1932

Abstract

Plants can be colonized by fungi that have adopted highly diverse lifestyles, ranging from symbiotic to necrotrophic. Colonization is governed in all systems by hundreds of secreted fungal effector molecules. These effectors suppress plant defense responses and modulate plant physiology to accommodate fungal invaders and provide them with nutrients. Fungal effectors either function in the interaction zone between the fungal hyphae and host or are transferred to plant cells. This review describes the effector repertoires of 84 plant-colonizing fungi. We focus on the mechanisms that allow these fungal effectors to promote virulence or compatibility, discuss common plant nodes that are targeted by effectors, and provide recent insights into effector evolution. In addition, we address the issue of effector uptake in plant cells and highlight open questions and future challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043014-114623
2015-04-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/66/1/annurev-arplant-043014-114623.html?itemId=/content/journals/10.1146/annurev-arplant-043014-114623&mimeType=html&fmt=ahah

Literature Cited

  1. Akagi Y, Akamatsu H, Otani H, Kodama M. 1.  2009. Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot. Cell 8:1732–38 [Google Scholar]
  2. Albert M. 2.  2013. Peptides as triggers of plant defence. J. Exp. Bot. 64:5269–79 [Google Scholar]
  3. Ali S, Laurie JD, Linning R, Cervantes-Chavez JA, Gaudet D, Bakkeren G. 3.  2014. An immunity-triggering effector from the barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLOS Pathog. 10:e1004223 [Google Scholar]
  4. Angot A, Peeters N, Lechner E, Vailleau F, Baud C. 4.  et al. 2006. Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. PNAS 103:14620–25 [Google Scholar]
  5. Bohnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH. 5.  2004. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:2499–513 [Google Scholar]
  6. Boller T, Felix G. 6.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  7. Bos JI, Armstrong MR, Gilroy EM, Boevink PC, Hein I. 7.  et al. 2010. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. PNAS 107:9909–14 [Google Scholar]
  8. Bozkurt TO, Schornack S, Banfield MJ, Kamoun S. 8.  2012. Oomycetes, effectors, and all that jazz. Curr. Opin. Plant Biol. 15:483–92 [Google Scholar]
  9. Brefort T, Tanaka S, Neidig N, Doehlemann G, Vincon V, Kahmann R. 9.  2014. Characterization of the largest effector gene cluster of Ustilago maydis. PLOS Pathog. 10:e1003866 [Google Scholar]
  10. Brown JK, Tellier A. 10.  2011. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu. Rev. Phytopathol. 49:345–67 [Google Scholar]
  11. Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JD. 11.  2013. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLOS Biol. 11:e1001732 [Google Scholar]
  12. Chen XL, Shi T, Yang J, Shi W, Gao X. 12.  et al. 2014. N-glycosylation of effector proteins by an α-1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell 26:1360–76 [Google Scholar]
  13. Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N. 13.  et al. 2011. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLOS Pathog. 7:e1002147 [Google Scholar]
  14. Ciuffetti LM, Tuori RP, Gaventa JM. 14.  1997. A single gene encodes a selective toxin causal to the development of tan spot of wheat. Plant Cell 9:135–44 [Google Scholar]
  15. Dawkins R, Krebs JR. 15.  1979. Arms races between and within species. Proc. R. Soc. Lond. B 205:489–511 [Google Scholar]
  16. de Jonge R, Bolton MD, Kombrink A, van den Berg GC, Yadeta KA, Thomma BP. 16.  2013. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 23:1271–82 [Google Scholar]
  17. de Jonge R, Bolton MD, Thomma BP. 17.  2011. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr. Opin. Plant Biol. 14:400–6 [Google Scholar]
  18. de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y. 18.  et al. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–55 [Google Scholar]
  19. de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P. 19.  et al. 2012. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. PNAS 109:5110–15 [Google Scholar]
  20. de Wit PJ, van der Burgt A, Okmen B, Stergiopoulos I, Abd-Elsalam KA. 20.  et al. 2012. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLOS Genet. 8:e1003088 [Google Scholar]
  21. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK. 21.  et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–86 [Google Scholar]
  22. DebRoy S, Thilmony R, Kwack YB, Nomura K, He SY. 22.  2004. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. PNAS 101:9927–32 [Google Scholar]
  23. Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V. 23.  et al. 2011. Metabolic priming by a secreted fungal effector. Nature 478:395–98 [Google Scholar]
  24. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI. 24.  et al. 2006. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. PNAS 103:8888–93 [Google Scholar]
  25. Dodds PN, Rathjen JP. 25.  2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539–48 [Google Scholar]
  26. Doehlemann G, Reissmann S, Assmann D, Fleckenstein M, Kahmann R. 26.  2011. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Mol. Microbiol. 81:751–66 [Google Scholar]
  27. Doehlemann G, van der Linde K, Assmann D, Schwammbach D, Hof A. 27.  et al. 2009. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLOS Pathog. 5:e1000290 [Google Scholar]
  28. Doehlemann G, Wahl R, Vranes M, de Vries RP, Kamper J, Kahmann R. 28.  2008. Establishment of compatibility in the Ustilago maydis/maize pathosystem. J. Plant Physiol. 165:29–40 [Google Scholar]
  29. Dong S, Stam R, Cano LM, Song J, Sklenar J. 29.  et al. 2014. Effector specialization in a lineage of the Irish potato famine pathogen. Science 343:552–55 [Google Scholar]
  30. Dou DL, Kale SD, Wang X, Jiang RHY, Bruce NA. 30.  et al. 2008. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20:1930–47 [Google Scholar]
  31. Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E. 31.  et al. 2011. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. PNAS 108:9166–71 [Google Scholar]
  32. Farfsing JW, Auffarth K, Basse CW. 32.  2005. Identification of cis-active elements in Ustilago maydis mig2 promoters conferring high-level activity during pathogenic growth in maize. Mol. Plant-Microbe Interact. 18:75–87 [Google Scholar]
  33. Faris JD, Zhang Z, Lu H, Lu S, Reddy L. 33.  et al. 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. PNAS 107:13544–49 [Google Scholar]
  34. Fernandez-Alvarez A, Elias-Villalobos A, Jimenez-Martin A, Marin-Menguiano M, Ibeas JI. 34.  2013. Endoplasmic reticulum glucosidases and protein quality control factors cooperate to establish biotrophy in Ustilago maydis. Plant Cell 25:4676–90 [Google Scholar]
  35. Flor HH. 35.  1956. The complementary systems in flax and flax rust. Adv. Genet. 8:29–54 [Google Scholar]
  36. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H. 36.  et al. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:953–56 [Google Scholar]
  37. Gan P, Ikeda K, Irieda H, Narusaka M, O'Connell RJ. 37.  et al. 2013. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol. 197:1236–49 [Google Scholar]
  38. Gimenez-Ibanez S, Boter M, Fernandez-Barbero G, Chini A, Rathjen JP, Solano R. 38.  2014. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLOS Biol. 12:e1001792 [Google Scholar]
  39. Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M. 39.  et al. 2013. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat. Commun. 4:1996 [Google Scholar]
  40. Giraldo MC, Valent B. 40.  2013. Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 11:800–14 [Google Scholar]
  41. Glazebrook J. 41.  2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–27 [Google Scholar]
  42. Godfrey D, Bohlenius H, Pedersen C, Zhang Z, Emmersen J, Thordal-Christensen H. 42.  2010. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genomics 11:317 [Google Scholar]
  43. Gohre V, Robatzek S. 43.  2008. Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathol. 46:189–215 [Google Scholar]
  44. Gonzalez-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, Jones JD. 44.  2006. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18:1067–83 [Google Scholar]
  45. Goodwin SB, M'Barek SB, Dhillon B, Wittenberg AH, Crane CF. 45.  et al. 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLOS Genet. 7:e1002070 [Google Scholar]
  46. Gregory PJ, Johnson SN, Newton AC, Ingram JS. 46.  2009. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60:2827–38 [Google Scholar]
  47. Gururania MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW. 47.  2012. Plant disease resistance genes: current status and future directions. Physiol. Mol. Plant Pathol. 78:51–65 [Google Scholar]
  48. Hacquard S, Kracher B, Maekawa T, Vernaldi S, Schulze-Lefert P, Ver Loren van Themaat E. 48.  2013. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. PNAS 110:E2219–28 [Google Scholar]
  49. Heitman J. 49.  2006. Sexual reproduction and the evolution of microbial pathogens. Curr. Biol. 16:R711–25 [Google Scholar]
  50. Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. 50.  2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLOS Pathog. 8:e1002684 [Google Scholar]
  51. Irieda H, Maeda H, Akiyama K, Hagiwara A, Saitoh H. 51.  et al. 2014. Colletotrichum orbiculare secretes virulence effectors to a biotrophic interface at the primary hyphal neck via exocytosis coupled with SEC22-mediated traffic. Plant Cell 26:2265–81 [Google Scholar]
  52. Jayani RS, Saxena S, Gupta R. 52.  2005. Microbial pectinolytic enzymes: a review. Process Biochem. 40:2931–44 [Google Scholar]
  53. Jelenska J, van Hal JA, Greenberg JT. 53.  2010. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. PNAS 107:13177–82 [Google Scholar]
  54. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. 54.  2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19:4004–14 [Google Scholar]
  55. Jiang S, Yao J, Ma KW, Zhou H, Song J. 55.  et al. 2013. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLOS Pathog. 9:e1003715 [Google Scholar]
  56. Joly DL, Feau N, Tanguay P, Hamelin RC. 56.  2010. Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.). BMC Genomics 11:422 [Google Scholar]
  57. Jones JD, Dangl JL. 57.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  58. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N. 58.  et al. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. PNAS 103:11086–91 [Google Scholar]
  59. Kale SD, Gu BA, Capelluto DGS, Dou DL, Feldman E. 59.  et al. 2010. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–95 [Google Scholar]
  60. Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T. 60.  et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101 [Google Scholar]
  61. Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A. 61.  et al. 2012. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 72:894–907 [Google Scholar]
  62. Kazan K, Lyons R. 62.  2014. Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–309 [Google Scholar]
  63. Kemen E, Kemen A, Ehlers A, Voegele R, Mendgen K. 63.  2013. A novel structural effector from rust fungi is capable of fibril formation. Plant J. 75:767–80 [Google Scholar]
  64. Kemen E, Kemen A, Rafiqi M, Hempel U, Mendgen K. 64.  et al. 2005. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol. Plant-Microbe Interact. 18:1130–39 [Google Scholar]
  65. Kershaw MJ, Talbot NJ. 65.  1998. Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet. Biol. 23:18–33 [Google Scholar]
  66. Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY. 66.  et al. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–403 [Google Scholar]
  67. King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM. 67.  2011. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol. Biofuels 4:4 [Google Scholar]
  68. Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, Ver Loren van Themaat E. 68.  et al. 2012. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLOS Pathog. 8:e1002643 [Google Scholar]
  69. Kloppholz S, Kuhn H, Requena N. 69.  2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21:1204–9 [Google Scholar]
  70. Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S. 70.  2005. Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J. 44:516–29 [Google Scholar]
  71. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 71.  2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305:567–80 [Google Scholar]
  72. Kubicek CP, Starr TL, Glass NL. 72.  2014. Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 52:427–51 [Google Scholar]
  73. Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei MR. 73.  et al. 2013. Host-related metabolic cues affect colonization strategies of a root endophyte. PNAS 110:13965–70 [Google Scholar]
  74. Lahrmann U, Zuccaro A. 74.  2012. Opprimo ergo sum—evasion and suppression in the root endophytic fungus Piriformospora indica. Mol. Plant-Microbe Interact. 25:727–37 [Google Scholar]
  75. Lanver D, Berndt P, Tollot M, Naik V, Vranes M. 75.  et al. 2014. Plant surface cues prime Ustilago maydis for biotrophic development. PLOS Pathog. 10:e1004272 [Google Scholar]
  76. Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P. 76.  et al. 2012. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24:1733–45 [Google Scholar]
  77. Lawrence GJ, Dodds PN, Ellis JG. 77.  2007. Rust of flax and linseed caused by Melampsora lini. Mol. Plant Pathol. 8:349–64 [Google Scholar]
  78. Li W, Wang B, Wu J, Lu G, Hu Y. 78.  et al. 2009. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol. Plant-Microbe Interact. 22:411–20 [Google Scholar]
  79. Liu T, Liu Z, Song C, Hu Y, Han Z. 79.  et al. 2012. Chitin-induced dimerization activates a plant immune receptor. Science 336:1160–64 [Google Scholar]
  80. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 80.  2014. The Carbohydrate-Active Enzymes database (CAZy) in 2013. Nucleic Acids Res. 42:D490–95 [Google Scholar]
  81. Lopez-Raez JA, Verhage A, Fernandez I, Garcia JM, Azcon-Aguilar C. 81.  et al. 2010. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J. Exp. Bot. 61:2589–601 [Google Scholar]
  82. Lowe RG, Howlett BJ. 82.  2012. Indifferent, affectionate, or deceitful: lifestyles and secretomes of fungi. PLOS Pathog. 8:e1002515 [Google Scholar]
  83. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ. 83.  et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–73 [Google Scholar]
  84. Macho AP, Zipfel C. 84.  2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:263–72 [Google Scholar]
  85. Manning VA, Andrie RM, Trippe AF, Ciuffetti LM. 85.  2004. Ptr ToxA requires multiple motifs for complete activity. Mol. Plant-Microbe Interact. 17:491–501 [Google Scholar]
  86. Manning VA, Ciuffetti LM. 86.  2005. Localization of Ptr ToxA produced by Pyrenophora tritici-repentis reveals protein import into wheat mesophyll cells. Plant Cell 17:3203–12 [Google Scholar]
  87. Manning VA, Hardison LK, Ciuffetti LM. 87.  2007. Ptr ToxA interacts with a chloroplast-localized protein. Mol. Plant-Microbe Interact. 20:168–77 [Google Scholar]
  88. Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J. 88.  et al. 2011. Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol. 156:756–69 [Google Scholar]
  89. Martin F, Aerts A, Ahren D, Brun A, Danchin EG. 89.  et al. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92 [Google Scholar]
  90. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM. 90.  et al. 2010. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–38 [Google Scholar]
  91. Meinhardt SW, Cheng W, Kwon CY, Donohue CM, Rasmussen JB. 91.  2002. Role of the arginyl-glycyl-aspartic motif in the action of Ptr ToxA produced by Pyrenophora tritici-repentis. Plant Physiol. 130:1545–51 [Google Scholar]
  92. Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I. 92.  et al. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–35 [Google Scholar]
  93. Micali CO, Neumann U, Grunewald D, Panstruga R, O'Connell R. 93.  2011. Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol. 13:210–26 [Google Scholar]
  94. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K. 94.  et al. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. PNAS 104:19613–18 [Google Scholar]
  95. Motteram J, Lovegrove A, Pirie E, Marsh J, Devonshire J. 95.  et al. 2011. Aberrant protein N-glycosylation impacts upon infection-related growth transitions of the haploid plant-pathogenic fungus Mycosphaerella graminicola. Mol. Microbiol. 81:415–33 [Google Scholar]
  96. Mueller AN, Ziemann S, Treitschke S, Aßmann D, Doehlemann G. 96.  2013. Compatibility in the Ustilago maydis–maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLOS Pathog. 9:e1003177 [Google Scholar]
  97. Müller O, Schreier PH, Uhrig JF. 97.  2008. Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis. Mol. Genet. Genomics 279:27–39 [Google Scholar]
  98. Nei M, Rooney AP. 98.  2005. Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 39:121–52 [Google Scholar]
  99. Nemri A, Saunders DG, Anderson C, Upadhyaya NM, Win J. 99.  et al. 2014. The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Front. Plant Sci. 5:98 [Google Scholar]
  100. Nomura K, Mecey C, Lee YN, Imboden LA, Chang JH, He SY. 100.  2011. Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis. PNAS 108:10774–79 [Google Scholar]
  101. O'Connell RJ, Panstruga R. 101.  2006. Tete a tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol. 171:699–718 [Google Scholar]
  102. O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J. 102.  et al. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44:1060–65 [Google Scholar]
  103. Oerke E-C. 103.  2006. Crop losses to pests. J. Agric. Sci. 144:31–43 [Google Scholar]
  104. Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA. 104.  et al. 2012. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLOS Pathog. 8:e1003037 [Google Scholar]
  105. Okmen B, Doehlemann G. 105.  2014. Inside plant: biotrophic strategies to modulate host immunity and metabolism. Curr. Opin. Plant Biol. 20:19–25 [Google Scholar]
  106. Okmen B, Etalo DW, Joosten MH, Bouwmeester HJ, de Vos RC. 106.  et al. 2013. Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytol. 198:1203–14 [Google Scholar]
  107. Oliveira-Garcia E, Deising HB. 107.  2013. Infection structure-specific expression of β-1,3-glucan synthase is essential for pathogenicity of Colletotrichum graminicola and evasion of β-glucan-triggered immunity in maize. Plant Cell 25:2356–78 [Google Scholar]
  108. Oliver RP, Friesen TL, Faris JD, Solomon PS. 108.  2012. Stagonospora nodorum: from pathology to genomics and host resistance. Annu. Rev. Phytopathol. 50:23–43 [Google Scholar]
  109. Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B. 109.  2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–32 [Google Scholar]
  110. Ottmann C, Luberacki B, Kufner I, Koch W, Brunner F. 110.  et al. 2009. A common toxin fold mediates microbial attack and plant defense. PNAS 106:10359–64 [Google Scholar]
  111. Park CH, Chen S, Shirsekar G, Zhou B, Khang CH. 111.  et al. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24:4748–62 [Google Scholar]
  112. Pendleton AL, Smith KE, Feau N, Martin FM, Grigoriev IV. 112.  et al. 2014. Duplications and losses in gene families of rust pathogens highlight putative effectors. Front. Plant Sci. 5:299 [Google Scholar]
  113. Petersen TN, Brunak S, von Heijne G, Nielsen H. 113.  2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8:785–86 [Google Scholar]
  114. Petre B, Hacquard S, Duplessis S, Rouhier N. 114.  2014. Genome analysis of poplar LRR-RLP gene clusters reveals RISP, a defense-related gene coding a candidate endogenous peptide elicitor. Front. Plant Sci. 5:111 [Google Scholar]
  115. Petre B, Kamoun S. 115.  2014. How do filamentous pathogens deliver effector proteins into plant cells?. PLOS Biol. 12:e1001801 [Google Scholar]
  116. Plett JM, Daguerre Y, Wittulsky S, Vayssieres A, Deveau A. 116.  et al. 2014. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. PNAS 111:8299–304 [Google Scholar]
  117. Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V. 117.  et al. 2011. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr. Biol. 21:1197–203 [Google Scholar]
  118. Plett JM, Khachane A, Ouassou M, Sundberg B, Kohler A, Martin F. 118.  2014. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. New Phytol. 202:270–86 [Google Scholar]
  119. Plett JM, Martin F. 119.  2011. Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet. 27:14–22 [Google Scholar]
  120. Pliego C, Nowara D, Bonciani G, Gheorghe DM, Xu R. 120.  et al. 2013. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol. Plant-Microbe Interact. 26:633–42 [Google Scholar]
  121. Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S. 121.  et al. 2006. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721–44 [Google Scholar]
  122. Raffaele S, Kamoun S. 122.  2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat. Rev. Microbiol. 10:417–30 [Google Scholar]
  123. Rafiqi M, Ellis JG, Ludowici VA, Hardham AR, Dodds PN. 123.  2012. Challenges and progress towards understanding the role of effectors in plant-fungal interactions. Curr. Opin. Plant Biol. 15:477–82 [Google Scholar]
  124. Rafiqi M, Gan PH, Ravensdale M, Lawrence GJ, Ellis JG. 124.  et al. 2010. Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen. Plant Cell 22:2017–32 [Google Scholar]
  125. Rep M, Kistler HC. 125.  2010. The genomic organization of plant pathogenicity in Fusarium species. Curr. Opin. Plant Biol. 13:420–26 [Google Scholar]
  126. Ribot C, Cesari S, Abidi I, Chalvon V, Bournaud C. 126.  et al. 2013. The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery. Plant J. 74:1–12 [Google Scholar]
  127. Rich MK, Schorderet M, Reinhardt D. 127.  2014. The role of the cell wall compartment in mutualistic symbioses of plants. Front. Plant Sci. 5:238 [Google Scholar]
  128. Ridout CJ, Skamnioti P, Porritt O, Sacristan S, Jones JD, Brown JK. 128.  2006. Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18:2402–14 [Google Scholar]
  129. Rockwell NC, Fuller RS. 129.  1998. Interplay between S1 and S4 subsites in Kex2 protease: Kex2 exhibits dual specificity for the P4 side chain. Biochemistry 37:3386–91 [Google Scholar]
  130. Rooney HC, Van't Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ. 130.  2005. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783–86 [Google Scholar]
  131. Rouxel T, Balesdent M-H. 131.  2010. Avirulence genes. eLS Chichester, UK: Wiley & Sons http://www.els.net/WileyCDA/ElsArticle/refId-a0021267.html [Google Scholar]
  132. Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP. 132.  et al. 2011. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat. Commun. 2:202 [Google Scholar]
  133. Rovenich H, Boshoven JC, Thomma BP. 133.  2014. Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Curr. Opin. Plant Biol. 20:96–103 [Google Scholar]
  134. Saitoh H, Fujisawa S, Mitsuoka C, Ito A, Hirabuchi A. 134.  et al. 2012. Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLOS Pathog. 8:e1002711 [Google Scholar]
  135. Sanchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg DJ. 135.  et al. 2013. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife 2:e00790 [Google Scholar]
  136. Schirawski J, Bohnert HU, Steinberg G, Snetselaar K, Adamikowa L, Kahmann R. 136.  2005. Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis. Plant Cell 17:3532–43 [Google Scholar]
  137. Schirawski J, Mannhaupt G, Munch K, Brefort T, Schipper K. 137.  et al. 2010. Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–48 [Google Scholar]
  138. Schmidt SM, Kuhn H, Micali C, Liller C, Kwaaitaal M, Panstruga R. 138.  2014. Interaction of a Blumeria graminis f. sp. hordei effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target. Mol. Plant Pathol. 15:535–49 [Google Scholar]
  139. Seidl MF, Thomma BP. 139.  2014. Sex or no sex: Evolutionary adaptation occurs regardless. BioEssays 36:335–45 [Google Scholar]
  140. Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T. 140.  et al. 2008. Fungal effector protein AVR2 targets diversifying defense-related Cys proteases of tomato. Plant Cell 20:1169–83 [Google Scholar]
  141. Sharma R, Mishra B, Runge F, Thines M. 141.  2014. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the smut fungus Melanopsichium pennsylvanicum. Genome Biol. Evol. 6:2034–49 [Google Scholar]
  142. Sharma S, Sharma S, Hirabuchi A, Yoshida K, Fujisaki K. 142.  et al. 2013. Deployment of the Burkholderia glumae type III secretion system as an efficient tool for translocating pathogen effectors to monocot cells. Plant J. 74:701–12 [Google Scholar]
  143. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N. 143.  et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64:204–14 [Google Scholar]
  144. Skibbe DS, Doehlemann G, Fernandes J, Walbot V. 144.  2010. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328:89–92 [Google Scholar]
  145. Song J, Win J, Tian M, Schornack S, Kaschani F. 145.  et al. 2009. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. PNAS 106:1654–59 [Google Scholar]
  146. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM. 146.  et al. 2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–46 [Google Scholar]
  147. Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. 147.  1999. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–71 [Google Scholar]
  148. Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJ. 148.  2013. Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol. Rev. 37:67–93 [Google Scholar]
  149. Stergiopoulos I, Cordovez V, Okmen B, Beenen HG, Kema GH, de Wit PJ. 149.  2014. Positive selection and intragenic recombination contribute to high allelic diversity in effector genes of Mycosphaerella fijiensis, causal agent of the black leaf streak disease of banana. Mol. Plant Pathol. 15:447–60 [Google Scholar]
  150. Stergiopoulos I, de Wit PJ. 150.  2009. Fungal effector proteins. Annu. Rev. Phytopathol. 47:233–63 [Google Scholar]
  151. Stergiopoulos I, Kourmpetis YA, Slot JC, Bakker FT, De Wit PJ, Rokas A. 151.  2012. In silico characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins. Mol. Biol. Evol. 29:3371–84 [Google Scholar]
  152. Stotz HU, Mitrousia GK, de Wit PJ, Fitt BD. 152.  2014. Effector-triggered defence against apoplastic fungal pathogens. Trends Plant Sci. 19:491–500 [Google Scholar]
  153. Strange RN, Scott PR. 153.  2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43:83–116 [Google Scholar]
  154. Takken F, Rep M. 154.  2010. The arms race between tomato and Fusarium oxysporum. Mol. Plant Pathol. 11:309–14 [Google Scholar]
  155. Tanaka A, Takemoto D, Chujo T, Scott B. 155.  2012. Fungal endophytes of grasses. Curr. Opin. Plant Biol. 15:462–68 [Google Scholar]
  156. Tanaka S, Brefort T, Neidig N, Djamei A, Kahnt J. 156.  et al. 2014. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. eLife 3:e01355 [Google Scholar]
  157. Thrall PH, Laine AL, Ravensdale M, Nemri A, Dodds PN. 157.  et al. 2012. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol. Lett. 15:425–35 [Google Scholar]
  158. Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S. 158.  2007. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol. 143:364–77 [Google Scholar]
  159. Toome M, Ohm RA, Riley RW, James TY, Lazarus KL. 159.  et al. 2014. Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen Mixia osmundae. New Phytol. 202:554–64 [Google Scholar]
  160. Tucker SL, Talbot NJ. 160.  2001. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu. Rev. Phytopathol. 39:385–417 [Google Scholar]
  161. Uma B, Rani TS, Podile AR. 161.  2011. Warriors at the gate that never sleep: non-host resistance in plants. J. Plant Physiol. 168:2141–52 [Google Scholar]
  162. Upadhyaya NM, Mago R, Staskawicz BJ, Ayliffe MA, Ellis JG, Dodds PN. 162.  2014. A bacterial type III secretion assay for delivery of fungal effector proteins into wheat. Mol. Plant-Microbe Interact. 27:255–64 [Google Scholar]
  163. van den Burg HA, Harrison SJ, Joosten MH, Vervoort J, de Wit PJ. 163.  2006. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol. Plant-Microbe Interact. 19:1420–30 [Google Scholar]
  164. van Esse HP, Bolton MD, Stergiopoulos I, de Wit PJ, Thomma BP. 164.  2007. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Mol. Plant-Microbe Interact. 20:1092–101 [Google Scholar]
  165. van Esse HP, Van't Klooster JW, Bolton MD, Yadeta KA, van Baarlen P. 165.  et al. 2008. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20:1948–63 [Google Scholar]
  166. van Kan JA, van den Ackerveken GF, de Wit PJ. 166.  1991. Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol. Plant-Microbe Interact. 4:52–59 [Google Scholar]
  167. Ve T, Williams SJ, Catanzariti AM, Rafiqi M, Rahman M. 167.  et al. 2013. Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity. PNAS 110:17594–99 [Google Scholar]
  168. Vlot AC, Dempsey DA, Klessig DF. 168.  2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177–206 [Google Scholar]
  169. Wawra S, Djamei A, Albert I, Nurnberger T, Kahmann R, van West P. 169.  2013. In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells. Mol. Plant-Microbe Interact. 26:528–36 [Google Scholar]
  170. Weiberg A, Wang M, Bellinger M, Jin H. 170.  2014. Small RNAs: a new paradigm in plant-microbe interactions. Annu. Rev. Phytopathol. 52:495–516 [Google Scholar]
  171. Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z. 171.  et al. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–23 [Google Scholar]
  172. Wicker T, Oberhaensli S, Parlange F, Buchmann JP, Shatalina M. 172.  et al. 2013. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat. Genet. 45:1092–96 [Google Scholar]
  173. Wosten HA, Bohlmann R, Eckerskorn C, Lottspeich F, Bolker M, Kahmann R. 173.  1996. A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J. 15:4274–81 [Google Scholar]
  174. Yaeno T, Li H, Chaparro-Garcia A, Schornack S, Koshiba S. 174.  et al. 2011. Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. PNAS 108:14682–87 [Google Scholar]
  175. Yoshino K, Irieda H, Sugimoto F, Yoshioka H, Okuno T, Takano Y. 175.  2012. Cell death of Nicotiana benthamiana is induced by secreted protein NIS1 of Colletotrichum orbiculare and is suppressed by a homologue of CgDN3. Mol. Plant-Microbe Interact. 25:625–36 [Google Scholar]
  176. Zhang WJ, Pedersen C, Kwaaitaal M, Gregersen PL, Morch SM. 176.  et al. 2012. Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c. Mol. Plant Pathol. 13:1110–19 [Google Scholar]
  177. Zhao Z, Liu H, Wang C, Xu JR. 177.  2014. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 15:6 [Google Scholar]
  178. Zhou B, Qu S, Liu G, Dolan M, Sakai H. 178.  et al. 2006. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant-Microbe Interact. 19:1216–28 [Google Scholar]
  179. Zuccaro A, Lahrmann U, Guldener U, Langen G, Pfiffi S. 179.  et al. 2011. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLOS Pathog. 7:e1002290 [Google Scholar]
  180. Zuccaro A, Lahrmann U, Langen G. 180.  2014. Broad compatibility in fungal root symbioses. Curr. Opin. Plant Biol. 20:135–45 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043014-114623
Loading
/content/journals/10.1146/annurev-arplant-043014-114623
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error