1932

Abstract

Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 1013 W cm−2 desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071213-020343
2014-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/7/1/annurev-anchem-071213-020343.html?itemId=/content/journals/10.1146/annurev-anchem-071213-020343&mimeType=html&fmt=ahah

Literature Cited

  1. Maiman TH.1.  1960. Stimulated optical radiation in ruby. Nature 187:493–94 [Google Scholar]
  2. Zandee L, Bernstein RB. 2.  1979. Laser ionization mass spectrometry: extensive fragmentation via resonance-enhanced multiphoton ionization of a molecular benzene beam. J. Chem. Phys. 70:2574–75 [Google Scholar]
  3. Hillenkamp F, Unsöld E, Kaufmann R, Nitsche R. 3.  1975. Laser microprobe mass analysis of organic materials. Nature 256:119–20 [Google Scholar]
  4. Barber M, Bordoli RS, Sedgwick RD, Tyler AN. 4.  1981. Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry. J. Chem. Soc. Chem. Commun. 293:325–27 [Google Scholar]
  5. Benninghoven A, Rudenauer F, Werner HW. 5.  1987. Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends New York: Wiley
  6. Sundqvist B, Macfarlane RD. 6.  1985. 252Cf-plasma desorption mass spectrometry. Mass Spectrom. Rev. 4:421–60 [Google Scholar]
  7. Yamashita M, Fenn JB. 7.  1984. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 88:4451–59 [Google Scholar]
  8. Yamashita M, Fenn JB. 8.  1984. Negative ion production with the electrospray ion source. J. Phys. Chem. 88:4611–15 [Google Scholar]
  9. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y. 9.  et al. 1988. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2:151–53 [Google Scholar]
  10. Karas M, Bachmann D, Bahr U, Hillenkamp F. 10.  1987. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78:53–68 [Google Scholar]
  11. Karas M, Hillenkamp F. 11.  1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60:2299–301 [Google Scholar]
  12. Hillenkamp F, Karas M, Beavis RC, Chait BT. 12.  1991. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63:1193–203 [Google Scholar]
  13. Takats Z, Wiseman JM, Gologan B, Cooks RG. 13.  2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–73 [Google Scholar]
  14. Wolfender JL, Chu F, Ball H, Wolfender F, Fainzilber M. 14.  et al. 1999. Identification of tyrosine sulfation in Conus pennaceus conotoxins α-PnIA and α-PnIB: further investigation of labile sulfo- and phosphopeptides by electrospray, matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry. J. Mass Spectrom. 34:447–54 [Google Scholar]
  15. Laiko VV, Baldwin MA, Burlingame AL. 15.  2000. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 72:652–57 [Google Scholar]
  16. Gabelica V, Schulz E, Karas M. 16.  2004. Internal energy build-up in matrix-assisted laser desorption/ionization. J. Mass Spectrom. 39:579–93 [Google Scholar]
  17. Moyer SC, Cotter RJ. 17.  2002. Peer reviewed: Atmospheric pressure MALDI. Anal. Chem. 74:468a–76a [Google Scholar]
  18. Creaser CS, Ratcliffe L. 18.  2006. Atmospheric pressure matrix-assisted laser desorption/ionisation mass spectrometry: A review. Curr. Anal. Chem. 2:9–15 [Google Scholar]
  19. Koestler M, Kirsch D, Hester A, Leisner A, Guenther S, Spengler B. 19.  2008. A high-resolution scanning microprobe matrix-assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom. 22:3275–85 [Google Scholar]
  20. Guenther S, Römpp A, Kummer W, Spengler B. 20.  2011. AP-MALDI imaging of neuropeptides in mouse pituitary gland with 5 μm spatial resolution and high mass accuracy. Int. J. Mass Spectrom. 305:228–37 [Google Scholar]
  21. Harada T, Yuba-Kubo A, Sugiura Y, Zaima N, Hayasaka T. 21.  et al. 2009. Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope. Anal. Chem. 81:9153–57 [Google Scholar]
  22. Li Y, Shrestha B, Vertes A. 22.  2007. Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Anal. Chem. 79:523–32 [Google Scholar]
  23. Li Y, Shrestha B, Vertes A. 23.  2008. Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics. Anal. Chem. 80:407–20 [Google Scholar]
  24. Vertes A, Nemes P, Shrestha B, Barton AA, Chen Z, Li Y. 24.  2008. Molecular imaging by mid-IR laser ablation mass spectrometry. Appl. Phys. A 93:885–91 [Google Scholar]
  25. Sheehan EW, Willoughby RC. 25.  2006. Ion enrichment aperture arrays. US Patent No. 7,060,976
  26. Trimpin S, Herath TN, Inutan ED, Cernat SA, Miller JB. 26.  et al. 2009. Field-free transmission geometry atmospheric pressure matrix-assisted laser desorption/ionization for rapid analysis of unadulterated tissue samples. Rapid Commun. Mass Spectrom. 23:3023–27 [Google Scholar]
  27. Trimpin S, Inutan ED, Herath TN, McEwen CN. 27.  2010. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions. Anal. Chem. 82:11–15 [Google Scholar]
  28. Van Berkel GJ, Pasilis SP, Ovchinnikova O. 28.  2008. Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J. Mass Spectrom. 43:1161–80 [Google Scholar]
  29. Venter A, Nefliu M, Graham Cooks RG. 29.  2008. Ambient desorption ionization mass spectrometry. Trends Anal. Chem. 27:284–90 [Google Scholar]
  30. Chen H, Gamez G, Zenobi R. 30.  2009. What can we learn from ambient ionization techniques?. J. Am. Soc. Mass Spectrom. 20:1947–63 [Google Scholar]
  31. Covey TR, Thomson BA, Schneider BB. 31.  2009. Atmospheric pressure ion sources. Mass Spectrom. Rev. 28:870–97 [Google Scholar]
  32. Alberici RM, Simas RC, Sanvido GB, Romão W, Lalli PM. 32.  et al. 2010. Ambient mass spectrometry: Bringing MS into the “real world.”. Anal. Bioanal. Chem. 398:265–94 [Google Scholar]
  33. Huang MZ, Yuan CH, Cheng SC, Cho YT, Shiea J. 33.  2010. Ambient ionization mass spectrometry. Annu. Rev. Anal. Chem. 3:43–65 [Google Scholar]
  34. Weston DJ.34.  2010. Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. Analyst 135:661–68 [Google Scholar]
  35. Harris GA, Galhena AS, Fernandez FM. 35.  2011. Ambient sampling/ionization mass spectrometry: applications and current trends. Anal. Chem. 83:4508–38 [Google Scholar]
  36. Huang MZ, Cheng SC, Cho YT, Shiea J. 36.  2011. Ambient ionization mass spectrometry: a tutorial. Anal. Chim. Acta 702:1–15 [Google Scholar]
  37. Nemes P, Vertes A. 37.  2012. Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. Trends Anal. Chem. 34:22–34 [Google Scholar]
  38. Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR. 38.  2012. Mass spectrometry imaging under ambient conditions. Mass Spectrom. Rev. 32:218–43 [Google Scholar]
  39. Badu-Tawiah AK, Eberlin LS, Ouyang Z, Cooks RG. 39.  2013. Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu. Rev. Phys. Chem. 64:481–505 [Google Scholar]
  40. Monge ME, Harris GA, Dwivedi P, Fernández FM. 40.  2013. Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem. Rev. 113:2269–308 [Google Scholar]
  41. Ifa DR, Wu C, Ouyang Z, Cooks RG. 41.  2010. Desorption electrospray ionization and other ambient ionization methods: current progress and preview. Analyst 135:669–81 [Google Scholar]
  42. Schilke DE, Levis RJ. 42.  1994. A laser vaporization, laser ionization time-of-flight mass spectrometer for the probing of fragile biomolecules. Rev. Sci. Instrum. 65:1903–11 [Google Scholar]
  43. Brady JJ, Judge EJ, Levis RJ. 43.  2009. Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization. Rapid Commun. Mass Spectrom. 23:3151–57 [Google Scholar]
  44. DeWitt MJ, Levis RJ. 44.  1995. Near-infrared femtosecond photoionization/dissociation of cyclic aromatic hydrocarbons. J. Chem. Phys. 102:8670–73 [Google Scholar]
  45. DeWitt MJ, Peters DW, Levis RJ. 45.  1997. Photoionization/dissociation of alkyl substituted benzene molecules using intense near-infrared radiation. Chem. Phys. 218:211–23 [Google Scholar]
  46. Levis RJ, DeWitt MJ. 46.  1999. Photoexcitation, ionization, and dissociation of molecules using intense near-infrared radiation of femtosecond duration. J. Phys. Chem. A 103:6493–507 [Google Scholar]
  47. Yang JJ, Gobeli DA, El-Sayed MA. 47.  1985. Change in the mechanism of laser multiphoton ionization-dissociation in benzaldehyde by changing the laser pulse width. J. Phys. Chem. 89:3426–29 [Google Scholar]
  48. Weinkauf R, Aicher P, Wesley G, Grotemeyer J, Schlag E. 48.  1994. Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules. J. Phys. Chem. 98:8381–91 [Google Scholar]
  49. Levis RJ, Menkir G, Rabitz H. 49.  2001. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292:709–13 [Google Scholar]
  50. Ledingham KWD, Smith DJ, Singhal RP, McCanny T, Graham P. 50.  et al. 1999. Multiply charged ions from aromatic molecules following irradiation in intense laser fields. J. Phys. Chem. A 103:2952–63 [Google Scholar]
  51. Odhner JH, Romanov DA, Levis RJ. 51.  2009. Rovibrational wave-packet dispersion during femtosecond laser filamentation in air. Phys. Rev. Lett. 103:075005 [Google Scholar]
  52. Odhner JH, McCole ET, Levis RJ. 52.  2011. Filament-driven impulsive Raman spectroscopy. J. Phys. Chem. A 115:13407–12 [Google Scholar]
  53. Bohinski T, Moore Tibbetts K, Tarazkar M, Romanov DA, Matsika S, Levis RJ. 53.  2013. Measurement of an electronic resonance in ground state, gas phase acetophenone cation via strong field mass spectrometry. J. Phys. Chem. Lett. 4:1587–91 [Google Scholar]
  54. Arnolds H, Rehbein C, Roberts G, Levis RJ, King DA. 54.  2000. Femtosecond near-infrared laser desorption of multilayer benzene on Pt{111}: a molecular Newton's cradle?. J. Phys. Chem. B 104:3375–82 [Google Scholar]
  55. Arnolds H, Rehbein CE, Roberts G, Levis RJ, King DA. 55.  1999. Femtosecond near-infrared laser de-sorption of multilayer benzene on Pt{111}: spatial origin of hyperthermal desorption. Chem. Phys. Lett. 314:389–95 [Google Scholar]
  56. Arnolds H, Levis RJ, King DA. 56.  2003. Vibrationally assisted DIET through transient temperature rise: the case of benzene on Pt{111}. Chem. Phys. Lett. 380:444–50 [Google Scholar]
  57. Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tünnermann A. 57.  1996. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63:109–15 [Google Scholar]
  58. Demirev P, Westman A, Reimann C, Håkansson P, Barofsky D. 58.  et al. 1992. Matrix-assisted laser de-sorption with ultra-short laser pulses. Rapid Commun. Mass Spectrom. 6:187–91 [Google Scholar]
  59. Wichmann J, Lupulescu C, Wöste L, Lindinger A. 59.  2009. Matrix-assisted laser desorption/ionization by using femtosecond laser pulses in the near-infrared wavelength regime. Rapid Commun. Mass Spectrom. 23:1105–8 [Google Scholar]
  60. Van Breemen RB, Snow M, Cotter RJ. 60.  1983. Time-resolved laser desorption mass spectrometry. I. Desorption of preformed ions. Int. J. Mass Spectrom. Ion Phys. 49:35–50 [Google Scholar]
  61. Russo RE, Mao X, Gonzalez JJ, Zorba V, Yoo J. 61.  2013. Laser ablation in analytical chemistry. Anal. Chem. 85:6162–77 [Google Scholar]
  62. Brady JJ, Judge EJ, Levis RJ. 62.  2010. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure Presented at SPIE Photonics West Conf., San Francisco
  63. Judge EJ, Brady JJ, Dalton D, Levis RJ. 63.  2010. Analysis of pharmaceutical compounds from glass, fabric, steel, and wood surfaces at atmospheric pressure using spatially resolved, nonresonant femtosecond laser vaporization electrospray mass spectrometry. Anal. Chem. 82:3231–38 [Google Scholar]
  64. Judge EJ, Brady JJ, Levis RJ. 64.  2010. Mass analysis of biological macromolecules at atmospheric pressure using nonresonant femtosecond laser vaporization and electrospray ionization. Anal. Chem. 82:10203–7 [Google Scholar]
  65. Brady JJ, Judge EJ, Levis RJ. 65.  2011. Femtosecond laser vaporization of aqueous proteins with electrospray post-ionization preserves folded structure. Proc. Natl. Acad. Sci. USA 108:12217–22 [Google Scholar]
  66. Perez JJ, Flanigan PM, Karki S, Levis RJ. 66.  2013. Laser electrospray mass spectrometry minimizes ion suppression facilitating quantitative mass spectral response for multicomponent mixtures of proteins. Anal. Chem. 85:6667–73 [Google Scholar]
  67. Brady JJ, Judge EJ, Levis RJ. 67.  2011. Analysis of amphiphilic lipids and hydrophobic proteins using nonresonant femtosecond laser vaporization with electrospray post-ionization. J. Am. Soc. Mass Spectrom. 22:762–72 [Google Scholar]
  68. Judge EJ, Brady JJ, Barbano PE, Levis RJ. 68.  2011. Nonresonant femtosecond laser vaporization with electrospray postionization for ex vivo plant tissue typing using compressive linear classification. Anal. Chem. 83:2145–51 [Google Scholar]
  69. Flanigan PM, Radell LL, Brady JJ, Levis RJ. 69.  2012. Differentiation of eight phenotypes and discovery of potential biomarkers for a single plant organ class using laser electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem. 84:6225–32 [Google Scholar]
  70. Sampson JS, Hawkridge AM, Muddiman DC. 70.  2006. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 17:1712–16 [Google Scholar]
  71. Barry JA, Muddiman DC. 71.  2011. Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments. Rapid Commun. Mass Spectrom. 25:3527–36 [Google Scholar]
  72. Grandori R.72.  2003. Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry. J. Mass Spectrom. 38:11–15 [Google Scholar]
  73. Flanigan PM, Perez JJ, Karki S, Levis RJ. 73.  2013. Quantitative measurements of small molecule mixtures using laser electrospray mass spectrometry. Anal. Chem. 85:3629–37 [Google Scholar]
  74. Nemes P, Barton AA, Li Y, Vertes A. 74.  2008. Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry. Anal. Chem. 80:4575–82 [Google Scholar]
  75. Nemes P, Barton AA, Vertes A. 75.  2009. Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 81:6668–75 [Google Scholar]
  76. Pan P, McLuckey SA. 76.  2003. Electrospray ionization of protein mixtures at low pH. Anal. Chem. 75:1491–99 [Google Scholar]
  77. Brady JJ, Judge EJ, Levis RJ. 77.  2010. Identification of explosives and explosive formulations using laser electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 24:1659–64 [Google Scholar]
  78. Brady JJ, Flanigan PM, Perez JJ, Judge EJ, Levis RJ. 78.  2012. Multidimensional detection of explosives and explosive signatures via laser electrospray mass spectrometry Presented at SPIE: Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII, Conf., Baltimore
  79. Flanigan PM, Brady JJ, Judge EJ, Levis RJ. 79.  2011. The determination of inorganic improvised explosive device signatures using laser electrospray mass spectrometry detection with offline classification. Anal. Chem. 83:7115–22 [Google Scholar]
  80. Perez JJ, Flanigan PM, Brady JJ, Levis RJ. 80.  2013. Classification of smokeless powders using laser electrospray mass spectrometry and offline multivariate statistical analysis. Anal. Chem. 85:296–302 [Google Scholar]
  81. Shiea J, Huang MZ, Hsu HJ, Lee CY, Yuan CH. 81.  et al. 2005. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 19:3701–4 [Google Scholar]
  82. Huang MZ, Hsu HJ, Lee JY, Jeng J, Shiea J. 82.  2006. Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry. J. Proteome Res. 5:1107–16 [Google Scholar]
  83. Huang MZ, Jhang SS, Cheng CN, Cheng SC, Shiea J. 83.  2010. Effects of matrix, electrospray solution, and laser light on the desorption and ionization mechanisms in electrospray-assisted laser desorption ionization mass spectrometry. Analyst 135:759–66 [Google Scholar]
  84. Huang MZ, Hsu HJ, Wu CI, Lin SY, Ma YL. 84.  et al. 2007. Characterization of the chemical components on the surface of different solids with electrospray-assisted laser desorption ionization mass spectrometry. Rapid Commun. Mass Spectrom. 21:1767–75 [Google Scholar]
  85. Shiea J, Chang DY, Lin CH, Jiang SJ. 85.  2001. Generating multiply charged protein ions by ultrasonic nebulization/multiple channel-electrospray ionization mass spectrometry. Anal. Chem. 73:4983–87 [Google Scholar]
  86. Lee CC, Chang DY, Jeng J, Shiea J. 86.  2002. Generating multiply charged protein ions via two-step electrospray ionization mass spectrometry. J. Mass Spectrom. 37:115–17 [Google Scholar]
  87. Shiea J, Wang CH. 87.  1997. Applications of multiple channel electrospray ionization sources for biological sample analysis. J. Mass Spectrom. 32:247–50 [Google Scholar]
  88. Cheng SC, Lin YS, Huang MZ, Shiea J. 88.  2010. Applications of electrospray laser desorption ionization mass spectrometry for document examination. Rapid Commun. Mass Spectrom. 24:203–8 [Google Scholar]
  89. Huang MZ, Cheng SC, Jhang SS, Chou CC, Cheng CN. 89.  et al. 2012. Ambient molecular imaging of dry fungus surface by electrospray laser desorption ionization mass spectrometry. Int. J. Mass Spectrom. 325–27:172–82 [Google Scholar]
  90. Lin SY, Huang MZ, Chang HC, Shiea J. 90.  2007. Using electrospray-assisted laser desorption/ionization mass spectrometry to characterize organic compounds separated on thin-layer chromatography plates. Anal. Chem. 79:8789–95 [Google Scholar]
  91. Cheng SC, Huang MZ, Wu LC, Chou CC, Cheng CN. 91.  et al. 2012. Building blocks for the development of an interface for high-throughput thin layer chromatography/ambient mass spectrometric analysis: a green methodology. Anal. Chem. 84:5864–68 [Google Scholar]
  92. Shiea J, Yuan CH, Huang MZ, Cheng SC, Ma YL. 92.  et al. 2008. Detection of native protein ions in aqueous solution under ambient conditions by electrospray laser desorption/ionization mass spectrometry. Anal. Chem. 80:4845–52 [Google Scholar]
  93. Peng IX, Shiea J, Ogorzalek Loo RR, Loo JA. 93.  2007. Electrospray-assisted laser desorption/ionization and tandem mass spectrometry of peptides and proteins. Rapid Commun. Mass Spectrom. 21:2541–46 [Google Scholar]
  94. Cheng CY, Yuan CH, Cheng SC, Huang MZ, Chang HC. 94.  et al. 2008. Electrospray-assisted laser desorption/ionization mass spectrometry for continuously monitoring the states of ongoing chemical reactions in organic or aqueous solution under ambient conditions. Anal. Chem. 80:7699–705 [Google Scholar]
  95. Peng IX, Ogorzalek Loo RR, Shiea J, Loo JA. 95.  2008. Reactive-electrospray-assisted laser desorption/ionization for characterization of peptides and proteins. Anal. Chem. 80:6995–7003 [Google Scholar]
  96. Peng IX, Ogorzalek Loo RR, Margalith E, Little MW, Loo JA. 96.  2010. Electrospray-assisted laser de-sorption ionization mass spectrometry (ELDI-MS) with an infrared laser for characterizing peptides and proteins. Analyst 135:767–72 [Google Scholar]
  97. Nemes P, Vertes A. 97.  2007. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79:8098–106 [Google Scholar]
  98. Sampson JS, Murray KK, Muddiman DC. 98.  2009. Intact and top-down characterization of biomolecules and direct analysis using infrared matrix-assisted laser desorption electrospray ionization coupled to FT-ICR, mass spectrometry. J. Am. Soc. Mass Spectrom. 20:667–73 [Google Scholar]
  99. Dixon RB, Sampson JS, Hawkridge AM, Muddiman DC. 99.  2008. Ambient aerodynamic ionization source for remote analyte sampling and mass spectrometric analysis. Anal. Chem. 80:5266–71 [Google Scholar]
  100. Dixon RB, Muddiman DC. 100.  2010. Study of the ionization mechanism in hybrid laser based desorption techniques. Analyst 135:880–82 [Google Scholar]
  101. Dixon RB.101.  2009. The development and utilization of aerodynamic devices in biological mass spectrometry PhD thesis, N.C. State Univ., Raleigh
  102. Sampson JS, Hawkridge AM, Muddiman DC. 102.  2008. Development and characterization of an ionization technique for analysis of biological macromolecules: liquid matrix-assisted laser desorption electrospray ionization. Anal. Chem. 80:6773–78 [Google Scholar]
  103. König S, Kollas O, Dreisewerd K. 103.  2007. Generation of highly charged peptide and protein ions by atmospheric pressure matrix-assisted infrared laser desorption/ionization ion trap mass spectrometry. Anal. Chem. 79:5484–88 [Google Scholar]
  104. Sampson JS, Hawkridge AM, Muddiman DC. 104.  2007. Direct characterization of intact polypeptides by matrix-assisted laser desorption electrospray ionization quadrupole Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 21:1150–54 [Google Scholar]
  105. Cochran KH, Barry JA, Muddiman DC, Hinks D. 105.  2013. Direct analysis of textile fabrics and dyes using infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. Anal. Chem. 85:831–36 [Google Scholar]
  106. Robichaud G, Barry JA, Garrard KP, Muddiman DC. 106.  2013. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J. Am. Soc. Mass Spectrom. 24:92–100 [Google Scholar]
  107. Barry JA, Robichaud G, Muddiman DC. 107.  2013. Mass recalibration of FT-ICR mass spectrometry imaging data using the average frequency shift of ambient ions. J. Am. Soc. Mass Spectrom. 24:1137–45 [Google Scholar]
  108. Laiko VV, Taranenko NI, Berkout VD, Yakshin MA, Prasad CR. 108.  et al. 2002. Desorption/ionization of biomolecules from aqueous solutions at atmospheric pressure using an infrared laser at 3 μm. J. Am. Soc. Mass Spectrom. 13:354–61 [Google Scholar]
  109. Dreisewerd K.109.  2003. The desorption process in MALDI. Chem. Rev. 103:395–426 [Google Scholar]
  110. Dreisewerd K, Berkenkamp S, Leisner A, Rohlfing A, Menzel C. 110.  2003. Fundamentals of matrix-assisted laser desorption/ionization mass spectrometry with pulsed infrared lasers. Int. J. Mass Spectrom. 226:189–209 [Google Scholar]
  111. Apitz I, Vogel A. 111.  2005. Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl. Phys. A 81:329–38 [Google Scholar]
  112. Chen Z, Bogaerts A, Vertes A. 112.  2006. Phase explosion in atmospheric pressure infrared laser ablation from water-rich targets. Appl. Phys. Lett. 89:041503 [Google Scholar]
  113. Chen Z, Vertes A. 113.  2008. Early plume expansion in atmospheric pressure midinfrared laser ablation of water-rich targets. Phys. Rev. E 77:036316 [Google Scholar]
  114. Jackson SN, Kim JK, Laboy JL, Murray KK. 114.  2006. Particle formation by infrared laser ablation of glycerol: implications for ion formation. Rapid Commun. Mass Spectrom. 20:1299–304 [Google Scholar]
  115. Musapelo T, Murray KK. 115.  2011. Particle formation in ambient MALDI plumes. Anal. Chem. 83:6601–8 [Google Scholar]
  116. Fan X, Little MW, Murray KK. 116.  2008. Infrared laser wavelength dependence of particles ablated from glycerol. Appl. Surf. Sci. 255:1699–704 [Google Scholar]
  117. 117. Protea Biosciences 2014. The LAESI DP-1000 System is a high-throughput direct ionization system that profiles the distribution of biomolecules. Morgantown, WV, retrieved 2/18/14. https://proteabio.com/LAESI?state=laesi [Google Scholar]
  118. Nemes P, Huang H, Vertes A. 118.  2012. Internal energy deposition and ion fragmentation in atmospheric-pressure mid-infrared laser ablation electrospray ionization. Phys. Chem. Chem. Phys. 14:2501–7 [Google Scholar]
  119. Nemes P, Woods AS, Vertes A. 119.  2010. Simultaneous imaging of small metabolites and lipids in rat brain tissues at atmospheric pressure by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 82:982–88 [Google Scholar]
  120. Shrestha B, Vertes A. 120.  2009. In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 81:8265–71 [Google Scholar]
  121. Shrestha B, Nemes P, Vertes A. 121.  2010. Ablation and analysis of small cell populations and single cells by consecutive laser pulses. Appl. Phys. A 101:121–26 [Google Scholar]
  122. Shrestha B, Patt JM, Vertes A. 122.  2011. In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry. Anal. Chem. 83:2947–55 [Google Scholar]
  123. Sripadi P, Shrestha B, Easley R, Carpio L, Kehn-Hall K. 123.  et al. 2011. Direct detection of diverse metabolic changes in virally transformed and tax-expressing cells by mass spectrometry. PLoS ONE 5:e12590 [Google Scholar]
  124. Shrestha B, Sripadi P, Walsh CM, Razunguzwa TT, Powell MJ. 124.  et al. 2012. Rapid, non-targeted discovery of biochemical transformation and biomarker candidates in oncovirus-infected cell lines using LAESI mass spectrometry. Chem. Commun. 48:3700–2 [Google Scholar]
  125. Parsiegla G, Shrestha B, Carrière F, Vertes A. 125.  2011. Direct analysis of phycobilisomal antenna proteins and metabolites in small cyanobacterial populations by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 84:34–38 [Google Scholar]
  126. Stolee JA, Vertes A. 126.  2013. Toward single cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry. Anal. Chem. 85:3592–98 [Google Scholar]
  127. Vaikkinen A, Shrestha B, Nazarian J, Kostiainen RK, Vertes A, Kauppila TJ. 127.  2013. Simultaneous detection of nonpolar and polar compounds by heat-assisted laser ablation electrospray ionization-mass spectrometry. Anal. Chem. 85:177–84 [Google Scholar]
  128. Vaikkinen A, Shrestha B, Kauppila TJ, Vertes A, Kostiainen R. 128.  2012. Infrared laser ablation atmospheric pressure photoionization mass spectrometry. Anal. Chem. 84:1630–36 [Google Scholar]
  129. Fernandez de la Mora J. 129.  2011. Ionization of vapor molecules by an electrospray cloud. Int. J. Mass Spectrom. 300:182–93 [Google Scholar]
  130. Rezenom YH, Dong J, Murray KK. 130.  2007. Infrared laser-assisted desorption electrospray ionization mass spectrometry. Analyst 133:226–32 [Google Scholar]
  131. Harris GA, Graf S, Knochenmuss R, Fernandez F. 131.  2012. Coupling laser ablation/desorption electrospray ionization to atmospheric pressure drift tube ion mobility spectrometry for the screening of antimalarial drug quality. Analyst 137:3039–44 [Google Scholar]
  132. Sampson JS, Muddiman DC. 132.  2009. Atmospheric pressure infrared (10.6 μm) laser desorption electrospray ionization (IR-LDESI) coupled to a LTQ Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom. 23:1989–92 [Google Scholar]
  133. Jorabchi K, Smith LM. 133.  2009. Single droplet separations and surface partition coefficient measurements using laser ablation mass spectrometry. Anal. Chem. 81:9682–88 [Google Scholar]
  134. Liu J, Qiu B, Luo H. 134.  2010. Fingerprinting of yogurt products by laser desorption spray post-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 24:1365–70 [Google Scholar]
  135. Liu J, Zhang C, Sun J, Luo H. 135.  2012. Unexpected complexation reaction during analysis of proteins using laser desorption spray post-ionization mass spectrometry. Analyst 137:1764–67 [Google Scholar]
  136. Liu J, Zhang C, Sun J, Ren X, Luo H. 136.  2013. Laser desorption dual spray post-ionization mass spectrometry for direct analysis of samples via two informative channels. J. Mass Spectrom. 48:250–54 [Google Scholar]
  137. Ovchinnikova OS, Kertesz V, Van Berkel GJ. 137.  2011. Combining laser ablation/liquid phase collection surface sampling and high-performance liquid chromatography−electrospray ionization-mass spectrometry. Anal. Chem. 83:1874–78 [Google Scholar]
  138. Ovchinnikova OS, Kertesz V, Van Berkel GJ. 138.  2011. Combining transmission geometry laser ablation and a non-contact continuous flow surface sampling probe/electrospray emitter for mass spectrometry based chemical imaging. Rapid Commun. Mass Spectrom. 25:3735–40 [Google Scholar]
  139. Park SG, Murray KK. 139.  2011. Infrared laser ablation sample transfer for MALDI and electrospray. J. Am. Soc. Mass Spectrom. 22:1352–62 [Google Scholar]
  140. Park SG, Murray KK. 140.  2012. Infrared laser ablation sample transfer for on-line liquid chromatography electrospray ionization mass spectrometry. J. Mass Spectrom. 47:1322–26 [Google Scholar]
  141. Park SG, Murray KK. 141.  2013. Ambient laser ablation sampling for capillary electrophoresis mass spectrometry. Rapid Commun. Mass Spectrom. 27:1673–80 [Google Scholar]
  142. Kaufman E, Smith W, Kowalski M, Beech I, Sunner J. 142.  2013. Electric-field-enhanced collection of laser-ablated materials onto a solvent bridge for electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 27:1567–72 [Google Scholar]
  143. Cheng SC, Cheng TL, Chang HC, Shiea J. 143.  2009. Using laser-induced acoustic desorption/electrospray ionization mass spectrometry to characterize small organic and large biological compounds in the solid state and in solution under ambient conditions. Anal. Chem. 81:868–74 [Google Scholar]
  144. Cheng SC, Huang MZ, Shiea J. 144.  2009. Thin-layer chromatography/laser-induced acoustic desorption/electrospray ionization mass spectrometry. Anal. Chem. 81:9274–81 [Google Scholar]
  145. Trimpin S, Inutan ED, Herath TN, McEwen CN. 145.  2010. Laserspray ionization, a new atmospheric pressure MALDI method for producing highly charged gas-phase ions of peptides and proteins directly from solid solutions. Mol. Cell Proteomics 9:362–67 [Google Scholar]
  146. Inutan ED, Wang B, Trimpin S. 146.  2011. Commercial intermediate pressure MALDI ion mobility spectrometry mass spectrometer capable of producing highly charged laserspray ionization ions. Anal. Chem. 83:678–84 [Google Scholar]
  147. Inutan ED, Wager-Miller J, Mackie K, Trimpin S. 147.  2012. Laserspray ionization imaging of multiply charged ions using a commercial vacuum MALDI ion source. Anal. Chem. 84:9079–84 [Google Scholar]
  148. Trimpin S, Ren Y, Wang B, Lietz CB, Richards AL. 148.  et al. 2011. Extending the laserspray ionization concept to produce highly charged ions at high vacuum on a time-of-flight mass analyzer. Anal. Chem. 83:5469–75 [Google Scholar]
  149. McEwen CN, Larsen BS, Trimpin S. 149.  2010. Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions. Anal. Chem. 82:4998–5001 [Google Scholar]
  150. McEwen CN, Trimpin S. 150.  2011. An alternative ionization paradigm for atmospheric pressure mass spectrometry: flying elephants from Trojan horses. Int. J. Mass Spectrom. 300:167–72 [Google Scholar]
  151. Trimpin S, Wang B, Inutan ED, Li J, Lietz CB. 151.  et al. 2012. A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization. J. Am. Soc. Mass Spectrom. 23:1644–60 [Google Scholar]
  152. Inutan E, Trimpin S. 152.  2010. Laserspray ionization (LSI) ion mobility spectrometry (IMS) mass spectrometry. J. Am. Soc. Mass Spectrom. 21:1260–64 [Google Scholar]
  153. Inutan ED, Trimpin S. 153.  2010. Laserspray ionization-ion mobility spectrometry–mass spectrometry: baseline separation of isomeric amyloids without the use of solvents desorbed and ionized directly from a surface. J. Proteome Res. 9:6077–81 [Google Scholar]
  154. Richards AL, Lietz CB, Wager-Miller JB, Mackie K, Trimpin S. 154.  2011. Imaging mass spectrometry in transmission geometry. Rapid Commun. Mass Spectrom. 25:815–20 [Google Scholar]
  155. Inutan ED, Richards AL, Wager-Miller J, Mackie K, McEwen CN, Trimpin S. 155.  2011. Laserspray ionization, a new method for protein analysis directly from tissue at atmospheric pressure with ultrahigh mass resolution and electron transfer dissociation. Mol. Cell Proteomics 10:1–8 [Google Scholar]
  156. Ren X, Liu J, Zhang C, Luo H. 156.  2013. Direct analysis of samples under ambient condition by high-voltage-assisted laser desorption ionization mass spectrometry in both positive and negative ion mode. Rapid Commun. Mass Spectrom. 27:613–20 [Google Scholar]
  157. Schäfer KC, Szaniszló T, Günther S, Balog J, Dénes J. 157.  et al. 2011. In situ, real-time identification of biological tissues by ultraviolet and infrared laser desorption ionization mass spectrometry. Anal. Chem. 83:1632–40 [Google Scholar]
  158. Coello Y, Jones AD, Gunaratne TC, Dantus M. 158.  2010. Atmospheric pressure femtosecond laser imaging mass spectrometry. Anal. Chem. 82:2753–58 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071213-020343
Loading
/content/journals/10.1146/annurev-anchem-071213-020343
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error