1932

Abstract

Communities of soil microorganisms (soil microbiomes) play a major role in biogeochemical cycles and support of plant growth. Here we focus primarily on the roles that the soil microbiome plays in cycling soil organic carbon and the impact of climate change on the soil carbon cycle. We first discuss current challenges in understanding the roles carried out by highly diverse and heterogeneous soil microbiomes and review existing knowledge gaps in understanding how climate change will impact soil carbon cycling by the soil microbiome. Because soil microbiome stability is a key metric to understand as the climate changes, we discuss different aspects of stability, including resistance, resilience, and functional redundancy.We then review recent research pertaining to the impact of major climate perturbations on the soil microbiome and the functions that they carry out. Finally, we review new experimental methodologies and modeling approaches under development that should facilitate our understanding of the complex nature of the soil microbiome to better predict its future responses to climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012320-082720
2020-10-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/energy/45/1/annurev-environ-012320-082720.html?itemId=/content/journals/10.1146/annurev-environ-012320-082720&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL 2015. Soil and human security in the 21st century. Science 348:62351261071
    [Google Scholar]
  2. 2. 
    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR et al. 2019. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17:9569–86
    [Google Scholar]
  3. 3. 
    Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:56771623–27
    [Google Scholar]
  4. 4. 
    Campbell EE, Paustian K. 2015. Current developments in soil organic matter modeling and the expansion of model applications: a review. Environ. Res. Lett. 10:12123004
    [Google Scholar]
  5. 5. 
    Jansson JK, Hofmockel KS. 2020. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18:35–46
    [Google Scholar]
  6. 6. 
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J et al. 2017. A communal catalogue reveals Earth's multiscale microbial diversity. Nature 551:457–63
    [Google Scholar]
  7. 7. 
    Goel R, Kumar V, Suyal DC, Narayan Soni R 2018. Toward the unculturable microbes for sustainable agricultural production. Role of Rhizospheric Microbes in Soil VS Meena 107–23 Singapore: Springer Singapore
    [Google Scholar]
  8. 8. 
    Schulz F, Alteio L, Goudeau D, Ryan EM, Yu FB et al. 2018. Hidden diversity of soil giant viruses. Nat. Commun. 9:14881
    [Google Scholar]
  9. 9. 
    Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W et al. 2006. Climate-carbon cycle feedback analysis: results from the C4MIP Model Intercomparison. J. Clim. 19:143337–53
    [Google Scholar]
  10. 10. 
    Kuzyakov Y, Horwath WR, Dorodnikov M, Blagodatskaya E 2019. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 128:66–78
    [Google Scholar]
  11. 11. 
    Liang C, Schimel JP, Jastrow JD 2017. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2:817105
    [Google Scholar]
  12. 12. 
    Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacala SW 2014. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat. Clim. Change 4:121099–102
    [Google Scholar]
  13. 13. 
    Harmon ME, Silver WL, Fasth B, Chen H, Burke IC et al. 2009. Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob. Change Biol. 15:51320–38
    [Google Scholar]
  14. 14. 
    Qualls RG. 2016. Long-term (13 years) decomposition rates of forest floor organic matter on paired coniferous and deciduous watersheds with contrasting temperature regimes. Forests 7:10231
    [Google Scholar]
  15. 15. 
    Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C et al. 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6:16707
    [Google Scholar]
  16. 16. 
    Stewart CE, Paustian K, Conant RT, Plante AF, Six J 2007. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86:119–31
    [Google Scholar]
  17. 17. 
    Joergensen RG, Wichern F. 2018. Alive and kicking: why dormant soil microorganisms matter. Soil Biol. Biochem. 116:419–30
    [Google Scholar]
  18. 18. 
    Jones SE, Lennon JT. 2010. Dormancy contributes to the maintenance of microbial diversity. PNAS 107:135881–86
    [Google Scholar]
  19. 19. 
    Jansson JK, Hofmockel KS. 2018. The soil microbiome—from metagenomics to metaphenomics. Curr. Opin. Microbiol. 43:162–68
    [Google Scholar]
  20. 20. 
    Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M et al. 2016. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes. Front. Microbiol. 7:214
    [Google Scholar]
  21. 21. 
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N 2017. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2:316242
    [Google Scholar]
  22. 22. 
    Balesdent J, Chenu C, Balabane M 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:3–4215–30
    [Google Scholar]
  23. 23. 
    Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A et al. 2008. How relevant is recalcitrance for the stabilization of organic matter in soils. J. Plant Nutr. Soil Sci. 171:191–110
    [Google Scholar]
  24. 24. 
    Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter. Glob. Change Biol. 19:4988–95
    [Google Scholar]
  25. 25. 
    Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:736749–56
    [Google Scholar]
  26. 26. 
    Erich MS, Plante AF, Fernández JM, Mallory EB, Ohno T 2012. Effects of profile depth and management on the composition of labile and total soil organic matter. Soil Sci. Soc. Am. J. 76:2408–19
    [Google Scholar]
  27. 27. 
    Bach EM, Hofmockel KS. 2016. A time for every season: soil aggregate turnover stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy. GCB Bioenergy 8:3588–99
    [Google Scholar]
  28. 28. 
    Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184:13–24
    [Google Scholar]
  29. 29. 
    Keiluweit M, Wanzek T, Kleber M, Nico P, Fendorf S 2017. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8:11771
    [Google Scholar]
  30. 30. 
    Allison SD, Martiny JBH. 2008. Resistance, resilience, and redundancy in microbial communities. PNAS 105:Supplement 111512–19
    [Google Scholar]
  31. 31. 
    Orwin KH, Wardle DA. 2005. Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance. Plant Soil 278:1–2205–21
    [Google Scholar]
  32. 32. 
    Griffiths BS, Philippot L. 2013. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37:2112–29
    [Google Scholar]
  33. 33. 
    Shade A, Peter H, Allison SD, Baho DL, Berga M et al. 2012. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3:417
    [Google Scholar]
  34. 34. 
    Azarbad H, van Gestel C, Niklińska M, Laskowski R, Röling W, van Straalen N 2016. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing “stress-on-stress” responses. Int. J. Mol. Sci. 17:6933
    [Google Scholar]
  35. 35. 
    Naylor D, Coleman-Derr D. 2018. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8:2223
    [Google Scholar]
  36. 36. 
    van Kruistum H, Bodelier PLE, Ho A, Meima-Franke M, Veraart AJ 2018. Resistance and recovery of methane-oxidizing communities depends on stress regime and history; a microcosm study. Front. Microbiol. 9:1714
    [Google Scholar]
  37. 37. 
    Nguyen LTT, Broughton K, Osanai Y, Anderson IC, Bange MP et al. 2019. Effects of elevated temperature and elevated CO2 on soil nitrification and ammonia-oxidizing microbial communities in field-grown crop. Sci. Total Environ. 675:81–89
    [Google Scholar]
  38. 38. 
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:51007–17
    [Google Scholar]
  39. 39. 
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET et al. 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. PNAS 112:3510967–72
    [Google Scholar]
  40. 40. 
    Hueso S, García C, Hernández T 2012. Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol. Biochem. 50:167–73
    [Google Scholar]
  41. 41. 
    Schaeffer SM, Homyak PM, Boot CM, Roux-Michollet D, Schimel JP 2017. Soil carbon and nitrogen dynamics throughout the summer drought in a California annual grassland. Soil Biol. Biochem. 115:54–62
    [Google Scholar]
  42. 42. 
    McKew BA, Taylor JD, McGenity TJ, Underwood GJC 2011. Resistance and resilience of benthic biofilm communities from a temperate saltmarsh to desiccation and rewetting. ISME J 5:130–41
    [Google Scholar]
  43. 43. 
    Hinojosa MB, Parra A, Laudicina VA, Moreno JM 2016. Post-fire soil functionality and microbial community structure in a Mediterranean shrubland subjected to experimental drought. Sci. Total Environ. 573:1178–89
    [Google Scholar]
  44. 44. 
    Simonin M, Nunan N, Bloor JMG, Pouteau V, Niboyet A 2017. Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms. FEMS Microbiol. Lett. 364:9fnx077
    [Google Scholar]
  45. 45. 
    Orwin KH, Dickie IA, Wood JR, Bonner KI, Holdaway RJ 2016. Soil microbial community structure explains the resistance of respiration to a dry-rewet cycle, but not soil functioning under static conditions. Funct. Ecol. 30:81430–39
    [Google Scholar]
  46. 46. 
    Jacquiod S, Nunes I, Brejnrod A, Hansen MA, Holm PE et al. 2018. Long-term soil metal exposure impaired temporal variation in microbial metatranscriptomes and enriched active phages. Microbiome 6:1223
    [Google Scholar]
  47. 47. 
    Jacquiod S, Franqueville L, Cécillon S, Vogel TM, Simonet P 2013. Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach. PLOS ONE 8:11e79699
    [Google Scholar]
  48. 48. 
    Steven B, Belnap J, Kuske CR 2018. Chronic physical disturbance substantially alters the response of biological soil crusts to a wetting pulse, as characterized by metatranscriptomic sequencing. Front. Microbiol. 9:2382
    [Google Scholar]
  49. 49. 
    Lourenço KS, Suleiman AKA, Pijl A, van Veen JA, Cantarella H, Kuramae EE 2018. Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion. Microbiome 6:1142
    [Google Scholar]
  50. 50. 
    Knelman J, Schmidt S, Garayburu-Caruso V, Kumar S, Graham E 2019. Multiple, compounding disturbances in a forest ecosystem: Fire increases susceptibility of soil edaphic properties, bacterial community structure, and function to change with extreme precipitation event. Soil Syst 3:240
    [Google Scholar]
  51. 51. 
    Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ et al. 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358:6359101–5
    [Google Scholar]
  52. 52. 
    Pold G, Billings AF, Blanchard JL, Burkhardt DB, Frey SD et al. 2016. Long-term warming alters carbohydrate degradation potential in temperate forest soils. Appl. Environ. Microbiol. 82:226518–30
    [Google Scholar]
  53. 53. 
    Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA et al. 2011. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2: C fluxes belowground and long-term FACE productivity. Ecol. Lett. 14:4349–57
    [Google Scholar]
  54. 54. 
    Jiao S, Chen W, Wei G 2019. Resilience and assemblage of soil microbiome in response to chemical contamination combined with plant growth. Appl. Environ. Microbiol. 85:6e02523–18
    [Google Scholar]
  55. 55. 
    Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR 2011. Effect of warming and drought on grassland microbial communities. ISME J 5:101692–1700
    [Google Scholar]
  56. 56. 
    Morrissey EM, Mau RL, Hayer M, Liu X-JA, Schwartz E et al. 2019. Evolutionary history constrains microbial traits across environmental variation. Nat. Ecol. Evol. 3:71064–69
    [Google Scholar]
  57. 57. 
    Fierer N, Bradford MA, Jackson RB 2007. Toward an ecological classification of soil bacteria. Ecology 88:61354–64
    [Google Scholar]
  58. 58. 
    Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C et al. 2007. Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ. Microbiol. 9:92211–19
    [Google Scholar]
  59. 59. 
    Chaer G, Fernandes M, Myrold D, Bottomley P 2009. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils. Microb. Ecol. 58:2414–24
    [Google Scholar]
  60. 60. 
    Ho A, Lüke C, Reim A, Frenzel P 2016. Resilience of (seed bank) aerobic methanotrophs and methanotrophic activity to desiccation and heat stress. Soil Biol. Biochem. 101:130–38
    [Google Scholar]
  61. 61. 
    Puglisi E, Hamon R, Vasileiadis S, Coppolecchia D, Trevisan M 2012. Adaptation of soil microorganisms to trace element contamination: a review of mechanisms, methodologies, and consequences for risk assessment and remediation. Crit. Rev. Environ. Sci. Technol. 42:222435–70
    [Google Scholar]
  62. 62. 
    Udiković-Kolić N, Devers-Lamrani M, Petrić I, Hršak D, Martin-Laurent F 2011. Evidence for taxonomic and functional drift of an atrazine-degrading culture in response to high atrazine input. Appl. Microbiol. Biotechnol. 90:41547–54
    [Google Scholar]
  63. 63. 
    Bárcenas-Moreno G, Bååth E. 2009. Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biol. Biochem. 41:122517–26
    [Google Scholar]
  64. 64. 
    Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD 2020. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J 14:1–9
    [Google Scholar]
  65. 65. 
    Yu H, Deng Y, He Z, Van Nostrand JD, Wang S et al. 2018. Elevated CO2 and warming altered grassland microbial communities in soil top-layers. Front. Microbiol. 9:1790
    [Google Scholar]
  66. 66. 
    Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF 2010. Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytol 187:2426–37
    [Google Scholar]
  67. 67. 
    Hu H-W, Macdonald CA, Trivedi P, Anderson IC, Zheng Y et al. 2016. Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems. Soil Biol. Biochem. 92:1–15
    [Google Scholar]
  68. 68. 
    Solomon S 2007. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change New York: United Nations Environ. Progr.
  69. 69. 
    Pold G, Melillo JM, DeAngelis KM 2015. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front. Microbiol. 6:480
    [Google Scholar]
  70. 70. 
    Xue K, Xie J, Zhou A, Liu F, Li D et al. 2016. Warming alters expressions of microbial functional genes important to ecosystem functioning. Front. Microbiol. 7:668
    [Google Scholar]
  71. 71. 
    Rocca JD, Simonin M, Blaszczak JR, Ernakovich JG, Gibbons SM et al. 2019. The Microbiome Stress Project: toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front. Microbiol. 9:3272
    [Google Scholar]
  72. 72. 
    Carrell AA, Kolton M, Glass JB, Pelletier DA, Warren MJ et al. 2019. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Glob. Change Biol. 25:29933004
    [Google Scholar]
  73. 73. 
    DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM et al. 2015. Long-term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. 6:104
    [Google Scholar]
  74. 74. 
    Li Y, Lv W, Jiang L, Zhang L, Wang S et al. 2019. Microbial community responses reduce soil carbon loss in Tibetan alpine grasslands under short‐term warming. Glob. Change Biol. 25:3438–49
    [Google Scholar]
  75. 75. 
    Zhou J, Xue K, Xie J, Deng Y, Wu L et al. 2012. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2:2106–10
    [Google Scholar]
  76. 76. 
    Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E et al. 2014. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121:2305–16
    [Google Scholar]
  77. 77. 
    Lladó S, López-Mondéjar R, Baldrian P 2017. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81:2e00063–16
    [Google Scholar]
  78. 78. 
    Xiong J, He Z, Shi S, Kent A, Deng Y et al. 2015. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Sci. Rep. 5:19316
    [Google Scholar]
  79. 79. 
    Cheng L, Booker FL, Burkey KO, Tu C, Shew HD et al. 2011. Soil microbial responses to elevated CO2 and O3 in a nitrogen-aggrading agroecosystem. PLOS ONE 6:6e2137
    [Google Scholar]
  80. 80. 
    Chen YP, Liu Q, Liu YJ, Jia FA, He XH 2015. Responses of soil microbial activity to cadmium pollution and elevated CO2. Sci. Rep. 4:14287
    [Google Scholar]
  81. 81. 
    Dunbar J, Eichorst SA, Gallegos-Graves LV, Silva S, Xie G et al. 2012. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide: soil bacterial response in six ecosystems. Environ. Microbiol. 14:51145–58
    [Google Scholar]
  82. 82. 
    Yang S, Zheng Q, Yuan M, Shi Z, Chiariello NR et al. 2019. Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials. Sci. Total Environ. 652:1474–81
    [Google Scholar]
  83. 83. 
    Ebersberger D, Niklaus PA, Kandeler E 2003. Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biol. Biochem. 35:7965–72
    [Google Scholar]
  84. 84. 
    Delgado-Baquerizo M, Maestre FT, Escolar C, Gallardo A, Ochoa V et al. 2014. Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J. Ecol. 102:61592–1605
    [Google Scholar]
  85. 85. 
    Wang P, Marsh EL, Ainsworth EA, Leakey ADB, Sheflin AM, Schachtman DP 2017. Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3. Sci. Rep. 7:115019
    [Google Scholar]
  86. 86. 
    Hofmockel KS, Gallet-Budynek A, McCarthy HR, Currie WS, Jackson RB, Finzi A 2011. Sources of increased N uptake in forest trees growing under elevated CO2: results of a large-scale 15N study. Glob. Change Biol. 17:113338–50
    [Google Scholar]
  87. 87. 
    Dunbar J, Gallegos-Graves LV, Steven B, Mueller R, Hesse C et al. 2014. Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO2 and O3. Soil Biol. Biochem. 76:227–34
    [Google Scholar]
  88. 88. 
    Formánek P, Rejšek K, Vranová V 2014. Effect of elevated CO2, O3, and UV radiation on soils. Sci. World J. 2014:730149
    [Google Scholar]
  89. 89. 
    Kardol P, Cregger MA, Campany CE, Classen AT 2010. Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91:3767–81
    [Google Scholar]
  90. 90. 
    Hayden HL, Mele PM, Bougoure DS, Allan CY, Norng S et al. 2012. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil: climate change effects on microbial communities. Environ. Microbiol. 14:123081–96
    [Google Scholar]
  91. 91. 
    Tveit AT, Urich T, Frenzel P, Svenning MM 2015. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. PNAS 112:19E2507–16
    [Google Scholar]
  92. 92. 
    Bouskill NJ, Wood TE, Baran R, Ye Z, Bowen BP et al. 2016. Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front. Microbiol. 7:525
    [Google Scholar]
  93. 93. 
    von Rein I, Gessler A, Premke K, Keitel C, Ulrich A, Kayler ZE 2016. Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum. Glob. Change Biol. 22:82861–74
    [Google Scholar]
  94. 94. 
    Pérez Castro S, Cleland EE, Wagner R, Sawad RA, Lipson DA 2019. Soil microbial responses to drought and exotic plants shift carbon metabolism. ISME J 13:71776–87
    [Google Scholar]
  95. 95. 
    Prommer J, Walker TWN, Wanek W, Braun J, Zezula D et al. 2019. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Change Biol. 26:669–81
    [Google Scholar]
  96. 96. 
    Valencia E, Gross N, Quero JL, Carmona CP, Ochoa V et al. 2018. Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Glob. Change Biol. 24:125642–54
    [Google Scholar]
  97. 97. 
    Hünninghaus M, Dibbern D, Kramer S, Koller R, Pausch J et al. 2019. Disentangling carbon flow across microbial kingdoms in the rhizosphere of maize. Soil Biol. Biochem. 134:122–30
    [Google Scholar]
  98. 98. 
    Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA et al. 2010. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. PNAS 107:2410938–42
    [Google Scholar]
  99. 99. 
    Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B 2018. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J 12:41032–46
    [Google Scholar]
  100. 100. 
    Couradeau E, Karaoz U, Lim HC, Nunes da Rocha U, Northen T et al. 2016. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7:110373
    [Google Scholar]
  101. 101. 
    Karaoz U, Couradeau E, Nunes da Rocha U, Lim H-C, Northen T et al. 2018. Large blooms of Bacillales (Firmicutes) underlie the response to wetting of cyanobacterial biocrusts at various stages of maturity. mBio 9:2e01366–16
    [Google Scholar]
  102. 102. 
    Couradeau E, Giraldo-Silva A, De Martini F, Garcia-Pichel F 2019. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome 7:155
    [Google Scholar]
  103. 103. 
    Rodriguez-Caballero E, Belnap J, Büdel B, Crutzen PJ, Andreae MO et al. 2018. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11:3185–89
    [Google Scholar]
  104. 104. 
    Johnson SL, Kuske CR, Carney TD, Housman DC, Gallegos-Graves LV, Belnap J 2012. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem. Glob. Change Biol. 18:82583–93
    [Google Scholar]
  105. 105. 
    Rudgers JA, Dettweiler-Robinson E, Belnap J, Green LE, Sinsabaugh RL et al. 2018. Are fungal networks key to dryland primary production. Am. J. Bot. 105:111783–87
    [Google Scholar]
  106. 106. 
    Aanderud ZT, Smart TB, Wu N, Taylor AS, Zhang Y, Belnap J 2018. Fungal loop transfer of nitrogen depends on biocrust constituents and nitrogen form. Biogeosciences 15:123831–40
    [Google Scholar]
  107. 107. 
    Otto S, Bruni EP, Harms H, Wick LY 2017. Catch me if you can: dispersal and foraging of Bdellovibrio bacteriovorus 109J along mycelia. ISME J 11:2386–93
    [Google Scholar]
  108. 108. 
    Berthold T, Centler F, Hübschmann T, Remer R, Thullner M et al. 2016. Mycelia as a focal point for horizontal gene transfer among soil bacteria. Sci. Rep. 6:136390
    [Google Scholar]
  109. 109. 
    Yang P, Oliveira da Rocha Calixto R, van Elsas JD 2018. Migration of Paraburkholderia terrae BS001 along old fungal hyphae in soil at various pH levels. Microb. Ecol. 76:2443–52
    [Google Scholar]
  110. 110. 
    Xiong W, Jousset A, Guo S, Karlsson I, Zhao Q et al. 2018. Soil protist communities form a dynamic hub in the soil microbiome. ISME J 12:2634–38
    [Google Scholar]
  111. 111. 
    Xiong W, Li R, Guo S, Karlsson I, Jiao Z et al. 2019. Microbial amendments alter protist communities within the soil microbiome. Soil Biol. Biochem. 135:379–82
    [Google Scholar]
  112. 112. 
    Murase J. 2017. Quest of soil protists in a new era. Microbes Environ 32:299–102
    [Google Scholar]
  113. 113. 
    Trubl G, Jang HB, Roux S, Emergon JB, Solonenko N et al. 2018. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3:5e00076–18
    [Google Scholar]
  114. 114. 
    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ et al. 2018. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3:8870–80
    [Google Scholar]
  115. 115. 
    Jin M, Guo X, Zhang R, Qu W, Gao B, Zeng R 2019. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome 7:158
    [Google Scholar]
  116. 116. 
    Emerson JB. 2019. Soil viruses: a new hope. mSystems 4:3e00120–19
    [Google Scholar]
  117. 117. 
    Goudie AS, Viles HA. 2012. Weathering and the global carbon cycle: geomorphological perspectives. Earth-Sci. Rev. 113:1–259–71
    [Google Scholar]
  118. 118. 
    Thorley RMS, Taylor LL, Banwart SA, Leake JR, Beerling DJ 2015. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling: tree-fungal carbonate rock weathering. Plant Cell Environ 38:91947–61
    [Google Scholar]
  119. 119. 
    Goll DS, Moosdorf N, Hartmann J, Brovkin V 2014. Climate-driven changes in chemical weathering and associated phosphorus release since 1850: implications for the land carbon balance. Geophys. Res. Lett. 41:103553–58
    [Google Scholar]
  120. 120. 
    Beaulieu E, Goddéris Y, Donnadieu Y, Labat D, Roelandt C 2012. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nat. Clim. Change 2:5346–49
    [Google Scholar]
  121. 121. 
    Don A, Böhme IH, Dohrmann AB, Poeplau C, Tebbe CC 2017. Microbial community composition affects soil organic carbon turnover in mineral soils. Biol. Fertil. Soils 53:4445–56
    [Google Scholar]
  122. 122. 
    Dwivedi D, Tang J, Bouskill N, Georgiou K, Chacon SS, Riley WJ 2019. Abiotic and biotic controls on soil organo-mineral interactions: developing model structures to analyze why soil organic matter persists. Rev. Mineral. Geochem. 85:1329–48
    [Google Scholar]
  123. 123. 
    Long P, Sui P, Gao W, Wang B, Huang J et al. 2015. Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs. J. Integr. Agric. 14:4774–87
    [Google Scholar]
  124. 124. 
    Li L, Xu M, Eyakub Ali M, Zhang W, Duan Y, Li D 2018. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLOS ONE 13:9e0203812
    [Google Scholar]
  125. 125. 
    Fabian J, Zlatanovic S, Mutz M, Premke K 2017. Fungal-bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality. ISME J 11:2415–25
    [Google Scholar]
  126. 126. 
    Doetterl S, Berhe AA, Arnold C, Bodé S, Fiener P et al. 2018. Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nat. Geosci. 11:8589–93
    [Google Scholar]
  127. 127. 
    Doetterl S, Stevens A, Six J, Merckx R, Van Oost K et al. 2015. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8:10780–83
    [Google Scholar]
  128. 128. 
    Uroz S, Oger P, Lepleux C, Collignon C, Frey-Klett P, Turpault M-P 2011. Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res. Microbiol. 162:9820–31
    [Google Scholar]
  129. 129. 
    Zaheer R, Noyes N, Ortega Polo R, Cook SR, Marinier E et al. 2018. Impact of sequencing depth on the characterization of the microbiome and resistome. Sci. Rep. 8:15890
    [Google Scholar]
  130. 130. 
    Xie K, Deng Y, Zhang X, Wang X, Kang G et al. 2018. Biases in prokaryotic community amplicon sequencing affected by DNA extraction methods in both saline and non-saline soil. Front. Microbiol. 9:1796
    [Google Scholar]
  131. 131. 
    Wooley JC, Godzik A, Friedberg I 2010. A primer on metagenomics. PLOS Comput. Biol. 6:2e1000667
    [Google Scholar]
  132. 132. 
    Shakya M, Lo C-C, Chain PSG 2019. Advances and challenges in metatranscriptomic analysis. Front. Genet. 10:904
    [Google Scholar]
  133. 133. 
    Wolf JBW. 2013. Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Mol. Ecol. Resour. 13:4559–72
    [Google Scholar]
  134. 134. 
    Callister SJ, Fillmore TL, Nicora CD, Shaw JB, Purvine SO et al. 2018. Addressing the challenge of soil metaproteome complexity by improving metaproteome depth of coverage through two-dimensional liquid chromatography. Soil Biol. Biochem. 125:290–99
    [Google Scholar]
  135. 135. 
    Heaven MW, Benheim D. 2016. Soil microbial metabolomics. Microbial Metabolomics: Applications in Clinical, Environmental, and Industrial Microbiology DJ Beale, KA Kouremenos, EA Palombo 147–98 Cham: Springer Int. Publ.
    [Google Scholar]
  136. 136. 
    Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J et al. 2015. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:7551208–12
    [Google Scholar]
  137. 137. 
    Roy Chowdhury T, Lee J-Y, Bottos EM, Brislawn CJ, White RA et al. 2019. Metaphenomic responses of a native prairie soil microbiome to moisture perturbations. mSystems 4:4e00061–19
    [Google Scholar]
  138. 138. 
    Goldford JE, Lu N, Bajic D, Estrela S, Tikhonov M et al. 2018. Emergent simplicity in microbial community assembly. Science 361:6401469–74
    [Google Scholar]
  139. 139. 
    Zegeye EK, Brislawn CJ, Farris Y, Fansler SJ, Hofmockel KS et al. 2019. Selection, succession, and stabilization of soil microbial consortia. mSystems 4:4e00055–19
    [Google Scholar]
  140. 140. 
    Smith BN, Epsten S. 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–84
    [Google Scholar]
  141. 141. 
    Schweigert M, Herrmann S, Miltner A, Fester T, Kästner M 2015. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biol. Biochem. 88:120–27
    [Google Scholar]
  142. 142. 
    Throckmorton HM, Bird JA, Dane L, Firestone MK, Horwath WR 2012. The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecol. Lett. 15:111257–65
    [Google Scholar]
  143. 143. 
    Kindler R, Miltner A, Thullner M, Richnow H-H, Kästner M 2009. Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter. Org. Geochem. 40:129–37
    [Google Scholar]
  144. 144. 
    Miltner A, Bombach P, Schmidt-Brücken B, Kästner M 2012. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:1–341–55
    [Google Scholar]
  145. 145. 
    Liao H, Li Y, Yao H 2019. Biochar amendment stimulates utilization of plant-derived carbon by soil bacteria in an intercropping system. Front. Microbiol. 10:1361
    [Google Scholar]
  146. 146. 
    Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P et al. 2015. Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81:217570–81
    [Google Scholar]
  147. 147. 
    Papp K, Hungate BA, Schwartz E 2020. Glucose triggers strong taxon‐specific responses in microbial growth and activity: insights from DNA and RNA qSIP. Ecology 101:e02887
    [Google Scholar]
  148. 148. 
    Papp K, Mau RL, Hayer M, Koch BJ, Hungate BA, Schwartz E 2018. Quantitative stable isotope probing with H218O reveals that most bacterial taxa in soil synthesize new ribosomal RNA. ISME J 12:123043–45
    [Google Scholar]
  149. 149. 
    Starr EP, Shi S, Blazewicz SJ, Probst AJ, Herman DJ et al. 2018. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6:1122
    [Google Scholar]
  150. 150. 
    Zhu W, Lu H, Hill J, Guo X, Wang H, Wu W 2014. 13C pulse-chase labeling comparative assessment of the active methanogenic archaeal community composition in the transgenic and nontransgenic parental rice rhizospheres. FEMS Microbiol. Ecol. 87:3746–56
    [Google Scholar]
  151. 151. 
    Stewart CE, Roosendaal D, Denef K, Pruessner E, Comas LH et al. 2017. Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought. Soil Biol. Biochem. 112:191–203
    [Google Scholar]
  152. 152. 
    Chomel M, Lavallee JM, Alvarez‐Segura N, Castro F, Rhymes JM et al. 2019. Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. Glob. Change Biol. 25:103549–61
    [Google Scholar]
  153. 153. 
    Welsh DT, Herbert RA. 1993. Identification of organic solutes accumulated by purple and green sulphur bacteria during osmotic stress using natural abundance 13C nuclear magnetic resonance spectroscopy. FEMS Microbiol. Ecol. 13:2145–49
    [Google Scholar]
  154. 154. 
    Dijkstra P, Dalder JJ, Selmants PC, Hart SC, Koch GW et al. 2011. Modeling soil metabolic processes using isotopologue pairs of position-specific 13C-labeled glucose and pyruvate. Soil Biol. Biochem. 43:91848–57
    [Google Scholar]
  155. 155. 
    Bore EK, Apostel C, Halicki S, Kuzyakov Y, Dippold MA 2017. Soil microorganisms can overcome respiration inhibition by coupling intra- and extracellular metabolism: 13C metabolic tracing reveals the mechanisms. ISME J 11:61423–33
    [Google Scholar]
  156. 156. 
    Harden JW, Hugelius G, Ahlström A, Blankinship JC, Bond‐Lamberty B et al. 2018. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Glob. Change Biol. 24:2e705–18
    [Google Scholar]
  157. 157. 
    Ostle NJ, Smith P, Fisher R, Woodward FI, Fisher JB et al. 2009. Integrating plant-soil interactions into global carbon cycle models. J. Ecol. 97:5851–63
    [Google Scholar]
  158. 158. 
    Wieder WR, Bonan GB, Allison SD 2013. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3:10909–12
    [Google Scholar]
  159. 159. 
    Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C et al. 2012. Causes of variation in soil carbon predictions from CMIP5 Earth system models and comparison with observations. Biogeosci. Discuss. 9:1014437–73
    [Google Scholar]
  160. 160. 
    Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6:8751–58
    [Google Scholar]
  161. 161. 
    Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA et al. 2011. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17:113392–404
    [Google Scholar]
  162. 162. 
    Robertson AD, Paustian K, Ogle S, Wallenstein MD, Lugato E, Cotrufo MF 2019. Unifying soil organic matter formation and persistence frameworks: the MEMS model. Biogeosciences 16:61225–48
    [Google Scholar]
  163. 163. 
    Manzoni S, Porporato A. 2009. Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol. Biochem. 41:71355–79
    [Google Scholar]
  164. 164. 
    Bond‐Lamberty B, Epron D, Harden J, Harmon ME, Hoffman F et al. 2016. Estimating heterotrophic respiration at large scales: challenges, approaches, and next steps. Ecosphere 7:6e01380
    [Google Scholar]
  165. 165. 
    Cobo-Díaz JF, Baroncelli R, Le Floch G, Picot A 2019. Combined metabarcoding and co-occurrence network analysis to profile the bacterial, fungal and Fusarium communities and their interactions in maize stalks. Front. Microbiol. 10:261
    [Google Scholar]
  166. 166. 
    Li S, Wu F. 2018. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Front. Microbiol. 9:1521
    [Google Scholar]
  167. 167. 
    de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M et al. 2018. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9:13033
    [Google Scholar]
  168. 168. 
    McClure RS. 2019. Toward a better understanding of species interactions through network biology. mSystems 4:3e00114–19
    [Google Scholar]
  169. 169. 
    Röttjers L, Faust K. 2018. From hairballs to hypotheses—biological insights from microbial networks. FEMS Microbiol. Rev. 42:6761–80
    [Google Scholar]
  170. 170. 
    Wang H, Wei Z, Mei L, Gu J, Yin S et al. 2017. Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol. Biochem. 105:227–35
    [Google Scholar]
  171. 171. 
    McClure RS, Overall CC, Hill EA, Song H-S, Charania M et al. 2018. Species-specific transcriptomic network inference of interspecies interactions. ISME J 12:82011–23
    [Google Scholar]
  172. 172. 
    Cordero OX, Datta MS. 2016. Microbial interactions and community assembly at microscales. Curr. Opin. Microbiol. 31:227–34
    [Google Scholar]
  173. 173. 
    Fox A, Ikoyi I, Torres-Sallan G, Lanigan G, Schmalenberger A et al. 2018. The influence of aggregate size fraction and horizon position on microbial community composition. Appl. Soil Ecol. 127:19–29
    [Google Scholar]
  174. 174. 
    Zhao X-F, Hao Y-Q, Zhang D-Y, Zhang Q-G 2019. Local biotic interactions drive species-specific divergence in soil bacterial communities. ISME J 13:112846–55
    [Google Scholar]
  175. 175. 
    Karimi B, Terrat S, Dequiedt S, Saby NPA, Horrigue W et al. 2018. Biogeography of soil bacteria and archaea across France. Sci. Adv. 4:7eaat1808
    [Google Scholar]
  176. 176. 
    Fillinger L, Hug K, Griebler C 2019. Selection imposed by local environmental conditions drives differences in microbial community composition across geographically distinct groundwater aquifers. FEMS Microbiol. Ecol. 95:11fiz160
    [Google Scholar]
  177. 177. 
    Feeser KL, Van Horn DJ, Buelow HN, Colman DR, McHugh TA et al. 2018. Local and regional scale heterogeneity drive bacterial community diversity and composition in a polar desert. Front. Microbiol. 9:1928
    [Google Scholar]
  178. 178. 
    O'Brien SL, Gibbons SM, Owens SM, Hampton-Marcell J, Johnston ER et al. 2016. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18:62039–51
    [Google Scholar]
  179. 179. 
    Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B et al. 2018. Detecting macro-ecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3:2189–96
    [Google Scholar]
  180. 180. 
    Tecon R, Or D. 2017. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 41:5599–623
    [Google Scholar]
  181. 181. 
    Piotrowska-Długosz A, Breza-Boruta B, Długosz J 2019. Spatial and temporal variability of the soil microbiological properties in two soils with a different pedogenesis cropped to winter rape (Brassica napus L.). Geoderma 340:313–24
    [Google Scholar]
  182. 182. 
    Barber NA, Chantos‐Davidson KM, Amel Peralta R, Sherwood JP, Swingley WD 2017. Soil microbial community composition in tallgrass prairie restorations converge with remnants across a 27‐year chronosequence. Environ. Microbiol. 19:83118–31
    [Google Scholar]
  183. 183. 
    Jansson JK, Fredrickson JK. 2010. Stewards of a changing planet: commentaries from ISME13 Plenary Lecturers. ISME J 4:91079–80
    [Google Scholar]
  184. 184. 
    Zengler K. 2009. Central role of the cell in microbial ecology. Microbiol. Mol. Biol. Rev. 73:4712–29
    [Google Scholar]
  185. 185. 
    Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL et al. 2014. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5:165–73
    [Google Scholar]
  186. 186. 
    Guo Y-S, Furrer JM, Kadilak AL, Hinestroza HF, Gage DJ et al. 2018. Bacterial extracellular polymeric substances amplify water content variability at the pore scale. Front. Environ. Sci. 6:93
    [Google Scholar]
  187. 187. 
    Huang X, Li Y, Liu B, Guggenberger G, Shibistova O et al. 2017. SoilChip-XPS integrated technique to study formation of soil biogeochemical interfaces. Soil Biol. Biochem. 113:71–79
    [Google Scholar]
  188. 188. 
    Soufan R, Delaunay Y, Gonod LV, Shor LM, Garnier P et al. 2018. Pore-scale monitoring of the effect of microarchitecture on fungal growth in a two-dimensional soil-like micromodel. Front. Environ. Sci. 6:68
    [Google Scholar]
  189. 189. 
    Tecon R, Ebrahimi A, Kleyer H, Erev Levi S, Or D 2018. Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. PNAS 115:399791–96
    [Google Scholar]
  190. 190. 
    Zengler K, Hofmockel K, Baliga NS, Behie SW, Bernstein HC et al. 2019. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat. Methods 16:7567–71
    [Google Scholar]
  191. 191. 
    Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX 2012. Transparent soil for imaging the rhizosphere. PLOS ONE 7:9e44276
    [Google Scholar]
  192. 192. 
    Fiorentino N, Sánchez-Monedero MA, Lehmann J, Enders A, Fagnano M, Cayuela ML 2019. Interactive priming of soil N transformations from combining biochar and urea inputs: a 15N isotope tracer study. Soil Biol. Biochem. 131:166–75
    [Google Scholar]
  193. 193. 
    Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ et al. 2017. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences 14:92481–94
    [Google Scholar]
  194. 194. 
    Ebrahimi A, Or D. 2016. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles—upscaling an aggregate biophysical model. Glob. Change Biol. 22:93141–56
    [Google Scholar]
  195. 195. 
    Jansson JK, Taş N. 2014. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12:6414–25
    [Google Scholar]
  196. 196. 
    Mackelprang R, Saleska SR, Jacobsen CS, Jansson JK, Taş N 2016. Permafrost meta-omics and climate change. Annu. Rev. Earth Planet. Sci. 44:43962
    [Google Scholar]
  197. 197. 
    Bonkowski M. 2004. Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:3617–31
    [Google Scholar]
  198. 198. 
    Vereecken H, Schnepf A, Hopmans JW, Javaux M, Or D et al. 2016. Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone J 15:51–57
    [Google Scholar]
  199. 199. 
    Patt A, Siebenhüner B. 2005. Agent based modeling and adaptation to climate change. Vierteljahrsh. Zur. Wirtsch. 74:2310–20
    [Google Scholar]
  200. 200. 
    Song H-S, Nelson WC, Lee J-Y, Taylor RC, Henry CS et al. 2018. Metabolic network modeling for computer-aided design of microbial interactions. Emerging Areas in Bioengineering HN Chang 793–801 Weinheim, Ger: Wiley-VCH
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012320-082720
Loading
/content/journals/10.1146/annurev-environ-012320-082720
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error