1932

Abstract

Just as glaciers worldwide left a record of past advances and retreats that shifted latitudinally in response to oscillating Quaternary climate changes, so too have cold-climate conditions and permafrost left topographic and sedimentary signatures in former periglacial environments. This review documents widespread occurrence of past permafrost and intense frost action that led to rock fracturing, regolith production, and regolith-mantled slopes in the mid-Atlantic region of the United States during late Pleistocene cold-climate conditions. Strong signatures of thermal contraction cracking and brecciation from frost cracking exist where rocks and sediments are most frost susceptible, as with fissile shales. On sandstone hillslopes, frost weathering produced boulder-rich sediment that episodically flowed slowly down-slope during permafrost thaw, resulting in solifluction lobes and terraces in which colluvium moved cumulatively at least a kilometer. Radiocarbon dating, optically stimulated luminescence age control, and cosmogenic isotope studies constrain some periglacial features to the Last Glacial Maximum but also indicate longer residence times of regolith.

  • ▪  Former permafrost and areas of intensive frost cracking extended over much of the mid-Atlantic region of the eastern United States during late Pleistocene cold glacial periods.
  • ▪  Cold-climate conditions and permafrost left long-lasting topographic and sedimentary records with limited post-depositional erosion in the formerly periglacial mid-Atlantic region.
  • ▪  Prominent relict periglacial landforms include polygon networks and frost wedges that are the result of thermal contraction cracking and brecciated rock formed by segregated ice and frost cracking.
  • ▪  Widespread solifluction landforms are a topographic signature of freezing, thawing, and mass movement of mobile regolith produced by frost cracking, and some were active during the Last Glacial Maximum.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-102849
2022-05-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-102849.html?itemId=/content/journals/10.1146/annurev-earth-032320-102849&mimeType=html&fmt=ahah

Literature Cited

  1. Alter SR. 2015. Periglacial Pennsylvania: Examining Evidence for Periglacial Processes and Diffusion from the Last Glacial Maximum on Blue Mountain Using LiDAR Honors Thesis, Franklin & Marshall Coll. Lancaster, PA: https://digital.fandm.edu/object/scholars-square63291
  2. Andersen JL, Egholm DL, Knudsen MF, Jansen JD, Nielsen SB. 2015. The periglacial engine of mountain erosion—part 1: rates of frost cracking and frost creep. Earth Surf. Dyn. 3:4447–62
    [Google Scholar]
  3. Anderson RS. 1998. Near-surface thermal profiles in alpine bedrock: implications for the frost weathering of rock. Arct. Alp. Res. 30:4362–72
    [Google Scholar]
  4. Anderson RS. 2002. Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming. Geomorphology 46:1–235–58
    [Google Scholar]
  5. Anderson RS, Anderson SP, Tucker GE. 2013. Rock damage and regolith transport by frost: an example of climate modulation of the geomorphology of the critical zone. Earth Surf. Proc. Landf. 38:3299–316
    [Google Scholar]
  6. Andersson JG. 1906. Solifluction, a component of subaerial denudation. J. Geol. 14:91–112
    [Google Scholar]
  7. Andrieux E, Bertran P, Saito K. 2016. Spatial analysis of the French Pleistocene permafrost by a GIS database. Permafr. Periglac. Proc. 27:117–30
    [Google Scholar]
  8. Ballantyne CK. 2018. Periglacial Geomorphology Hoboken, NJ: John Wiley & Sons
  9. Ballantyne CK, Harris C. 1994. The Periglaciation of Great Britain Cambridge, UK: Cambridge Univ. Press
  10. Batchelor CL, Margold M, Krapp M, Murton DK, Dalton AS et al. 2019. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Commun. 10:3713
    [Google Scholar]
  11. Becher AE, Root SI. 1981. Groundwater and Geology of the Cumberland Valley, Cumberland County Harrisburg, PA: Pa. Geol. Surv.
  12. Beerten K, Meylemans E, Kasse C, Mestdagh T, Van Rooij D, Bastiaens J. 2021. Networks of unusually large fossil periglacial polygons, Campine area, northern Belgium. Geomorphology 377:107582
    [Google Scholar]
  13. Behling RE, Kite JS, Springer TC, Cenderelli DA, Stuckenrath R. 1993. Buried organic-rich sediments in the unglaciated Appalachian Highlands: a stratigraphic model for finding pre-Late Wisconsin paleoenvironmental data. Geol. Soc. Am. Abstr. Programs 25:60
    [Google Scholar]
  14. Benedict JB. 1976. Frost creep and gelifluction features: a review. Quat. Res. 6:155–76
    [Google Scholar]
  15. Bertran P, Andrieux E, Antoine P, Coutard S, Deschodt L et al. 2014. Distribution and chronology of Pleistocene permafrost features in France: database and first results. Boreas 43:3699–711
    [Google Scholar]
  16. Black RF. 1976. Features indicative of permafrost. Annu. Rev. Earth Planet. Sci. 4:75–94
    [Google Scholar]
  17. Blois JL, Williams JW, Grimm EC, Jackson ST, Graham RW. 2011. A methodological framework for assessing and reducing temporal uncertainty in aleovegetation mapping from late-Quaternary pollen records. Quat. Sci. Rev. 30:15–161926–39
    [Google Scholar]
  18. Bodek S, Pizzuto JE, McCarthy KE, Affinito RA. 2021. Achieving equilibrium as a semi-alluvial channel: anthropogenic, bedrock, and colluvial controls on the White Clay Creek, PA, USA.. J. Geophys. Res. Earth Surf. 126:e2020JF005920
    [Google Scholar]
  19. Brantley SL, White T, West N, Williams JZ, Forsythe B et al. 2018. Susquehanna Shale Hills Critical Zone Observatory: shale hills in the context of Shaver's Creek watershed. Vadose Zone J 17:1 https://doi.org/10.2136/vzj2018.04.0092
    [Crossref] [Google Scholar]
  20. Braun DD. 1989. Glacial and periglacial erosion of the Appalachians. Geomorphology 2:1–3233–56
    [Google Scholar]
  21. Braun DD. 1996. Surficial geology of the Nesquehoning 7.7′ quadrangle, Carbon and Schuylkill Counties, Pennsylvania Open-File Rep. 96–25 Harrisburg, PA: Penn. Topogr. Geol. Surv.
  22. Braun DD. 2004. The glaciation of Pennsylvania, USA. Dev. Quat. Sci. 2:237–42
    [Google Scholar]
  23. Braun DD. 2011. The glaciation of Pennsylvania, USA. Dev. Quat. Sci. 15:521–29
    [Google Scholar]
  24. Braun DD, Ciolkosz EJ, Inners JD, Epstein JB. 1994. Late Wisconsin to pre-Illinoian (G?) glacial and periglacial events in eastern Pennsylvania. Guidebook for the 57th Field Conference Friends of the Pleistocene Northeastern Section, May 20–22, 1994, Hazleton, Pennsylvania USGS Open-File Rep 94–434 Reston, VA: US Geol. Surv.
  25. Bricker OP, Moss JH. 1958. Origin of the Marsh, East Nantmeal Township, Chester County, Pennsylvania. Proc. Pa. Acad. Sci. 32:168–71
    [Google Scholar]
  26. Burn CR. 1990. Implications for palaeoenvironmental reconstruction of recent ice-wedge development at Mayo, Yukon Territory. Permafr. Periglac. Proc. 1:13–14
    [Google Scholar]
  27. Carter BJ, Ciolkosz EJ. 1986. Sorting and thickness of waste mantle material on a sandstone spur in central Pennsylvania. Catena 13:3241–56
    [Google Scholar]
  28. Chilton KD, Spotila JA 2020. Preservation of Valley and Ridge topography via delivery of resistant, ridge-sourced boulders to hillslopes and channels, Southern Appalachian Mountains, USA. Geomorphology 365:107263
    [Google Scholar]
  29. Christiansen HH, Matsuoka N, Watanabe T. 2016. Progress in understanding the dynamics, internal structure and palaeoenvironmental potential of ice wedges and sand wedges. Permafr. Periglac. Proc. 27:4365–76
    [Google Scholar]
  30. Ciolkosz EJ, Carter BJ, Hoover MT, Cronce RC, Waltman WJ, Dobos RR. 1990. Genesis of soils and landscapes in the Ridge and Valley province of central Pennsylvania. Geomorphology 3:3–4245–61
    [Google Scholar]
  31. Ciolkosz EJ, Cronce RC, Cunningham RL, Petersen GW. 1986a. Geology and soils of Nittany Valley Agronomy Ser. 88, Penn. State Univ., University Park https://ecosystems.psu.edu/research/labs/soilislife/pa-soils/pa-soils-information/publications/as88.pdf
  32. Ciolkosz EJ, Cronce RC, Sevon WD. 1986b. Periglacial features in Pennsylvania Agronomy Ser. 92, Penn. State Univ., University Park https://ecosystems.psu.edu/research/labs/soilislife/pa-soils/pa-soils-information/publications/as92.pdf
  33. Clark GM. 1968. Sorted patterned ground: new Appalachian localities south of the glacial border. Science 161:3839355–56
    [Google Scholar]
  34. Clark GM, Ciolkosz EJ. 1988. Periglacial geomorphology of the Appalachian Highlands and Interior Highlands south of the glacial border—a review. Geomorphology 1:3191–220
    [Google Scholar]
  35. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J et al. 2009. The Last Glacial Maximum. Science 325:5941710–14
    [Google Scholar]
  36. Conant LC, Black RF, Hosterman JW. 1976. Sediment-filled pots in upland gravels of Maryland and Virginia. J. Res. U.S. Geol. Surv. 4:3353–58
    [Google Scholar]
  37. Costa JE, Cleaves ET. 1984. The Piedmont landscape of Maryland: a new look at an old problem. Earth Surf. Proc. Landf. 9:159–74
    [Google Scholar]
  38. Cronce RC. 1988. The genesis of soils overlying dolomite in the Nittany Valley of central Pennsylvania PhD Diss. Penn. State Univ. State College:
  39. Delcourt PA, Delcourt HR. 1981. Vegetation maps for eastern North America: 40,000 yr BP to the present. Geobotany II RC Romans 123–65 New York: Plenum
    [Google Scholar]
  40. Del Vecchio J. 2021. Appalachian pasts, Arctic futures: permafrost landscape response to warming. PhD Diss. Penn. State Univ. State College:
  41. Del Vecchio J, DiBiase RA, Corbett LB, Bierman PR, Caffee MW, Ivory SJ. 2021. Increased erosion rates following the onset of Pleistocene periglaciation at Bear Meadows, Pennsylvania, USA. Geophys. Res. Lett. 2021:e2021GL096739
    [Google Scholar]
  42. Del Vecchio J, DiBiase RA, Denn AR, Bierman PR, Caffee MW, Zimmerman SR. 2018. Record of coupled hillslope and channel response to Pleistocene erosion and deposition in a sandstone headwater valley, central Pennsylvania. Geol. Soc. Am. Bull. 130:11–121903–17
    [Google Scholar]
  43. Demitroff M. 2016. Pleistocene ventifacts and ice-marginal conditions, New Jersey, USA. Permafr. Periglac. Proc. 27:123–37
    [Google Scholar]
  44. Demitroff M, Doolittle JA, Nelson FE. 2008. Use of ground-penetrating radar to characterize cryogenic macrostructures in southern New Jersey, USA. Proceedings: Ninth International Conference on Permafrost, Vol. 1 DL Kane, KM Hinkel 355–60 Fairbanks, AK: Univ. Alaska Fairbanks
    [Google Scholar]
  45. Demitroff M, Wolfe SA, Woronko B, Chemieloska D, Cicali M. 2019. Late Pleistocene ice-marginal dune fields on the Atlantic Coastal Plain, New Jersey Pine Barrens, USA. Geol. Soc. Am. Abstr. Programs 51:5188–4
    [Google Scholar]
  46. Denn AR, Bierman PR, Zimmerman SR, Caffee MW, Corbett LB, Kirby E 2017. Cosmogenic nuclides indicate that boulder fields are dynamic, ancient, multigenerational features. GSA Today 28:4–10
    [Google Scholar]
  47. Denny CS. 1951. Pleistocene frost action near the border of the Wisconsin drift in Pennsylvania. Ohio J. Sci. 51:3116–25
    [Google Scholar]
  48. Denny CS. 1956. Surficial Geology and Geomorphology of Potter County, Pennsylvania Washington, DC: US Gov. Print. Off.
  49. Draebing D, Krautblatter M. 2019. The efficacy of frost weathering processes in alpine rockwalls. Geophys. Res. Lett. 46:126516–24
    [Google Scholar]
  50. Drohan PJ, Raab T, Hirsch F 2020. Distribution of silty mantles in soils of the Northcentral Appalachians, USA. Catena 194:104701
    [Google Scholar]
  51. Duxbury J, Bierman PR, Portenga EW, Pavich MJ, Southworth S, Freeman SP. 2015. Erosion rates in and around Shenandoah National Park, Virginia, determined using analysis of cosmogenic 10Be. Am. J. Sci. 315:146–76
    [Google Scholar]
  52. Dyke AS, Moore A, Robertson L. 2003. Deglaciation of North America Open File 1574 Ottawa, Can: Geol. Surv. Can.
  53. Eaton LS, Morgan BA, Blair JL. 2001. Surficial geologic map of the Fletcher, Madison, Stanardsville, and Swift Run Gap, 7.5-minute Quadrangles, Madison, Greene, Albemarle, Rockingham, and Page Counties, Virginia USGS Open-File Rep 2001–92 Reston, VA: US Geol. Surv.
  54. Eaton LS, Morgan BA, Kochel RC, Howard AD. 2003a. Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia. Geomorphology 56:1–2139–54
    [Google Scholar]
  55. Eaton LS, Morgan BA, Kochel RC, Howard AD. 2003b. Role of debris flows in long-term landscape denudation in the central Appalachians of Virginia. Geology 31:4339–42
    [Google Scholar]
  56. Egholm DL, Andersen JL, Knudsen MF, Jansen JD, Nielsen SB. 2015. The periglacial engine of mountain erosion—part 2: modelling large-scale landscape evolution. Earth Surf. Dyn. 3:4463–82
    [Google Scholar]
  57. French H. 2003. The development of periglacial geomorphology: 1- up to 1965. Permafr. Periglac. Proc. 14:129–60
    [Google Scholar]
  58. French H. 2011. Frozen sediments and previously frozen sediments. Geol. Soc. Lond. Spec. Publ. 354:154–66
    [Google Scholar]
  59. French HM. 1979. Periglacial geomorphology. Prog. Phys. Geogr. 3:2264–73
    [Google Scholar]
  60. French HM. 2000. Does Lozinski's periglacial realm exist today? A discussion relevant to modern usage of the term ‘periglacial. .’ Permafr. Periglac. Proc. 11:135–42
    [Google Scholar]
  61. French HM. 2007. The Periglacial Environment Chichester, UK: John Wiley & Sons. , 3rd ed..
  62. French HM. 2008. Recent contributions to the study of past permafrost. Permafr. Periglac. Proc. 19:179–94
    [Google Scholar]
  63. French HM. 2016. Do periglacial landscapes exist? A discussion of the upland landscapes of northern interior Yukon, Canada. Permafr. Periglac. Proc. 27:2219–28
    [Google Scholar]
  64. French HM 2017a. The northern interior Yukon: an example of periglaciation. Landscapes and Landforms of Western Canada O Slaymaker 257–66 Cham, Switz: Springer
    [Google Scholar]
  65. French HM. 2017b. The Periglacial Environment Hoboken, NJ: John Wiley & Sons. , 4th ed..
  66. French HM, Demitroff M. 2001. Cold-climate origin of the enclosed depressions and wetlands (‘spungs’) of the Pine Barrens, southern New Jersey, USA. Permafr. Periglac. Proc. 12:337–50
    [Google Scholar]
  67. French HM, Demitroff M. 2012. Late-Pleistocene paleohydrology, eolian activity and frozen ground, New Jersey Pine Barrens, eastern USA. Neth. J. Geosci. 91:1–225–35
    [Google Scholar]
  68. French HM, Demitroff M, Forman SL. 2003. Evidence for Late-Pleistocene permafrost in the New Jersey Pine Barrens (latitude 39°N), eastern USA. Permafr. Periglac. Proc. 14:259–74
    [Google Scholar]
  69. French HM, Demitroff M, Forman SL. 2005. Evidence for Late-Pleistocene thermokarst in the New Jersey Pine Barrens (latitude 39°N), eastern USA. Permafr. Periglac. Proc. 16:173–86
    [Google Scholar]
  70. French HM, Demitroff M, Forman SL, Newell WR. 2007. A chronology of Late-Pleistocene permafrost events in southern New Jersey, Eastern USA. Permafr. Periglac. Proc. 18:49–59
    [Google Scholar]
  71. French HM, Demitroff M, Newell WL. 2009a. Past permafrost on the Mid-Atlantic Coastal Plain, eastern United States. Permafr. Periglac. Proc. 20:285–94
    [Google Scholar]
  72. French HM, Demitroff M, Streletskiy D, Forman SL, Gozdzik J et al. 2009b. [Evidence for Late-Pleistocene permafrost in the Pine Barrens, southern New Jersey]. Earth's Cryosphere 3:17–28 (In Russian)
    [Google Scholar]
  73. French HM, Millar SW. 2014. Permafrost at the time of the Last Glacial Maximum (LGM) in North America. Boreas 43:3667–77
    [Google Scholar]
  74. French HM, Thorn CE. 2006. The changing nature of periglacial geomorphology. Géomorphol. Relief Proc. Environ. 12:3 https://doi.org/10.4000/geomorphologie.119
    [Crossref] [Google Scholar]
  75. Gallagher C, Balme MR, Conway SJ, Grindrod PM. 2011. Sorted clastic stripes, lobes and associated gullies in high-latitude craters on Mars: landforms indicative of very recent, polycyclic ground-ice thaw and liquid flows. Icarus 211:1458–71
    [Google Scholar]
  76. Gao C. 2014. Relict thermal-contraction-crack polygons and past permafrost south of the Late Wisconsinan glacial limit in the mid-Atlantic Coastal Plain, USA. Permafr. Periglac. Proc. 25:2144–49
    [Google Scholar]
  77. Gardner TW, Ritter JB, Shuman CA, Bell JC, Sasowsky KC, Pinter N. 1991. A periglacial stratified slope deposit in the valley and ridge province of central Pennsylvania, USA: sedimentology, stratigraphy, and geomorphic evolution. Permafr. Periglac. Proc. 2:2141–62
    [Google Scholar]
  78. Geikie J. 1894. The Great Ice Age London: Stanford. , 3rd ed..
  79. Glade RC, Fratkin MM, Pouragha M, Seiphoori A, Rowland JC. 2021. Arctic soil patterns analogous to fluid instabilities. PNAS 118:21e2101255118
    [Google Scholar]
  80. Goodfellow BW. 2012. A granulometry and secondary mineral fingerprint of chemical weathering in periglacial landscapes and its application to blockfield origins. Quat. Sci. Rev. 57:121–35
    [Google Scholar]
  81. Goodfellow BW, Boelhouwers J. 2013. Hillslope processes in cold environments: an illustration of high-latitude mountain and hillslope processes and forms. Treatise Geomorphol 7:320–36
    [Google Scholar]
  82. Gooseff MN, Balser A, Bowden WB, Jones JB. 2009. Effects of hillslope thermokarst in northern Alaska. Eos Trans. AGU 90:429–30
    [Google Scholar]
  83. Gross ES. 2017. Late Pleistocene climatic conditions inferred from sediment infill in a thermal-contraction wedge in shale bedrock near Carlisle, Pennsylvania Honors Thesis, Franklin & Marshall Coll. Lancaster, PA: https://digital.fandm.edu/object/scholars-square2505
  84. Grote T. 2017. Surficial processes and stratigraphy of alluvial fans along the Blue-Ridge-Great Valley border, south-central Pennsylvania. Southeast. Geol. 52:3157–77
    [Google Scholar]
  85. Grote T, Kite JS. 2010. Geomorphology and pedology of a mixed alluvial-colluvial fill deposit in central West Virginia: new insight into Appalachian landscape evolution. Southeast. Geol. 47:27–39
    [Google Scholar]
  86. Gruber S. 2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6:1221–33
    [Google Scholar]
  87. Gu X, Mavko G, Ma L, Oakley D, Accardo N et al. 2020. Seismic refraction documents clay reactions and possible CO2 production under a ridge and valley landscape. PNAS 117:18991–97
    [Google Scholar]
  88. Guo L, Chen J, Lin H 2014. Subsurface lateral flow network on a hillslope revealed by time-lapse ground penetrating radar. Water Resourc. Res. 50:9127–47
    [Google Scholar]
  89. Hack JT, Goodlett JC. 1960. Geomorphology and Forest Ecology of a Mountain Region in the Central Appalachians Washington, DC: US Gov. Print. Off.
  90. Hales TC, Roering JJ. 2007. Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. J. Geophys. Res. 112:F2F02033
    [Google Scholar]
  91. Hales TC, Roering JJ. 2009. A frost “buzzsaw” mechanism for erosion of the eastern Southern Alps, New Zealand. Geomorphology 107:3–4241–53
    [Google Scholar]
  92. Hall K, Thorn CE, Matsuoka N, Prick A. 2002. Weathering in cold regions: some thoughts and perspectives. Prog. Phys. Geogr. 26:4577–603
    [Google Scholar]
  93. Hallet B, Walder JS, Stubbs CW. 1991. Weathering by segregation ice growth in microcracks at sustained subzero temperatures: verification from an experimental study using acoustic emissions. Permafr. Periglac. Proc. 2:4283–300
    [Google Scholar]
  94. Hancock G, Kirwan M. 2007. Summit erosion rates deduced from 10Be: implications for relief production in the central Appalachians. Geology 35:189–92
    [Google Scholar]
  95. Harris C. 2013. Slope deposits and forms. Encyclopedia of Quaternary Science, Vol. 3 S Elias 481–89 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  96. Harris C, Davies MC, Coutard JP. 1997. Rates and processes of periglacial solifluction: an experimental approach. Earth Surf. Proc. Landf. 22:9849–68
    [Google Scholar]
  97. Harris C, Davies MC, Rea BR. 2003. Gelifluction: viscous flow or plastic creep. ? Earth Surf. Proc. Landf. 28:121289–301
    [Google Scholar]
  98. Harris C, Kern-Luetschg M, Christiansen HH, Smith F. 2011. The role of interannual climate variability in controlling solifluction processes, Endalen, Svalbard. Permafr. Periglac. Proc. 22:239–55
    [Google Scholar]
  99. Harris C, Kern-Luetschg M, Murton J, Font M, Davies M, Smith F. 2008. Solifluction processes on permafrost and non-permafrost slopes: results of a large-scale laboratory simulation. Permafr. Periglac. Proc. 19:4359–78
    [Google Scholar]
  100. Harris C, Rea B, Davies M. 2001. Scaled physical modelling of mass movement processes on thawing slopes. Permafr. Periglac. Proc. 12:1125–35
    [Google Scholar]
  101. Hauber E, Reiss D, Ulrich M, Preusker F, Trauthan F et al. 2011. Periglacial landscapes on Svalbard: terrestrial analogs for cold-climate landforms on Mars. Geol. Soc. Am. Spec. Pap. 483:177–201
    [Google Scholar]
  102. Head MJ. 2019. Formal subdivision of the Quaternary System/Period: present status and future directions. Quat. Int. 500:32–51
    [Google Scholar]
  103. Heginbottom JA, Brown J, Humlum O, Svensson H. 2012. Permafrost and periglacial environments USGS Prof. Pap. 1386-A Reston, VA: US Geol. Surv.
  104. Hertzler N. 2020. Characteristics and origin of colluvial periglacial lobate landforms in the Pennsylvanian Appalachian Mountains Honors Thesis, Franklin & Marshall Coll. Lancaster, PA: https://digital.fandm.edu/object/scholars-square52738
  105. Hjort J. 2014. Which environmental factors determine recent cryoturbation and solifluction activity in a subarctic landscape? A comparison between active and inactive features. Permafr. Periglac. Proc. 25:2136–43
    [Google Scholar]
  106. Holdgate MW, Allen SE, Chambers MJG. 1967. A preliminary investigation of the soils of Signy Island, South Orkney Islands. Br. Antarct. Surv. Bull. 12:53–71
    [Google Scholar]
  107. Jin L, Ravella R, Ketchum B, Bierman PR, Heaney P et al. 2010. Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory. Geochim. Cosmochim. Acta 74:3669–91
    [Google Scholar]
  108. Kinnard C, Lewkowicz AG. 2005. Movement, moisture and thermal conditions at a turf-banked solifluction lobe, Kluane Range, Yukon Territory, Canada. Permafr. Periglac. Proc. 16:3261–75
    [Google Scholar]
  109. Kirkby MJ. 1995. A model for variations in gelifluction rates with temperature and topography: implications for global change. Geogr. Ann. Ser. A Phys. Geogr. 77:4269–78
    [Google Scholar]
  110. Kite JS. 1987. Colluvial diamictons in the Valley and Ridge province, West Virginia and Virginia. U.S. Geol. Surv. Circ. 1008:21–23
    [Google Scholar]
  111. Kneller M, Peteet D. 1999. Late-glacial to early Holocene climate changes from a central Appalachian pollen and macrofossil record. Quat. Res. 51:2133–47
    [Google Scholar]
  112. Kochel RC, Johnson RA 1984. Geomorphology and sedimentology of humid-temperate alluvial fans, central Virginia. Sedimentology of Gravels and Conglomerates EH Koster, RJ Steel 109–22 Calgary, Can: Can. Soc. Petrol. Geol.
    [Google Scholar]
  113. Kuntz BW, Rubin S, Berkowitz B, Singha K. 2011. Quantifying solute transport at the Shale Hills Critical Zone Observatory. Vadose Zone J 10:3843–57
    [Google Scholar]
  114. Lachenbruch AH. 1962. Mechanics of Thermal Contraction Cracks and Ice-Wedge Polygons in Permafrost New York: Geol. Soc. Am.
  115. Lachenbruch AH. 1966. Contraction theory of ice-wedge polygons: a qualitative discussion. International Permafrost Conference Publication 128763–71 Lafayette, IN: Natl. Res. Counc.
    [Google Scholar]
  116. Lebedeva MI, Fletcher RC, Brantley SL. 2010. A mathematical model for steady-state regolith production at constant erosion rate. Earth Surf. Proc. Landf. 35:5508–24
    [Google Scholar]
  117. Levy J, Head J, Marchant D. 2009. Thermal contraction crack polygons on Mars: classification, distribution, and climate implications from HiRISE observations. J. Geophys. Res. 114:E1E01007
    [Google Scholar]
  118. Levy JS, Fountain AG, Gooseff MN, Welch KA, Lyons WB. 2011. Water tracks and permafrost in Taylor Valley, Antarctica: extensive and shallow groundwater connectivity in a cold desert ecosystem. GSA Bull. 123:11–122295–311
    [Google Scholar]
  119. Levy JS, Fountain AG, O'Connor JE, Welch KA, Lyons WB 2013. Garwood Valley, Antarctica: a new record of Last Glacial Maximum to Holocene glacio-fluvial processes in the McMurdo Dry Valleys. Geol. Soc. Am. Bull. 125:9–101484–502
    [Google Scholar]
  120. Levy JS, Marchant DR, Head JW. 2006. Distribution and origin of patterned ground on Mullins Valley debris-covered glacier, Antarctica: the roles of ice flow and sublimation. Antarct. Sci. 18:3385–97
    [Google Scholar]
  121. Lindeburg KS, Drohan PJ. 2019. Geochemical and mineralogical characteristics of loess along northern Appalachian, USA major river systems appear driven by differences in meltwater source lithology. Catena 172:461–68
    [Google Scholar]
  122. Lindgren A, Hugelius G, Kuhry P, Christensen TR, Vandenberghe J. 2016. GIS-based maps and area estimates of northern hemisphere permafrost extent during the Last Glacial Maximum. Permafr. Periglac. Proc. 27:16–16
    [Google Scholar]
  123. Litwin RJ, Smoot JP, Pavich MJ, Markewich HW, Brook G, Durika NJ. 2013. 100,000-year-long terrestrial record of millennial-scale linkage between eastern North American mid-latitude paleovegetation shifts and Greenland ice-core oxygen isotope trends. Quat. Res. 80:2291–315
    [Google Scholar]
  124. Lorenz DJ, Nieto-Lugilde D, Blois JL, Fitzpatrick MC, Williams JW. 2016. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD. Sci. Data 3:1160048
    [Google Scholar]
  125. Ma L, Chabaux F, Pelt E, Blaes E, Jin L, Brantley S 2010. Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory. Earth Planet. Sci. Lett. 297:1–2211–25
    [Google Scholar]
  126. Ma L, Chabaux F, West N, Kirby E, Jin L, Brantley S 2013. Regolith production and transport in the Susquehanna Shale Hills Critical Zone Observatory, part 1: insights from U-series isotopes. J. Geophys. Res. Earth Surf. 118:2722–40
    [Google Scholar]
  127. Ma L, Oakley D, Nyblade A, Moon S, Accardo N et al. 2021. Seismic imaging of a shale landscape under compression shows limited influence of topography-induced fracturing. Geophys. Res. Lett. 48:17e2021GL093372
    [Google Scholar]
  128. Mackay JR. 1974. Ice-wedge cracks, Garry Island, Northwest Territories. Can. J. Earth Sci. 11:101366–83
    [Google Scholar]
  129. Mackay JR. 1981. Active layer slope movement in a continuous permafrost environment, Garry Island, Northwest Territories, Canada. Can. J. Earth Sci. 18:111666–80
    [Google Scholar]
  130. Mackay JR. 1993. Air temperature, snow cover, creep of frozen ground, and the time of ice-wedge cracking, western Arctic coast. Can. J. Earth Sci. 30:81720–29
    [Google Scholar]
  131. Mackay JR. 1999. Cold-climate shattering (1974 to 1993) of 200 glacial erratics on the exposed bottom of a recently drained arctic lake, Western Arctic coast, Canada. Permafr. Periglac. Proc. 10:2125–36
    [Google Scholar]
  132. Mackay JR, Burn CR. 2002. The first 20 years (1978–1979 to 1998–1999) of ice-wedge growth at the Illisarvik experimental drained lake site, western Arctic coast, Canada. Can. J. Earth Sci. 39:195–111
    [Google Scholar]
  133. Marsh B. 1987. Pleistocene pingo scars in Pennsylvania. Geology 15:10945–47
    [Google Scholar]
  134. Marsh B. 1998. Wind-transverse corrugations in Pleistocene periglacial landscapes of central Pennsylvania. Quat. Res. 49:2149–56
    [Google Scholar]
  135. Marsh B. 1999. Paleoperiglacial Landscapes of Central Pennsylvania: Sixty-Second Annual Reunion, Northeast Friends of the Pleistocene Lewisburg, PA: Bucknell Univ.
  136. Marshall JA, Roering JJ, Bartlein PJ, Gavin DG, Granger DE et al. 2015. Frost for the trees: Did climate increase erosion in unglaciated landscapes during the late Pleistocene?. Sci. Adv. 1:10e1500715
    [Google Scholar]
  137. Marshall JA, Roering JJ, Gavin DG, Granger DE 2017. Late Quaternary climatic controls on erosion rates and geomorphic processes in western Oregon, USA. Geol. Soc. Am. Bull. 129:5–6715–31
    [Google Scholar]
  138. Marshall JA, Roering JJ, Rempel AW, Shafer SL, Bartlein PJ. 2021. Extensive frost weathering across unglaciated North America during the Last Glacial Maximum. Geophys. Res. Lett. 48:5e2020GL090305
    [Google Scholar]
  139. Martin PS. 1958. Taiga-tundra and the full-glacial period in Chester County, Pennsylvania. Am. J. Sci. 256:470–502
    [Google Scholar]
  140. Matsuoka N. 2001. Solifluction rates, processes and landforms: a global review. Earth-Sci. Rev. 55:1–2107–34
    [Google Scholar]
  141. Matsuoka N, Murton J. 2008. Frost weathering: recent advances and future directions. Permafr. Periglac. Proc. 19:2195–210
    [Google Scholar]
  142. Maxwell JA, Davis MB. 1972. Pollen evidence of Pleistocene and Holocene vegetation on the Allegheny Plateau, Maryland. Quat. Res. 2:4506–30
    [Google Scholar]
  143. Merritts D, Schulte K, Blair A, Potter N, Walter R et al. 2014. Lidar analysis of periglacial landforms and their paleoclimatic significance, unglaciated Pennsylvania. Guidebook for the Annual Field Conference of Pennsylvania Geologists, Vol. 79 R Anthony, DM Hoskins, N Potter 49–72 Harrisburg, PA: Field Conf. Pa. Geol.
    [Google Scholar]
  144. Merritts D, Walter R, Rahnis M, Cox S, Hartranft J et al. 2013. The rise and fall of Mid-Atlantic streams: millpond sedimentation, milldam breaching, channel incision, and stream bank erosion. Rev. Eng. Geol. 21:183–203
    [Google Scholar]
  145. Merritts D, Walter R, Rahnis M, Hartranft J, Cox S et al. 2011. Anthropocene streams and base-level controls from historic dams in the unglaciated mid-Atlantic region, USA. Philos. Trans. R. Soc. A 3691938:976–1009
    [Google Scholar]
  146. Merritts DJ, Walter RC, Blair A, Demitroff M, Potter N Jr. et al. 2015. LIDAR, orthoimagery, and field analysis of periglacial landforms and their cold climate signature, unglaciated Pennsylvania and Maryland. Geol. Soc. Am. Abstr. Programs 47:7831
    [Google Scholar]
  147. Merritts DJ, Walter RC, Ruck J, Hertzler N, Barter R, Jean J 2020. Mapping the last permafrost maximum boundary south of the last glacial maximum ice margin, eastern US Appalachian region. Geol. Soc. Am. Abstr. Programs 52:6250–2
    [Google Scholar]
  148. Middlekauff BD. 1991. Probable paleoperiglacial morphosequences in the northern Blue Ridge. Phys. Geogr. 12:119–36
    [Google Scholar]
  149. Miller SR, Sak PB, Kirby E, Bierman PR 2013. Neogene rejuvenation of central Appalachian topography: evidence for differential rock uplift from stream profiles and erosion rates. Earth Planet. Sci. Lett. 369:1–12
    [Google Scholar]
  150. Mills HH. 1981. Boulder deposits and the retreat of mountain slopes, or, “gully gravure” revisited. J. Geol. 89:5649–60
    [Google Scholar]
  151. Moss JH. 1976. Periglacial origin of extensive lobate colluvial deposits on the south flank of Blue Mountain near Shartlesville and Strausstown, Berks County, Pennsylvania. Proc. Pa. Acad. Sci. 50:42–44
    [Google Scholar]
  152. Murton JB. 1996. Near-surface brecciation of chalk, Isle of Thanet, South-East England: a comparison with ice-rich brecciated bedrocks in Canada and Spitsbergen. Permafr. Periglac. Proc. 7:2153–64
    [Google Scholar]
  153. Murton JB. 2013. Ice wedges and ice-wedge casts. Encyclopedia of Quaternary Science, Vol. 3 SA Elias, CJ Mock 436–51 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  154. Murton JB. 2021a. Periglacial processes and deposits. Encyclopedia of Geology, Vol. 2 D Alderton, SA Elias SA 857–75 London: Academic Press. , 2nd ed..
    [Google Scholar]
  155. Murton JB. 2021b. What and where are periglacial landscapes?. Permafr. Periglac. Proc. 32:2186–212
    [Google Scholar]
  156. Murton JB, Ballantyne CK. 2017. Periglacial and permafrost ground models for Great Britain. Geol. Soc. Lond. 28:1501–97
    [Google Scholar]
  157. Murton JB, Coutard JP, Lautridou JP, Ozouf JC, Robinson DA, Williams RBG. 2001. Physical modelling of bedrock brecciation by ice segregation in permafrost. Permafr. Periglac. Proc. 12:3255–66
    [Google Scholar]
  158. Murton JB, Peterson R, Ozouf JC. 2006. Bedrock fracture by ice segregation in cold regions. Science 314:58021127–29
    [Google Scholar]
  159. Murton JB, Worsley P, Gozdzik J. 2000. Sand veins and wedges in cold aeolian environments. Quat. Sci. Rev. 19:9899–922
    [Google Scholar]
  160. Nelson KJP, Nelson FE, Walegur MT. 2007. Periglacial Appalachia: palaeoclimatic significance of blockfield elevation gradients, eastern USA. Permafr. Periglac. Proc. 18:161–73
    [Google Scholar]
  161. Newell WL. 2005. Evidence of cold climate slope processes from the New Jersey Coastal Plain: debris flow stratigraphy at Haines Corner, Camden County, New Jersey USGS Open-File Rep. 2005-1296 Reston, VA: US Geol. Surv.
  162. Newell WL, DeJong BD 2011. Cold-climate slope deposits and landscape modifications of the Mid-Atlantic Coastal Plain, eastern USA. Geol. Soc. Lond. Spec. Publ 354:1259–76
    [Google Scholar]
  163. Newell WL, Powars DS, Owens JP, Stanford SD, Stone BD. 2000. Surficial geologic map of central and southern New Jersey USGS Misc. Investig. Ser. Map 1-2540-D Reston, VA: US Geol. Surv.
  164. Newell WL, Wyckoff JS, Owens JP, Farnsworth J. 1989. 2nd Southeast Friends of the Pleistocene, annual field conference: Cenozoic geology and geomorphology of southern New Jersey Coastal Plain, November 11–13, 1988 USGS Open-File Rep. 89-159 Reston, VA: US Geol. Surv.
  165. Nikiforoff CC. 1955. Hardpan Soils of the Coastal Plain of Southern Maryland Washington, DC: US Gov. Print. Off.
  166. Otvos EG. 2015. The last interglacial stage: definitions and marine highstand, North America and Eurasia. Quat. Int. 383:158–73
    [Google Scholar]
  167. Pazzaglia FJ, Braun DD, Pavich M, Bierman P, Potter N et al. 2006. Rivers, glaciers, landscape evolution, and active tectonics of the central Appalachians, Pennsylvania and Maryland. Excursions in Geology and History: Field Trips in the Middle Atlantic States, Vol. 8 FJ Pazzaglia 169–97 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  168. Pazzaglia FJ, Cleaves ET. 1998. Surficial Geology of the Delta Quadrangle, Harford County, Maryland and York County, Pennsylvania Baltimore, MD: Md. Geol. Surv.
  169. Peltier LC. 1949. Pleistocene Terraces of the Susquehanna River, Pennsylvania Harrisburg, PA: Bur. Topogr. & Geol. Surv.
  170. Peltier LC. 1950. The geographic cycle in periglacial regions as it is related to climatic geomorphology. Ann. Assoc. Am. Geogr. 40:3214–36
    [Google Scholar]
  171. Peteet DM, Beh M, Orr C, Kurdyla D, Nichols J, Guilderson T. 2012. Delayed deglaciation or extreme Arctic conditions 21–16 cal. kyr at southeastern Laurentide Ice Sheet margin?. Geophys. Res. Lett. 39:11L11706
    [Google Scholar]
  172. Péwé R, Brown T. 1973. Distribution of permafrost in North America and its relationship to the environment: a review, 1963–1973. Permafrost: North American Contribution [to the] Second International Conference, Vol. 271–100 Washington, DC: Natl. Acad. Sci.
    [Google Scholar]
  173. Péwé TL. 1983. The periglacial environment in North America during Wisconsin time. The Late Quaternary Environments of the United States, Vol. 1 HE Wright, SC Porter 157–89 Minneapolis: Univ. Minn. Press
    [Google Scholar]
  174. Plug LJ, Werner BT. 2001. Fracture networks in frozen ground. J. Geophys. Res. 106:B58599–613
    [Google Scholar]
  175. Plug LJ, Werner BT. 2008. Modelling of ice-wedge networks. Permafr. Periglac. Proc. 19:163–69
    [Google Scholar]
  176. Portenga EW, Bierman PR. 2011. Understanding Earth's eroding surface with 10Be. GSA Today 21:4–10
    [Google Scholar]
  177. Portenga EW, Bierman PR, Rizzo DM, Rood DH. 2013. Low rates of bedrock outcrop erosion in the central Appalachian Mountains inferred from in situ 10Be. GSA Bull 125:1–2201–15
    [Google Scholar]
  178. Portenga EW, Bierman PR, Trodick CD Jr., Greene SE, DeJong BD et al. 2019. Erosion rates and sediment flux within the Potomac River basin quantified over millennial timescales using beryllium isotopes. Geol. Soc. Am. Bull. 131:7–81295–311
    [Google Scholar]
  179. Potter N Jr., Moss JH. 1968. Origin of the Blue Rocks block field and adjacent deposits, Berks County, Pennsylvania. Geol. Soc. Am. Bull. 79:2255–62
    [Google Scholar]
  180. Rempel AW, Marshall JA, Roering JJ. 2016. Modeling relative frost weathering rates at geomorphic scales. Earth Planet. Sci. Lett. 453:87–95
    [Google Scholar]
  181. Ridefelt H, Åkerman J, Beylich AA, Boelhouwers J, Kolstrup E, Nyberg R. 2009. 56 years of solifluction measurements in the Abisko Mountains, northern Sweden—analysis of temporal and spatial variations of slow soil surface movement. Geogr. Ann. 91:3215–32
    [Google Scholar]
  182. Riggins SG, Anderson RS, Anderson SP, Tye AM. 2011. Solving a conundrum of a steady-state hilltop with variable soil depths and production rates, Bodmin Moor, UK. Geomorphology 128:1–273–84
    [Google Scholar]
  183. Rowland JC, Jones CE, Altmann G, Bryan R, Crosby BT et al. 2010. Arctic landscapes in transition: responses to thawing permafrost. Eos Trans. AGU 91:26229–30
    [Google Scholar]
  184. Ruck J. 2020. Properties and mechanisms of transport of colluvial sediment in relict lobate landforms on hillslopes south of the Last Glacial Maximum ice margin, Pennsylvania, and possible associations with Late Pleistocene permafrost Honors Thesis, Franklin & Marshall Coll. Lancaster, PA: https://digital.fandm.edu/object/scholars-square52739
  185. Ruck J, Hertzler N, Merritts DJ, Walter RC, Marshall JA et al. 2020. Field and cosmogenic nuclide studies of possible Last Glacial Maximum gelifluction benches in northeastern Pennsylvania. Geol. Soc. Am. Abstr. Programs 52:27–11
    [Google Scholar]
  186. Sevon WD. 1987. The Hickory Run boulder field, a periglacial relict, Carbon County, Pennsylvania. In Northeastern Section of the Geological Society of America Centennial Field Guide, Vol. 5 DC Roy 75–76 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  187. Sevon WD, Braun DD. 2000. Map 59: Glacial Deposits of Pennsylvania Harrisburg, PA: Bur. Topogr. & Geol. Surv.
  188. Shafer SL, Bartlein PJ, Izumi K. 2021. PMIP3/CMIP5 LGM simulated temperature data for North America downscaled to a 10-km grid USGS. Data Release https://doi.org/10.5066/P9KC0L47
    [Crossref]
  189. Slim M, Perron JT, Martel SJ, Singha K. 2015. Topographic stress and rock fracture: a two-dimensional numerical model for arbitrary topography and preliminary comparison with borehole observations. Earth Surf. Proc. Landf. 40:4512–29
    [Google Scholar]
  190. Smith HTU. 1953. The Hickory Run boulder field, Carbon County, Pennsylvania. Am. J. Sci. 251:9625–42
    [Google Scholar]
  191. Smoot J. 2004. Sedimentary fabrics of stratified slope deposits at a site near Hoover's Camp, Shenandoah National Park, Virginia USGS Open-File Rep. 2004-1059 Reston, VA: US Geol. Surv.
  192. Snyder KE, Bryant RB. 1992. Late Pleistocene surficial stratigraphy and landscape development in the Salamanca Re-entrant, southwestern New York. Geol. Soc. Am. Bull. 104:2242–51
    [Google Scholar]
  193. Sullivan PL, Hynek SA, Gu X, Singha K, White T et al. 2016. Oxidative dissolution under the channel leads geomorphological evolution at the Shale Hills catchment. Am. J. Sci. 316:10981–1026
    [Google Scholar]
  194. Taylor SB, Kite JS. 2006. Comparative geomorphic analysis of surficial deposits at three central Appalachian watersheds: implications for controls on sediment-transport efficiency. Geomorphology 78:1–222–43
    [Google Scholar]
  195. Thomson CW. 1878. The Atlantic: A Preliminary Account of the General Results of the Exploring Voyage of HMS Challenger New York: Harper & Brothers
  196. Thorn CE. 1992. Periglacial geomorphology: what, where, when?. Periglacial Geomorphology JC Dixon, AD Abrahams 1–30 London: Routledge
    [Google Scholar]
  197. Vandenberghe J, French HM, Gorbunov A, Marchenko S, Velichko AA et al. 2014. The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP.. Boreas 43:3652–66
    [Google Scholar]
  198. Verpaelst M, Fortier D, Kanevskiy M, Paquette M, Shur Y. 2017. Syngenetic dynamic of permafrost of a polar desert solifluction lobe, Ward Hunt Island, Nunavut. Arct. Sci. 3:2301–19
    [Google Scholar]
  199. Vlahou I, Worster MG. 2015. Freeze fracturing of elastic porous media: a mathematical model. Proc. R. Soc. A 471:217520140741
    [Google Scholar]
  200. von Łoziński W. 1909. Über die mechanische Verwitterung der Sandsteine im gemässigten klima. Bull. Int. l'Acad. Sci. Cracov. Class Sci. Math. Nat. 11–25 [English translation: Mrozek T 1994. On the mechanical weathering of sandstones in temperate climates. Cold Climate Landforms DJE Evans 119–34 Chichester, UK: John Wiley & Sons]
    [Google Scholar]
  201. von Łoziński W. 1912. Die periglaziales fazies der mechanischen Verwitterung. Comptes Rendus, XI Congres Internationale Geologie1039–53 Stockholm
    [Google Scholar]
  202. Walder J, Hallet B. 1985. A theoretical model of the fracture of rock during freezing. Geol. Soc. Am. Bull. 96:3336–46
    [Google Scholar]
  203. Walder JS, Hallet B. 1986. The physical basis of frost weathering: toward a more fundamental and unified perspective. Arct. Alp. Res. 18:127–32
    [Google Scholar]
  204. Walter RC, Merritts DJ. 2008. Natural streams and the legacy of water-powered mills. Science 319:5861299–304
    [Google Scholar]
  205. Walters JC. 1978. Polygonal patterned ground in central New Jersey. Quat. Res. 10:142–54
    [Google Scholar]
  206. Washburn AL. 1980. Geocryology: A Survey of Periglacial Processes and Environments New York: Wiley
  207. Watts WA. 1979. Late Quaternary vegetation of central Appalachia and the New Jersey coastal plain. Ecol. Monogr. 49:4427–69
    [Google Scholar]
  208. West N, Kirby E, Bierman P, Rood D. 2011. Preliminary estimates of regolith generation and mobility in the Susquehanna Shale Hills Critical Zone Observatory, Pennsylvania, using meteoric 10Be. Appl. Geochem. 26:S146–48
    [Google Scholar]
  209. West N, Kirby E, Bierman P, Clarke BA. 2014. Aspect-dependent variations in regolith creep revealed by meteoric 10Be. Geology 42:6507–10
    [Google Scholar]
  210. West N, Kirby E, Bierman P, Slingerland R, Ma L et al. 2013. Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, part 2: insights from meteoric 10Be. J. Geophys. Res. Earth Surf. 118:31877–96
    [Google Scholar]
  211. West N, Kirby E, Nyblade AA, Brantley SL. 2019. Climate preconditions the critical zone: elucidating the role of subsurface fractures in the evolution of asymmetric topography. Earth Planet. Sci. Lett. 513:197–205
    [Google Scholar]
  212. Whittecar GR, Wynn TC, Bartlett CS. 2007. Paleoenvironmental analysis of a middle Wisconsinan biota site, southwestern Virginia, USA. Quat. Res. 68:1133–40
    [Google Scholar]
  213. Wilson P, Bentley MJ, Schnabel C, Clark R, Xu S 2008. Stone run (block stream) formation in the Falkland Islands over several cold stages, deduced from cosmogenic isotope (10Be and 26Al) surface exposure dating. J. Quat. Sci. 23:5461–73
    [Google Scholar]
  214. Wolfe SA, Morse PD, Neudorf CM, Kokelj SV, Lian OB, O'Neill HB. 2018. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications. Geomorphology 308:215–29
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-102849
Loading
/content/journals/10.1146/annurev-earth-032320-102849
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error