriali A, Provini A. 2009. A multi-biomarker assessment of the impact of the antibacterial trimethoprim on the non-target organism zebra mussel (Dreissena polymorpha). Comp. Biochem. Physiol. C 150:329–36
    [Google Scholar]
  21. Blesson CS, Büttner E, Masironi B, Sahlin L. 2012. Prostaglandin receptors EP and FP are regulated by estradiol and progesterone in the uterus of ovariectomized rats. Reprod. Biol. Endocrinol. 10:3
    [Google Scholar]
  22. Bossus MC, Guler YZ, Short SJ, Morrison ER, Ford AT. 2014. Behavioural and transcriptional changes in the amphipod Echinogammarus marinus exposed to two antidepressants, fluoxetine and sertraline. Aquat. Toxicol. 151:46–56
    [Google Scholar]
  23. Bouvier E, Brouillard F, Molet J, Claverie D, Cabungcal JH et al. 2017. Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol. Psychiatry 22:1701–13
    [Google Scholar]
  24. Brausch JM, Rand GM. 2011. A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–32
    [Google Scholar]
  25. Bu Q, Shi X, Yu G, Huang J, Wang B. 2016. Assessing the persistence of pharmaceuticals in the aquatic environment: challenges and needs. Emerg. Contam. 2:145–47
    [Google Scholar]
  26. Burian M. 2007. NSAIDs, mode of action. Encyclopedia of Pain RF Schmidt, WD Willis Berlin: Springer https://doi.org/10.1007/978-3-540-29805-2_2851
    [Crossref] [Google Scholar]
  27. Canesi L, Borghi C, Fabbri R, Ciacci C, Lorusso LC et al. 2007. Effects of 17β-estradiol on mussel digestive gland. Gen. Comp. Endocrinol. 153:40–46
    [Google Scholar]
  28. Canesi L, Ciacci C, Lorusso LC, Betti M, Guarnieri T et al. 2006. Immunomodulation by 17β-estradiol in bivalve hemocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R664–73
    [Google Scholar]
  29. Canesi L, Lorusso LC, Ciacci C, Betti M, Gallo G 2004. Environmental estrogens can affect the function of mussel hemocytes through rapid modulation of kinase pathways. Gen. Comp. Endocrinol. 138:58–69
    [Google Scholar]
  30. Capolupo M, Diaz-Garduno B, Martin-Diaz ML. 2018. The impact of propranolol, 17α-ethinylestradiol, and gemfibrozil on early life stages of marine organisms: effects and risk assessment. Environ. Sci. Pollut. Res. 25:3196–220
    [Google Scholar]
  31. Capolupo M, Franzellitti S, Kiwan A, Valbonesi P, Dinelli E et al. 2017. A comprehensive evaluation of the environmental quality of a coastal lagoon (Ravenna, Italy): integrating chemical and physiological analyses in mussels as a biomonitoring strategy. Sci. Total Environ. 598:146–59
    [Google Scholar]
  32. Carvalho IT, Santos L. 2016. Antibiotics in the aquatic environments: a review of the European scenario. Environ. Int. 94:736–57
    [Google Scholar]
  33. Cortez FS, Souza L, Guimarães LL, Almeida JE, Pusceddu FH et al. 2018. Ecotoxicological effects of losartan on the brown mussel Perna perna and its occurrence in seawater from Santos Bay (Brazil). Sci. Total Environ. 637–38:1363–71
    [Google Scholar]
  34. Couto CF, Lange LC, Amaral MCS. 2019. Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—a review. J. Water Process Eng. 32:100927
    [Google Scholar]
  35. Cunha SC, Pena A, Fernandes JO. 2017. Mussels as bioindicators of diclofenac contamination in coastal environments. Environ. Pollut. 225:354–60
    [Google Scholar]
  36. de Oliveira MR. 2016. Fluoxetine and the mitochondria: a review of the toxicological aspects. Toxicol. Lett. 258:185–91
    [Google Scholar]
  37. de Oliveira MR, Frihling BEF, Velasques J, Filho FJCM, Cavalheri PS, Migliolo L. 2020. Pharmaceuticals residues and xenobiotics contaminants: occurrence, analytical techniques and sustainable alternatives for wastewater treatment. Sci. Total Environ. 10:135568
    [Google Scholar]
  38. DeLorenzo ME, Fleming J. 2008. Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. Arch. Environ. Contam. Toxicol. 54:203–10
    [Google Scholar]
  39. Di Costanzo F, Di Dato V, Ianora A, Romano G. 2019. Prostaglandins in marine organisms: a review. Mar. Drugs 17:428
    [Google Scholar]
  40. Djordjevic J, Djordjevic A, Adzic M, Elaković I, Matić G, Radojcic MB 2011. Fluoxetine affects antioxidant system and promotes apoptotic signaling in Wistar rat liver. Eur. J. Pharmacol. 659:61–66
    [Google Scholar]
  41. Dussault ÈB, Balakrishnan VK, Sverko E, Solomon KR, Sibley PK. 2008. Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environ. Toxicol. Chem. 27:425–32
    [Google Scholar]
  42. Ellesat KS, Yazdani M, Holth TF, Hylland K. 2011. Species-dependent sensitivity to contaminants: an approach using primary hepatocyte cultures with three marine fish species. Mar. Environ. Res. 72:216–24
    [Google Scholar]
  43. Eren I, Naziroǧlu M, Demirdaş A. 2007. Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem. Res. 32:1188–95
    [Google Scholar]
  44. Ericson H, Thorsén G, Kumblad L. 2010. Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels. Aquat. Toxicol. 99:223–31
    [Google Scholar]
  45. Estévez-Calvar N, Canesi L, Montagna M, Faimali M, Piazza V, Garaventa F. 2017. Adverse effects of the SSRI antidepressant sertraline on early life stages of marine invertebrates. Mar. Environ. Res. 128:88–97
    [Google Scholar]
  46. Eur. Comm 2019. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee: European Union Strategic Approach to Pharmaceuticals in the Environment Doc. COM(2019)128/F1 Eur. Comm. Brussels:
  47. Fabbri E. 2015. Pharmaceuticals in the environment: expected and unexpected effects on aquatic fauna. Ann. N. Y. Acad. Sci. 1340:20–28
    [Google Scholar]
  48. Falfushynska H, Sokolov EP, Haider F, Oppermann C, Kragl U et al. 2019. Effects of a common pharmaceutical, atorvastatin, on energy metabolism and detoxification mechanisms of a marine bivalve Mytilus edulis. Aquat. Toxicol. 208:47–61
    [Google Scholar]
  49. Faure C, Ouissame MF, Nasser H. 2006. Long-term adaptive changes induced by serotonergic antidepressant drugs. Expert Rev. Neurother. 6:235–45
    [Google Scholar]
  50. Fong PP, Ford AT. 2014. The biological effects of antidepressants on the molluscs and crustaceans: a review. Aquat. Toxicol. 151:4–13
    [Google Scholar]
  51. Franzellitti S, Balbi T, Montagna M, Fabbri R, Valbonesi P et al. 2019. Phenotypical and molecular changes induced by carbamazepine and propranolol on larval stages of Mytilus galloprovincialis. Chemosphere 234:962–70
    [Google Scholar]
  52. Franzellitti S, Buratti S, Capolupo M, Du B, Haddad SP et al. 2014. An exploratory investigation of various modes of action and potential adverse outcomes of fluoxetine in marine mussels. Aquat. Toxicol. 151:14–26
    [Google Scholar]
  53. Freitas R, Almeida A, Calisto V, Velez C, Moreira A et al. 2016. The impacts of pharmaceutical drugs under ocean acidification: new data on single and combined long-term effects of carbamazepine on Scrobicularia plana. Sci. Total Environ. 541:977–85
    [Google Scholar]
  54. Fuentes N, Silveyra P. 2019. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 116:135–70
    [Google Scholar]
  55. Ghosh R, Alajbegovic A, Gomes AV. 2015. NSAIDs and cardiovascular diseases: role of reactive oxygen species. Oxid. Med. Cell. Longev. 25:536962
    [Google Scholar]
  56. González-Alonso S, Merino LM, Esteban S, López de Alda M, Barceló D et al. 2017. Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environ. Pollut. 229:241–54
    [Google Scholar]
  57. Gonzalez-Rey M, Bebianno MJ 2013. Does selective serotonin reuptake inhibitor (SSRI) fluoxetine affects mussel Mytilus galloprovincialis?. Environ. Pollut. 173:200–9
    [Google Scholar]
  58. Guedes-Alonso R, Sosa-Ferrera Z, Santana-Rodríguez JJ. 2017. Determination of steroid hormones in fish tissues by microwave-assisted extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry. Food Chem 237:1012–20
    [Google Scholar]
  59. Hampel M, Blasco J, Babbucci M, Ferraresso S, Bargelloni L, Milan M. 2017. Transcriptome analysis of the brain of the sea bream (Sparus aurata) after exposure to human pharmaceuticals at realistic environmental concentrations. Mar. Environ. Res. 129:36–45
    [Google Scholar]
  60. Hillhouse TM, Porter JH. 2015. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp. Clin. Psychopharmacol. 23:1–21
    [Google Scholar]
  61. IQVIA Inst. Hum. Data Sci 2019. The global use of medicine in 2019 and outlook to 2023: forecasts and areas to watch Rep., IQVIA Inst. Hum. Data Sci.
  62. Janer G, Porte C. 2007. Sex steroids and potential mechanisms of non-genomic endocrine disruption in invertebrates. Ecotoxicology 16:145–60
    [Google Scholar]
  63. Jose J, Sandra Pinto J, Kotian B, Mathew Thomas A, Narayana Charyulu R 2020. Comparison of the regulatory outline of ecopharmacovigilance of pharmaceuticals in Europe, USA, Japan and Australia. Sci. Total Environ. 709:134815
    [Google Scholar]
  64. Kajiwara M, Kuraku S, Kurokawa T, Kato K, Toda S et al. 2006. Tissue preferential expression of estrogen receptor gene in the marine snail, Thais clavigera. Gen. Comp. Endocrinol. 148:315–26
    [Google Scholar]
  65. Kovalakova P, Cizmas L, Donald TJM, Marsalek B, Feng M, Sharma VK. 2020. Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere 251:126351
    [Google Scholar]
  66. Kumar P, Kumar A. 2009. Possible role of sertraline against 3-nitropropionic acid induced behavioral, oxidative stress and mitochondrial dysfunctions in rat brain. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 33:100–8
    [Google Scholar]
  67. Kümmerer K. 2010. Pharmaceuticals in the environment. Annu. Rev. Environ. Resour. 35:57–75
    [Google Scholar]
  68. Lazzara R, Fernandes D, Faria M, López JF, Tauler R, Porte C. 2012. Changes in lipid content and fatty acid composition along the reproductive cycle of the freshwater mussel Dreissena polymorpha: its modulation by clofibrate exposure. Sci. Total Environ. 432:195–201
    [Google Scholar]
  69. Liu J, Lu G, Xie Z, Zhang Z, Li S, Yan Z 2015. Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants. Sci. Total Environ. 511:54–62
    [Google Scholar]
  70. Maria VL, Amorim MJB, Bebianno MJ, Dondero F. 2016. Transcriptomic effects of the non-steroidal anti-inflammatory drug Ibuprofen in the marine bivalve Mytilus galloprovincialis Lam. Mar. Environ. Res. 119:31–39
    [Google Scholar]
  71. Marino M, Galluzzo P, Ascenzi P. 2006. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genom. 7:497–508
    [Google Scholar]
  72. Martínez-Morcillo S, Rodríguez-Gil JL, Fernández-Rubio J, Rodríguez-Mozaz S, Míguez-Santiyán MP et al. 2020. Presence of pharmaceutical compounds, levels of biochemical biomarkers in seafood tissues and risk assessment for human health: results from a case study in North-Western Spain. Int. J. Hyg. Environ. Health 223:10–21
    [Google Scholar]
  73. Matozzo V, De Notaris C, Finos L, Filippini R, Piovan A. 2015. Environmentally realistic concentrations of the antibiotic Trimethoprim affect haemocyte parameters but not antioxidant enzyme activities in the clam Ruditapes philippinarum. Environ. Pollut. 206:567–74
    [Google Scholar]
  74. Mezzelani M, Fattorini D, Gorbi S, Nigro M, Regoli F. 2020. Human pharmaceuticals in marine mussels: evidence of sneaky hazard along Italian coasts. Mar. Environ. Res. 162:105137
    [Google Scholar]
  75. Mezzelani M, Gorbi S, Fattorini D, d'Errico G, Consolandi G et al. 2018a. Long-term exposure of Mytilus galloprovincialis to diclofenac, ibuprofen and ketoprofen: insights into bioavailability, biomarkers and transcriptomic changes. Chemosphere 198:238–48
    [Google Scholar]
  76. Mezzelani M, Gorbi S, Regoli F. 2018b. Pharmaceuticals in the aquatic environments: evidence of emerged threat and future challenges for marine organisms. Mar. Environ. Res. 140:41–60
    [Google Scholar]
  77. Mezzelani M, Nardi A, Bernardini I, Milan M, Peruzza L et al. 2021. Environmental pharmaceuticals and climate change: the case study of carbamazepine in M. galloprovincialis under ocean acidification scenario. Environ. Int. 146:106269
    [Google Scholar]
  78. Milan M, Pauletto M, Patarnello T, Bargelloni L, Marin MG, Matozzo V. 2013. Gene transcription and biomarker responses in the clam Ruditapes philippinarum after exposure to ibuprofen. Aquat. Toxicol. 126:17–29
    [Google Scholar]
  79. Milla S, Depiereux S, Kestemont P. 2011. The effects of estrogenic and androgenic endocrine disruptors on the immune system of fish: a review. Ecotoxicology 20:305–19
    [Google Scholar]
  80. Moreno-González R, Rodríguez-Mozaz S, Huerta B, Barceló D, León VM. 2016. Do pharmaceuticals bioaccumulate in marine molluscs and fish from a coastal lagoon?. Environ. Res. 146:282–98
    [Google Scholar]
  81. Moretti M, Colla A, de Oliveira Balen G, dos Santos DB, Budni J et al. 2012. Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J. Psychiatr. Res. 46:331–40
    [Google Scholar]
  82. Munari M, Marin MG, Matozzo V. 2014. Effects of the antidepressant fluoxetine on the immune parameters and acetylcholinesterase activity of the clam Venerupis philippinarum. Mar. Environ. Res. 94:32–37
    [Google Scholar]
  83. Muraoka S, Miura T. 2009. Inactivation of cholinesterase induced by non-steroidal anti-inflammatory drugs with horseradish peroxidase: implication for Alzheimer's disease. Life Sci 84:272–77
    [Google Scholar]
  84. Nichols CD, Sanders-Bush E. 2003. Serotonin. Encyclopedia of the Neurological Sciences MJ Aminoff, RB Daroff 245–48 London: Academic
    [Google Scholar]
  85. Niu Z, Xu W, Na J, Lv Z, Zhang Y. 2019. How long-term exposure of environmentally relevant antibiotics may stimulate the growth of Prorocentrum lima: a probable positive factor for red tides. Environ. Pollut. 255:113149
    [Google Scholar]
  86. Notch EG, Miniutti DM, Mayer GD. 2007. 17α-Ethinylestradiol decreases expression of multiple hepatic nucleotide excision repair genes in zebrafish (Danio rerio). Aquat. Toxicol. 84:301–9
    [Google Scholar]
  87. Ojemaye CY, Petrik L. 2019. Occurrences, levels and risk assessment studies of emerging pollutants (pharmaceuticals, perfluoroalkyl and endocrine disrupting compounds) in fish samples from Kalk Bay harbour, South Africa. Environ. Pollut 252:562–72
    [Google Scholar]
  88. Oliveira P, Almeida Â, Calisto V, Esteves VI, Schneider RJ et al. 2017. Physiological and biochemical alterations induced in the mussel Mytilus galloprovincialis after short and long-term exposure to carbamazepine. Water Res 117:102–14
    [Google Scholar]
  89. O'Malley BW. 2005. A life-long search for the molecular pathways of steroid hormone action. Mol. Endocrinol. 19:1402–11
    [Google Scholar]
  90. Pahan K. 2006. Lipid-lowering drugs. Cell. Mol. Life Sci. 63:1165–78
    [Google Scholar]
  91. Partridge C, Boettcher A, Jones AG. 2010. Short-term exposure to a synthetic estrogen disrupts mating dynamics in a pipefish. Horm. Behav. 58:800–7
    [Google Scholar]
  92. Peake BM, Braund R, Tong AYC, Tremblay LA. 2016. The Life-Cycle of Pharmaceuticals in the Environment Cambridge, UK: Woodhead
  93. Peters JR, Granek EF. 2016. Long-term exposure to fluoxetine reduces growth and reproductive potential in the dominant rocky intertidal mussel, Mytilus californianus. Sci. Total Environ 545–46:62–28
    [Google Scholar]
  94. Porte C, Janer G, Lorusso LC, Ortiz-Zarragoitia M, Cajaraville MP et al. 2006. Endocrine disruptors in marine organisms: approaches and perspectives. Comp. Biochem. Physiol. 143C:303–15
    [Google Scholar]
  95. Qin G, Zhang Y, Zhang B, Zhang Y, Liu Y, Lin Q. 2020. Environmental estrogens and progestins disturb testis and brood pouch development with modifying transcriptomes in male-pregnancy lined seahorse Hippocampus erectus. Sci. Total Environ. 715:136840
    [Google Scholar]
  96. Quinn B, Schmidt W, O'Rourke K, Hernan R 2011. Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardised toxicity tests. Chemosphere 84:657–63
    [Google Scholar]
  97. Rebai R, Jasmin L, Boudah A. 2017. The antidepressant effect of melatonin and fuoxetine in diabetic rats is associated with a reduction of the oxidative stress in the prefrontal and hippocampal cortices. Brain Res. Bull. 134:142–50
    [Google Scholar]
  98. Regoli F, Giuliani ME. 2014. Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar. Environ. Res. 93:106–17
    [Google Scholar]
  99. Roark AM 2020. Endocrine disruptors and marine systems. Encyclopedia of the World's Biomes MI Goldstein, DA DellaSala 188–94 Amsterdam: Elsevier
    [Google Scholar]
  100. Rocco L, Frenzilli G, Zito G, Archimandritis A, Peluso C, Stingo V. 2012. Genotoxic effects in fish induced by pharmacological agents present in the sewage of some Italian water-treatment plants. Environ. Toxicol. 27:18–25
    [Google Scholar]
  101. Rybaczyk LA, Bashaw MJ, Pathak DR, Moody SM, Gilders RM, Holzschu DL. 2005. An overlooked connection: serotonergic mediation of estrogen-related physiology and pathology. BMC Women's Health 5:12
    [Google Scholar]
  102. Saaristo M, Craft JA, Lehtonen KK, Lindström K. 2010. An endocrine disrupting chemical changes courtship and parental care in the sand goby. Aquat. Toxicol. 97:285–92
    [Google Scholar]
  103. Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL. 2020. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. Sci. Total Environ. 698:134057
    [Google Scholar]
  104. Serra-Compte A, Álvarez-Muñoz D, Solé M, Cáceres N, Barceló D, Rodríguez-Mozaz S. 2019. Comprehensive study of sulfamethoxazole effects in marine mussels: bioconcentration, enzymatic activities and metabolomics. Environ. Res. 173:12–22
    [Google Scholar]
  105. Siebel AM, Rico EP, Capiotti KM, Piato AL, Cusinato CT et al. 2010. In vitro effects of antiepileptic drugs on acetylcholinesterase and ectonucleotidase activities in zebrafish (Danio rerio) brain. Toxicol. In Vitro 24:1279–84
    [Google Scholar]
  106. Singh R, Sripada L, Singh R. 2014. Side effects of antibiotics during bacterial infection: mitochondria, the main target in host cell. Mitochondrion 16:50–54
    [Google Scholar]
  107. Skolness SY, Durhan EJ, Jensen KM, Kahl MD, Makynen EA et al. 2012. Effects of gemfibrozil on lipidmetabolism, steroidogenesis, and reproduction in the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 31:2615–24
    [Google Scholar]
  108. Solè M, Shaw JP, Frickers PE, Weadman JW, Hutchinson TH. 2010. Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Anal. Bioanal. Chem. 396:649–56
    [Google Scholar]
  109. Ştefan MG, Kiss B, Gutleb AC, Loghin F. 2020. Redox metabolism modulation as a mechanism in SSRI toxicity and pharmacological effects. Arch. Toxicol. 94:1417–41
    [Google Scholar]
  110. Stefano GB, Samuel J, Kream RM. 2017. Antibiotics may trigger mitochondrial dysfunction inducing psychiatric disorders. Med. Sci. Monit. 23:101–6
    [Google Scholar]
  111. Sun L, Xin L, Peng Z, Jin R, Jin Y et al. 2014. Toxicity and enantiospecific differences of two β-blockers, propranolol and metoprolol, in the embryos and larvae of zebrafish (Danio rerio). Environ. Toxicol. 29:1367–78
    [Google Scholar]
  112. Świacka K, Maculewicz J, Smolarz K, Szaniawska A, Caban M. 2019. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - a review. Environ. Pollut. 254:113082
    [Google Scholar]
  113. Välitalo P, Kruglova A, Mikola A, Vahala R. 2017. Toxicological impacts of antibiotics on aquatic micro-organisms: a mini-review. Int. J. Hyg. Environ. Health 220:558–69
    [Google Scholar]
  114. Wolecki D, Caban M, Pazdro K, Mulkiewicz E, Stepnowski P, Kumirska J. 2019. Simultaneous determination of non-steroidal anti-inflammatory drugs and natural estrogens in the mussels Mytilus edulis trossulus. Talanta 200:316–23
    [Google Scholar]
  115. World Health Organ 2016. Anatomical Therapeutic Chemical (ATC) classification. World Health Organization https://www.who.int/tools/atc-ddd-toolkit/atc-classification
    [Google Scholar]
  116. Xie H, Hao H, Xu N, Liang X, Gao D et al. 2019. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: occurrence, distribution, potential sources, and health risk assessment. Sci. Total Environ. 659:230–39
    [Google Scholar]
  117. Zhang K, Zhao Y, Fent K. 2020. Cardiovascular drugs and lipid regulating agents in surface waters at global scale: occurrence, ecotoxicity and risk assessment. Sci. Total Environ. 729:138770
    [Google Scholar]
  118. Zheng D, Yin G, Liu M, Chen C, Jiang Y et al. 2021. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci. Total Environ. 777:146009
    [Google Scholar]
  119. Zhu S, Dong B, Wu Y, Buc L, Zhou S. 2019. Degradation of carbamazepine by vacuum-UV oxidation process: kinetics modeling and energy efficiency. J. Hazard. Mater. 368:178–85
    [Google Scholar]
/content/journals/10.1146/annurev-marine-040821-075606
Loading
/content/journals/10.1146/annurev-marine-040821-075606
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error