1932

Abstract

The swimming larvae of many marine animals identify a location on the seafloor to settle and undergo metamorphosis based on the presence of specific surface-bound bacteria. While bacteria-stimulated metamorphosis underpins processes such as the fouling of ship hulls, animal development in aquaculture, and the recruitment of new animals to coral reef ecosystems, little is known about the mechanisms governing this microbe-animal interaction. Here we review what is known and what we hope to learn about how bacteria and the factors they produce stimulate animal metamorphosis. With a few emerging model systems, including the tubeworm , corals, and the hydrozoan , we have begun to identify bacterial cues that stimulate animal metamorphosis and test hypotheses addressing their mechanisms of action. By understanding the mechanisms by which bacteria promote animal metamorphosis, we begin to illustrate how, and explore why, the developmental decision of metamorphosis relies on cues from environmental bacteria.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-011320-012753
2020-09-08
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-011320-012753.html?itemId=/content/journals/10.1146/annurev-micro-011320-012753&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agarwal V, El Gamal AA, Yamanaka K, Poth D, Kersten RD et al. 2014. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat. Chem. Biol. 10:8640–47
    [Google Scholar]
  2. 2. 
    Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R et al. 2012. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife 1:e00013
    [Google Scholar]
  3. 3. 
    Amador-Cano G, Carpizo-Ituarte E, Cristino-Jorge D 2006. Role of protein kinase C, G-protein coupled receptors, and calcium flux during metamorphosis of the sea urchin Strongylocentrotus purpuratus. Biol. Bull 210:2121–31
    [Google Scholar]
  4. 4. 
    Anderson JA, Epifanio CE. 2009. Induction of metamorphosis in the Asian shore crab Hemigrapsus sanguineus: characterization of the cue associated with biofilm from adult habitat. J. Exp. Mar. Biol. Ecol. 382:134–39
    [Google Scholar]
  5. 5. 
    Antunes J, Leão P, Vasconcelos V 2019. Marine biofilms: diversity of communities and of chemical cues. Environ. Microbiol. Rep. 11:3287–305
    [Google Scholar]
  6. 6. 
    Bao WY, Satuito CG, Yang JL, Kitamura H 2007. Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis in response to biofilms. Mar. Biol. 150:4565–74
    [Google Scholar]
  7. 7. 
    Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE et al. 2006. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 297:2374–86
    [Google Scholar]
  8. 8. 
    Bertrand J-F, Woollacott RM. 2003. G protein-linked receptors and induction of metamorphosis in Bugula stolonifera (Bryozoa). Invertebr. Biol. 122:4380–85
    [Google Scholar]
  9. 9. 
    Bhattarai HD, Ganti VS, Paudel B, Lee YK, Lee HK et al. 2007. Isolation of antifouling compounds from the marine bacterium, Shewanella oneidensis SCH0402. World J. Microbiol. Biotechnol. 23:2243–49
    [Google Scholar]
  10. 10. 
    Biggers WJ, Laufer H. 1999. Settlement and metamorphosis of Capitella larvae induced by juvenile hormone-active compounds is mediated by protein kinase C and ion channels. Biol. Bull. 196:2187–98
    [Google Scholar]
  11. 11. 
    Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW 2014. Bacterial vesicles in marine ecosystems. Science 343:6167183–86
    [Google Scholar]
  12. 12. 
    Bishop CD, Erezyilmaz DF, Flatt T, Georgiou CD, Hadfield MG et al. 2006. What is metamorphosis. Integr. Comp. Biol. 46:6655–61
    [Google Scholar]
  13. 13. 
    Böck D, Medeiros JM, Tsao H, Penz T, Weiss GL et al. 2017. In situ architecture, function, and evolution of a contractile injection system. Science 357:713–17
    [Google Scholar]
  14. 14. 
    Bouskra D, Brézillon C, Berárd M, Werts C, Varona C et al. 2008. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:7221507–10
    [Google Scholar]
  15. 15. 
    Bowman JP. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5:220–41
    [Google Scholar]
  16. 16. 
    Campbell AH, Meritt DW, Franklin RB, Boone EL, Nicely CT, Brown BL 2011. Effects of age and composition of field-produced biofilms on oyster larval setting. Biofouling 27:3255–65
    [Google Scholar]
  17. 17. 
    Chambon JP, Nakayama A, Takamura K, McDougall A, Satoh N 2007. ERK- and JNK-signalling regulate gene networks that stimulate metamorphosis and apoptosis in tail tissue of ascidian tadpoles. Development 134:61203–19
    [Google Scholar]
  18. 18. 
    Chase AL, Dijkstra JA, Harris LG 2016. The influence of substrate material on ascidian larval settlement. Mar. Pollut. Bull. 106:1–235–42
    [Google Scholar]
  19. 19. 
    Cheung SG, Chan CYS, Po BHK, Li AL, Leung JYS et al. 2014. Effects of hypoxia on biofilms and subsequently larval settlement of benthic invertebrates. Mar. Pollut. Bull. 85:2418–24
    [Google Scholar]
  20. 20. 
    Chiu JMY, Thiyagarajan V, Pechenik JA, Hung OS, Qian PY 2007. Influence of bacteria and diatoms in biofilms on metamorphosis of the marine slipper limpet Crepidula onyx. Mar. Biol 151:41417–31
    [Google Scholar]
  21. 21. 
    Chung HC, Lee OO, Huang YL, Mok SY, Kolter R, Qian PY 2010. Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. ISME J 4:6817–28
    [Google Scholar]
  22. 22. 
    Dahms HU, Dobretsov S, Qian PY 2004. The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina. J. Exp. Mar. Biol. Ecol 313:191–209
    [Google Scholar]
  23. 23. 
    Dang H, Lovell CR. 2000. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol. 66:2467–75
    [Google Scholar]
  24. 24. 
    Dang H, Lovell CR. 2016. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80:191–138
    [Google Scholar]
  25. 25. 
    Dash S, Jin C, Lee OO, Xu Y, Qian PY 2009. Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J. Ind. Microbiol. Biotechnol. 36:81047–56
    [Google Scholar]
  26. 26. 
    Davidson B, Swalla BJ. 2002. A molecular analysis of ascidian metamorphosis reveals activation of an innate immune response. Development 129:204739–51
    [Google Scholar]
  27. 27. 
    Deatheragea BL, Cooksona BT. 2012. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80:61948–57
    [Google Scholar]
  28. 28. 
    Ding W, Zhang W, Wang R, Sun Y, Pei B et al. 2019. Distribution, diversity and functional dissociation of the mac genes in marine biofilms. Biofouling 35:2230–43
    [Google Scholar]
  29. 29. 
    Dobretsov S, Abed RMM, Teplitski M 2013. Mini-review: inhibition of biofouling by marine microorganisms. Biofouling 29:4423–41
    [Google Scholar]
  30. 30. 
    Dobretsov S, Qian PY. 2004. The role of epibotic bacteria from the surface of the soft coral Dendronephthya sp. in the inhibition of larval settlement. J. Exp. Mar. Biol. Ecol. 299:135–50
    [Google Scholar]
  31. 31. 
    Dobretsov S, Qian PY. 2006. Facilitation and inhibition of larval attachment of the bryozoan Bugula neritina in association with mono-species and multi-species biofilms. J. Exp. Mar. Biol. Ecol. 333:2263–74
    [Google Scholar]
  32. 32. 
    Dobretsov S, Xiong H, Xu Y, Levin LA, Qian PY 2007. Novel antifoulants: inhibition of larval attachment by proteases. Mar. Biotechnol. 9:3388–97
    [Google Scholar]
  33. 33. 
    Dworjanyn SA, Pirozzi I. 2008. Induction of settlement in the sea urchin Tripneustes gratilla by macroalgae, biofilms and conspecifics: a role for bacteria. Aquaculture 274:2–4268–74
    [Google Scholar]
  34. 34. 
    Egan S, Thomas T, Kjelleberg S 2008. Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr. Opin. Microbiol. 11:3219–25
    [Google Scholar]
  35. 35. 
    El Gamal A, Agarwal V, Diethelm S, Rahman I, Schorn MA et al. 2016. Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase-thioesterase enzyme pair. PNAS 113:143797–802
    [Google Scholar]
  36. 36. 
    Ericson CF, Eisenstein F, Medeiros JM, Malter KE, Cavalcanti GS et al. 2019. A contractile injection system stimulates tubeworm metamorphosis by translocating a proteinaceous effector. eLife 8:e46845
    [Google Scholar]
  37. 37. 
    Faimali M, Garaventa F, Terlizzi A, Chiantore M, Cattaneo-Vietti R 2004. The interplay of substrate nature and biofilm formation in regulating Balanus amphitrite Darwin, 1854 larval settlement. J. Exp. Mar. Biol. Ecol. 306:137–50
    [Google Scholar]
  38. 38. 
    Fitt WK, Coon SL, Walch M, Weiner RM, Colwell RR, Bonar DB 1990. Settlement behavior and metamorphosis of oyster larvae (Crassostrea gigas) in response to bacterial supernatants. Mar. Biol. 106:389–94
    [Google Scholar]
  39. 39. 
    Flemming H-C. 2016. EPS—then and now. Microorganisms 4:441
    [Google Scholar]
  40. 40. 
    Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14:9563–75
    [Google Scholar]
  41. 41. 
    Flemming H-C, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17:4247–60
    [Google Scholar]
  42. 42. 
    Franco ÁG, Cadavid LF, Arévalo-Ferro C 2019. Biofilms and extracts from bacteria producing “Quorum Sensing” signaling molecules promote chemotaxis and settlement behaviors in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa) larvae. Acta Biol. Colomb. 24:1150–62
    [Google Scholar]
  43. 43. 
    Frank U, Leitz T, Müller WA 2001. The hydroid Hydractinia: a versatile, informative cnidarian representative. BioEssays 23:10963–71
    [Google Scholar]
  44. 44. 
    Freckelton ML, Nedved BT, Cai Y, Cao S, Turano H et al. 2019. Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva. bioRxiv 851519. https://doi.org/10.1101/851519
    [Crossref]
  45. 45. 
    Freckelton ML, Nedved BT, Hadfield MG 2017. Induction of invertebrate larval settlement; different bacteria, different mechanisms. Sci. Rep. 7:42557
    [Google Scholar]
  46. 46. 
    Gilbert SF, Sapp J, Tauber AI 2012. A symbiotic view of life: We have never been individuals. Q. Rev. Biol. 87:4325–41
    [Google Scholar]
  47. 47. 
    Gómez-Lemos LA, Doropoulos C, Bayraktarov E, Diaz-Pulido G 2018. Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae. Sci. Rep. 8:11–11
    [Google Scholar]
  48. 48. 
    Gribben PE, Wright JT, O'Connor WA, Steinberg P 2009. Larval settlement preference of a native bivalve: the influence of an invasive alga versus native substrata. Aquat. Biol. 7:3217–27
    [Google Scholar]
  49. 49. 
    Guo H, Rischer M, Westermann M, Beemelmanns C 2019. Two distinct bacterial biofilm components trigger metamorphosis in the colonial hydrozoan Hydractinia echinata. bioRxiv 2019.12.23.887182. https://doi.org/10.1101/2019.12.23.887182
    [Crossref]
  50. 50. 
    Guo H, Rischer M, Sperfeld M, Weigel C, Menzel KD et al. 2017. Natural products and morphogenic activity of γ-Proteobacteria associated with the marine hydroid polyp Hydractinia echinata. Bioorganic Med. Chem 25:226088–97
    [Google Scholar]
  51. 51. 
    Hadfield M, Paul VJ, Hadfield MG 2001. Natural chemical cues for settlement and metamorphosis of marine-invertebrate larvae. Marine Chemical Ecology JB McClintock, BJ Baker 431–61 Boca Raton, FL: CRC
    [Google Scholar]
  52. 52. 
    Hadfield MG. 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annu. Rev. Mar. Sci. 3:453–70
    [Google Scholar]
  53. 53. 
    Hadfield MG, Carpizo-Ituarte EJ, del Carmen K, Nedved BT 2001. Metamorphic competence, a major adaptive convergence in marine invertebrate larvae. Am. Zool. 41:51123–31
    [Google Scholar]
  54. 54. 
    Hadfield MG, Nedved BT, Wilbur S, Koehl MAR 2014. Biofilm cue for larval settlement in Hydroides elegans (Polychaeta): Is contact necessary. Mar. Biol 161:112577–87
    [Google Scholar]
  55. 55. 
    Hadfield MG, Unabia CC, Smith CM, Michael TM 1994. Settlement preferences of the ubiquitous fouler Hydroides elegans. Recent Developments in Biofouling Control M Fingerman, R Nagabhushanam, R Sarojini, MF Thompson 65–72 New Delhi: Oxford and IBH
    [Google Scholar]
  56. 56. 
    Harder T, Lau SCK, Dahms HU, Qian PY 2002. Isolation of bacterial metabolites as natural inducers for larval settlement in the marine polychaete Hydroides elegans (Haswell). J. Chem. Ecol. 28:102029–43
    [Google Scholar]
  57. 57. 
    Hayward DC, Hetherington S, Behm CA, Grasso LC, Forêt S et al. 2011. Differential gene expression at coral settlement and metamorphosis—a subtractive hybridization study. PLOS ONE 6:10e26411
    [Google Scholar]
  58. 58. 
    Henning G, Hofmann DK, Benayahu Y 1996. The phorbol ester TPA induces metamorphosis in Red Sea coral planulae (Cnidaria: Anthozoa). Experientia 52:7744–49
    [Google Scholar]
  59. 59. 
    Heyward AJ, Smith LD, Rees M, Field SN 2002. Enhancement of coral recruitment by in situ mass culture of coral larvae. Mar. Ecol. Prog. Ser. 230:113–18
    [Google Scholar]
  60. 60. 
    Hill JH, Franzosa EA, Huttenhower C, Guillemin K 2016. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. eLife 5:e20145
    [Google Scholar]
  61. 61. 
    Holmström C, James S, Egan S, Kjelleberg S 1996. Inhibition of common fouling organisms by marine bacterial isolates with special reference to the role of pigmented bacteria. Biofouling 10:1–3251–59
    [Google Scholar]
  62. 62. 
    Holmström C, Kjelleberg S. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 30:4285–93
    [Google Scholar]
  63. 63. 
    Holmström C, Kjelleberg S. 2000. Bacterial interactions with marine fouling organisms. Biofilms: Recent Advances in Their Study and Control LV Evans 101–15 Amsterdam: Harwood Acad.
    [Google Scholar]
  64. 64. 
    Holmström C, Rittschof D, Kjelleberg S 1992. Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl. Environ. Microbiol. 58:72111–15
    [Google Scholar]
  65. 65. 
    Holstein TW, Laudet V. 2014. Life-history evolution: at the origins of metamorphosis. Curr. Biol. 24:4R159–61
    [Google Scholar]
  66. 66. 
    Huang S, Hadfield MG. 2003. Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans. Mar. Ecol. Prog. Ser 260:161–72
    [Google Scholar]
  67. 67. 
    Huang Y, Callahan S, Hadfield MG 2012. Recruitment in the sea: bacterial genes required for inducing larval settlement in a polychaete worm. Sci. Rep. 2:228
    [Google Scholar]
  68. 68. 
    Huggett MJ, Williamson JE, De Nys R, Kjelleberg S, Steinberg PD 2006. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149:4604–19
    [Google Scholar]
  69. 69. 
    Hung O, Lee O, Thiyagarajan V, He H, Xu Y et al. 2009. Characterization of cues from natural multi-species biofilms that induce larval attachment of the polychaete Hydroides elegans. Aquat. Biol 4:3253–62
    [Google Scholar]
  70. 70. 
    Hung OS, Thiyagarajan V, Zhang R, Wu RSS, Qian PY 2007. Attachment of Balanus amphitrite larvae to biofilms originating from contrasting environments. Mar. Ecol. Progr. Ser. 333:229–42
    [Google Scholar]
  71. 71. 
    Jackson D, Leys SP, Hinman VF, Woods R, Lavin MF, Degnan BM 2002. Ecological regulation of development: induction of marine invertebrate metamorphosis. Int. J. Dev. Biol. 46:4679–86
    [Google Scholar]
  72. 72. 
    Jensen RA, Morse DE. 1990. Chemically induced metamorphosis of polychaete larvae in both the laboratory and ocean environment. J. Chem. Ecol. 16:3911–30
    [Google Scholar]
  73. 73. 
    Johnson CR, Muir DG, Reysenbach AL 1991. Characteristic bacteria associated with surfaces of coralline algae: a hypothesis for bacterial induction of marine invertebrate larvae. Mar. Ecol. Prog. Ser. 74:2–3281–94
    [Google Scholar]
  74. 74. 
    Kaniewska P, Campbell PR, Kline DI, Rodriguez-Lanetty M, Miller DJ et al. 2012. Major cellular and physiological impacts of ocean acidification on a reef building coral. PLOS ONE 7:4e34659
    [Google Scholar]
  75. 75. 
    Karaiskou A, Swalla BJ, Sasakura Y, Chambon JP 2015. Metamorphosis in solitary ascidians. Genesis 53:134–47
    [Google Scholar]
  76. 76. 
    Khandeparker L, Chandrashekar Anil A, Raghukumar S 2006. Relevance of biofilm bacteria in modulating the larval metamorphosis of Balanus amphitrite. FEMS Microbiol. Ecol 58:3425–38
    [Google Scholar]
  77. 77. 
    Kirchman D, Graham S, Reish D, Mitchell R 1981. Bacteria induce settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta:Spirprbidae). J. Exp. Mar. Biol. Ecol. 56:2–3153–63
    [Google Scholar]
  78. 78. 
    Knoll AH. 2003. Life on a Young Planet Princeton, NJ: Princeton Univ. Press
  79. 79. 
    Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE et al. 2004. Microbial factor-mediated development in a host-bacterial mutualism. Science 306:56991186–88
    [Google Scholar]
  80. 80. 
    Kroiher M, Berking S. 1999. On natural metamorphosis inducers of the cnidarians Hydractinia echinata (Hydrozoa) and Aurelia aurita (Scyphozoa). Helgol. Mar. Res. 53:2118–21
    [Google Scholar]
  81. 81. 
    Lagos ME, White CR, Marshall DJ 2016. Biofilm history and oxygen availability interact to affect habitat selection in a marine invertebrate. Biofouling 32:6645–55
    [Google Scholar]
  82. 82. 
    Lau SCK, Harder T, Qian P-Y 2003. Induction of larval settlement in the serpulid polychaete Hydroides elegans (Haswell): role of bacterial extracellular polymers. Biofouling 19:3197–204
    [Google Scholar]
  83. 83. 
    Lau SCK, Mak KKW, Chen F, Qian PY 2002. Bioactivity of bacterial strains isolated from marine biofilms in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans. Mar. Ecol. Prog. Ser 226:301–10
    [Google Scholar]
  84. 84. 
    Lau SCK, Riedel T, Fiebig A, Han J, Huntemann M et al. 2015. Genome sequence of the pink-pigmented marine bacterium Loktanella hongkongensis type strain (UST950701-009PT), a representative of the Roseobacter group. Stand. Genom. Sci. 10:51
    [Google Scholar]
  85. 85. 
    Lau SCK, Thiyagarajan V, Cheung SCK, Qian PY 2005. Roles of bacterial community composition in biofilms as a mediator for larval settlement of three marine invertebrates. Aquat. Microb. Ecol. 38:141–51
    [Google Scholar]
  86. 86. 
    Lau SCK, Thiyagarajan V, Qian PY 2003. The bioactivity of bacterial isolates in Hong Kong waters for the inhibition of barnacle (Balanus amphitrite Darwin) settlement. J. Exp. Mar. Biol. Ecol. 282:1–243–60
    [Google Scholar]
  87. 87. 
    Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Wu M et al. 2004. Loktanella hongkongensis sp. nov., a novel member of the α-Proteobacteria originating from marine biofilms in Hong Kong waters. Int. J. Syst. Evol. Microbiol. 54:62281–84
    [Google Scholar]
  88. 88. 
    Leitz T. 1993. Biochemical and cytological bases of metamorphosis in Hydractinia echinata. Mar. Biol 116:4559–64
    [Google Scholar]
  89. 89. 
    Leitz T, Klingmann G. 1990. Metamorphosis in Hydractinia: studies with activators and inhibitors aiming at protein kinase C and potassium channels. Roux's Arch. Dev. Biol. 199:2107–13
    [Google Scholar]
  90. 90. 
    Leitz T, Morand K, Mann M 1994. Metamorphosin A: a novel peptide controlling development of the lower metazoan Hydractinia echinata (Coelenterata, Hydrozoa). Dev. Biol. 163:440–46
    [Google Scholar]
  91. 91. 
    Leitz T, Müller U. 1991. Stimulation of metamorphosis in Hydractinia echinata involves generation of lysophosphatidylcholine. Roux's Arch. Dev. Biol. 200:5249–55
    [Google Scholar]
  92. 92. 
    Leitz T, Wagner T. 1993. The marine bacterium Alteromonas espejiana induces metamorphosis of the hydroid Hydractinia echinata. Mar. Biol 115:2173–78
    [Google Scholar]
  93. 93. 
    Lema KA, Constancias F, Rice SA, Hadfield MG 2019. High bacterial diversity in nearshore and oceanic biofilms and their influence on larval settlement by Hydroides elegans (Polychaeta). Environ. Microbiol. 21:93472–88
    [Google Scholar]
  94. 94. 
    Li X, Dobretsov S, Xu Y, Xiao X, Hung O, Qian PY 2006. Antifouling diketopiperazines produced by a deep-sea bacterium. Streptomyces fungicidicus. Biofouling 22:3201–8
    [Google Scholar]
  95. 95. 
    Liang X, Chen YR, Gao W, Guo XP, Ding DW et al. 2018. Effects on larval metamorphosis in the mussel Mytilus coruscus of compounds that act on downstream effectors of G-protein-coupled receptors. J. Mar. Biol. Assoc. U. K. 98:2333–39
    [Google Scholar]
  96. 96. 
    Liu P, Peng HJ, Zhu J 2015. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein. PNAS 112:15E1871–79
    [Google Scholar]
  97. 97. 
    Logan SL, Thomas J, Yan J, Baker RP, Shields DS et al. 2018. The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. PNAS 115:16E3779–87
    [Google Scholar]
  98. 98. 
    Maki JS, Rittschof D, Costlow JD, Mitchell R 1988. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar. Biol. 97:2199–206
    [Google Scholar]
  99. 99. 
    Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A et al. 2008. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLOS ONE 3:7e2744
    [Google Scholar]
  100. 100. 
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:1107–118
    [Google Scholar]
  101. 101. 
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. PNAS 110:93229–36
    [Google Scholar]
  102. 102. 
    Meyer E, Aglyamova GV, Matz MV 2011. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol. Ecol. 20:173599–616
    [Google Scholar]
  103. 103. 
    Moran NA. 2006. Symbiosis. Curr. Biol. 16:20866–71
    [Google Scholar]
  104. 104. 
    Morse DE, Hooker N, Morse ANC, Jensen RA 1988. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116:3193–217
    [Google Scholar]
  105. 105. 
    Morse DE, Morse ANC. 1991. Enzymatic characterization of the morphogen recognized by Agaricia humilis (scleractinian coral) larvae. Biol. Bull. 181:1104–22
    [Google Scholar]
  106. 106. 
    Morse DE, Morse ANC, Raimondi PT, Hooker N 1994. Morphogen-based chemical flypaper for Agaricia humilis coral larvae. Biol. Bull. 186:2172–81
    [Google Scholar]
  107. 107. 
    Müller WA. 1969. Auslosung der Metamorphose durch Bakterien bei den Larven von Hydractinia echinata. Zool. Jahrb. Anat 86:84–95
    [Google Scholar]
  108. 108. 
    Müller WA. 1973. Induction of metamorphosis by bacteria and ions in the planula of Hydractinia echinata; an approach to the mode of action. Publ. Seto Mar. Biol. Lab. 20:195–208
    [Google Scholar]
  109. 109. 
    Müller WA, Leitz T. 2002. Metamorphosis in the Cnidaria. Can. J. Zool. 80:101755–71
    [Google Scholar]
  110. 110. 
    Nasrolahi A, Stratil SB, Jacob KJ, Wahl M 2012. A protective coat of microorganisms on macroalgae: inhibitory effects of bacterial biofilms and epibiotic microbial assemblages on barnacle attachment. FEMS Microbiol. Ecol. 81:3583–95
    [Google Scholar]
  111. 111. 
    Nedved BT, Hadfield MG. 2009. Hydroides elegans (Annelida: Polychaeta): a model for biofouling research. Marine and Industrial Biofouling HC Flemming, PS Murthy, R Venkatesan, K Cooksey 203–17 Berlin: Springer
    [Google Scholar]
  112. 112. 
    Negri A, Webster N, Hill R, Heyward A 2001. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223:121–31
    [Google Scholar]
  113. 113. 
    Nielsen C. 2013. Life cycle evolution: Was the eumetazoan ancestor a holopelagic, planktotrophic gastraea. BMC Evol. Biol. 13:171
    [Google Scholar]
  114. 114. 
    Nielsen SJ, Harder T, Steinberg PD 2015. Sea urchin larvae decipher the epiphytic bacterial community composition when selecting sites for attachment and metamorphosis. FEMS Microbiol. Ecol. 91:11–9
    [Google Scholar]
  115. 115. 
    Nocker A, Lepo JE, Martin LL, Snyder RA 2007. Response of estuarine biofilm microbial community development to changes in dissolved oxygen and nutrient concentrations. Microb. Ecol. 54:3532–42
    [Google Scholar]
  116. 116. 
    Nyholm SV, McFall-Ngai MJ. 2004. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2:8632–42
    [Google Scholar]
  117. 117. 
    Offret C, Desriac F, Le Chevalier P, Mounier J, Jégou C, Fleury Y 2016. Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Mar. Drugs 14:7129
    [Google Scholar]
  118. 118. 
    Pearce CM, Scheibling RE. 1994. Induction of metamorphosis of larval echinoids (Strongylocentrotus droebachiensis and Echinarachnius parma) by potassium chloride (KCl). Invertebr. Reprod. Dev. 26:3213–20
    [Google Scholar]
  119. 119. 
    Pechenik JA. 1999. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar. Ecol. Prog. Ser. 177:269–97
    [Google Scholar]
  120. 120. 
    Peixoto RS, Rosado PM, Leite DC, Rosado AS, Bourne DG 2017. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8:341
    [Google Scholar]
  121. 121. 
    Pradeu T. 2011. A mixed self: the role of symbiosis in development. Biol. Theory. 6:180–88
    [Google Scholar]
  122. 122. 
    Prado S, Romalde JL, Barja JL 2010. Review of probiotics for use in bivalve hatcheries. Vet. Microbiol. 145:3–4187–97
    [Google Scholar]
  123. 123. 
    Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T 2007. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar. Biotechnol. 9:4399–410
    [Google Scholar]
  124. 124. 
    Qian PY, Thiyagarajan V, Lau SCK, Cheung SCK 2003. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat. Microb. Ecol 33:3225–37
    [Google Scholar]
  125. 125. 
    Rahat M, Dimentman C. 1982. Cultivation of bacteria-free Hydra viridis: missing budding factor in nonsymbiotic hydra. Science 216:454167–68
    [Google Scholar]
  126. 126. 
    Rao D, Webb JS, Holmstro C, Case R, Low A et al. 2007. Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl. Environ. Microbiol. 73:247844–52
    [Google Scholar]
  127. 127. 
    Rittschof D. 1990. Peptide-mediated behaviors in marine organisms: evidence for a common theme. J. Chem. Ecol. 16:1261–72
    [Google Scholar]
  128. 128. 
    Rittschof D. 1993. Body odors and neutral-basic peptide mimics: a review of responses by marine organisms. Integr. Comp. Biol. 33:6487–93
    [Google Scholar]
  129. 129. 
    Roberts B, Davidson B, MacMaster G, Lockhart V, Ma E et al. 2007. A complement response may activate metamorphosis in the ascidian Boltenia villosa. Dev. Genes Evol 217:6449–58
    [Google Scholar]
  130. 130. 
    Rocchi I, Ericson CF, Malter KE, Zargar S, Eisenstein F et al. 2019. A bacterial phage tail-like structure kills eukaryotic cells by injecting a nuclease effector. Cell Rep 28:2295–301.e4
    [Google Scholar]
  131. 131. 
    Rodriguez-Perez A, James M, Donnan DW, Henry TB, Møller LF, Sanderson WG 2019. Conservation and restoration of a keystone species: understanding the settlement preferences of the European oyster (Ostrea edulis). Mar. Pollut. Bull. 138:312–21
    [Google Scholar]
  132. 132. 
    Rojas MI, Cavalcanti GS, McNair K, Benler S, Alker AT et al. 2019. A distinct contractile injection system found in a majority of adult human microbiomes. bioRxiv 865204. https://doi.org/10.1101/865204
    [Crossref]
  133. 133. 
    Rosenberg E, Zilber-Rosenberg I. 2016. Microbes drive evolution of animals and plants: the hologenome concept. mBio 7:2e01395
    [Google Scholar]
  134. 134. 
    Sachs JL. 2013. Origins, evolution, and breakdown of bacterial symbiosis. Encyclopedia of Biodiversity, Vol. 5 S Levin 637–44 Waltham, MA: Academic
    [Google Scholar]
  135. 135. 
    Sachs JL, Mueller UG, Wilcox TP, Bull JJ 2004. The evolution of cooperation. Q. Rev. Biol. 79:2135–60
    [Google Scholar]
  136. 136. 
    Sachs JL, Skophammer RG, Regus JU 2011. Evolutionary transitions in bacterial symbiosis. PNAS 108:Suppl. 210800–7
    [Google Scholar]
  137. 137. 
    Seipp S, Schmich J, Kehrwald T, Leitz T 2007. Metamorphosis of Hydractinia echinata—natural versus artificial induction and developmental plasticity. Dev. Genes Evol. 217:5385–94
    [Google Scholar]
  138. 138. 
    Sharp KH, Sneed JM, Ritchie KB, Mcdaniel L, Paul VJ 2015. Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine Roseobacter strain. Biol. Bull. 228:98–107
    [Google Scholar]
  139. 139. 
    Shikuma NJ, Antoshechkin I, Medeiros JM, Pilhofer M, Newman DK 2016. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. PNAS 113:3610097–102
    [Google Scholar]
  140. 140. 
    Shikuma NJ, Hadfield MG. 2006. Temporal variation of an initial marine biofilm community and its effects on larval settlement and metamorphosis of the tubeworm Hydroides elegans. Biofilms 2:4231–38
    [Google Scholar]
  141. 141. 
    Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK 2014. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343:6170529–33
    [Google Scholar]
  142. 142. 
    Shin PKS, Leung JYS, Qiu JW, Ang PO, Chiu JMY et al. 2013. Hypoxia induces abnormal larval development and affects biofilm-larval interaction in the serpulid polychaete Hydroides elegans. Mar. Pollut. Bull 76:1–2291–97
    [Google Scholar]
  143. 143. 
    Siboni N, Abrego D, Seneca F, Motti CA, Andreakis N et al. 2012. Using bacterial extract along with differential gene expression in Acropora millepora larvae to decouple the processes of attachment and metamorphosis. PLOS ONE 7:5e37774
    [Google Scholar]
  144. 144. 
    Siegel DA, Mitarai S, Costello CJ, Gaines SD, Kendall BE et al. 2008. The stochastic nature of larval connectivity among nearshore marine populations. PNAS 105:268974–79
    [Google Scholar]
  145. 145. 
    Sneed JM, Ritson-Williams R, Paul VJ 2015. Crustose coralline algal species host distinct bacterial assemblages on their surfaces. ISME J 9:112527–36
    [Google Scholar]
  146. 146. 
    Sneed JM, Sharp KH, Ritchie KB, Paul VJ 2014. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. Biol. Sci. 281:178620133086
    [Google Scholar]
  147. 147. 
    Steinberg PD, De Nys R, Kjelleberg S 2002. Chemical cues for surface colonization. J. Chem. Ecol. 28:101935–51
    [Google Scholar]
  148. 148. 
    Strader ME, Aglyamova GV, Matz MV 2018. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral. BMC Genom 19:117
    [Google Scholar]
  149. 149. 
    Strathmann RR. 1993. Hypotheses on the origins of marine larvae. Annu. Rev. Ecol. Syst. 24:89–117
    [Google Scholar]
  150. 150. 
    Swanson RL, de Nys R, Huggett MJ, Green JK, Steinberg PD 2006. In situ quantification of a natural settlement cue and recruitment of the Australian sea urchin Holopneustes purpurascens. Mar. Ecol. Prog. Ser 314:1–14
    [Google Scholar]
  151. 151. 
    Swanson RL, Williamson JE, De Nys R, Kumar N, Bucknall MP, Steinberg PD 2004. Induction of settlement of larvae of the sea urchin Holopneustes purpurascens by histamine from a host alga. Biol. Bull. 206:3161–72
    [Google Scholar]
  152. 152. 
    Szewzyk U, Holmstrom C, Wrangstadh M, Samuelsson MO, Maki JS, Kjelleberg S 1991. Relevance of the exopolysaccharide of marine Pseudomonas sp. strain S9 for the attachment of Ciona intestinalis larvae. Mar. Ecol. Prog. Ser. 75:2–3259–65
    [Google Scholar]
  153. 153. 
    Tamburri MN, Luckenbach MW, Breitburg DL, Bonniwell SM 2008. Settlement of Crassostrea ariakensis larvae: effects of substrate, biofilms, sediment and adult chemical cues. J. Shellfish Res. 27:3601–8
    [Google Scholar]
  154. 154. 
    Tebben J, Motti CA, Siboni N, Tapiolas DM, Negri AP et al. 2015. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5:10803
    [Google Scholar]
  155. 155. 
    Tebben J, Tapiolas DM, Motti CA, Abrego D, Negri AP et al. 2011. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLOS ONE 6:4e19082
    [Google Scholar]
  156. 156. 
    Tran C, Hadfield MG. 2011. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433:85–96
    [Google Scholar]
  157. 157. 
    Ueda N, Richards GS, Degnan BM, Kranz A, Adamska M et al. 2016. An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge. Sci. Rep. 6:37546
    [Google Scholar]
  158. 158. 
    Unabia CRC, Hadfield MG. 1999. Role of bacteria in larval settlement and metamorphosis of the polychaete Hydroides elegans. Mar. Biol 133:155–64
    [Google Scholar]
  159. 159. 
    Vlisidou I, Hapeshi A, Healey JRJ, Smart K, Yang G, Waterfield NR 2019. The Photorhabdus asymbiotica virulence cassettes deliver protein effectors directly into target eukaryotic cells. eLife 8:e46259
    [Google Scholar]
  160. 160. 
    Wahab MAA, de Nys R, Whalan S 2011. Larval behaviour and settlement cues of a brooding coral reef sponge. Coral Reefs 30:2451–60
    [Google Scholar]
  161. 161. 
    Wang C, Bao WY, Gu ZQ, Li YF, Liang X et al. 2012. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms. Biofouling 28:3249–56
    [Google Scholar]
  162. 162. 
    Wang H, Qian PY. 2010. Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete Hydroides elegans (Haswell). J. Exp. Zool. Part B 314:5390–402
    [Google Scholar]
  163. 163. 
    Webster NS, Smith LD, Heyward AJ, Watts JEM, Webb RI et al. 2004. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70:21213–21
    [Google Scholar]
  164. 164. 
    Whalan S, Ettinger-Epstein P, Battershill C, de Nys R 2008. Larval vertical migration and hierarchical selectivity of settlement in a brooding marine sponge. Mar. Ecol. Prog. Ser. 368:145–54
    [Google Scholar]
  165. 165. 
    Whalan S, Webster NS. 2014. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Sci. Rep. 4:28–32
    [Google Scholar]
  166. 166. 
    Wieczorek SK, Todd CD. 1997. Inhibition and facilitation of bryozoan and ascidian settlement by natural multi-species biofilms: effects of film age and the roles of active and passive larval attachment. Mar. Biol. 128:3463–73
    [Google Scholar]
  167. 167. 
    Woollacottl RM, Hadfield MG. 1996. Induction of metamorphosis in larvae of a sponge. Invertebr. Biol. 115:4257–62
    [Google Scholar]
  168. 168. 
    Woznica A, Cantley AM, Beemelmanns C, Freinkman E, Clardy J et al. 2016. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. PNAS 113:287894–99
    [Google Scholar]
  169. 169. 
    Xu Y, He H, Schulz S, Liu X, Fusetani N et al. 2010. Potent antifouling compounds produced by marine Streptomyces. Bioresour. Technol 101:41331–36
    [Google Scholar]
  170. 170. 
    Xu Y, Li H, Li X, Xiao X, Qian PY 2009. Inhibitory effects of a branched-chain fatty acid on larval settlement of the polychaete Hydroides elegans. Mar. Biotechnol 11:4495–504
    [Google Scholar]
  171. 171. 
    Yamamoto H, Tachibana A, Matsumura K, Fusetani N 1995. Protein kinase C (PKC) signal transduction system involved in larval metamorphosis of the barnacle. Balanus amphitrite. Zoolog. Sci. 12:4391–96
    [Google Scholar]
  172. 172. 
    Yang G, Dowling AJ, Gerike U, ffrench-Constant RH, Waterfield NR 2006. Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J. Bacteriol. 188:62254–61
    [Google Scholar]
  173. 173. 
    Yang JL, Shen PJ, Liang X, Li YF, Bao WY, Li J-L 2013. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29:3247–59
    [Google Scholar]
  174. 174. 
    Yee LH, Holmström C, Fuary ET, Lewin NC, Kjelleberg S, Steinberg PD 2007. Inhibition of fouling by marine bacteria immobilised in κ-carrageenan beads. Biofouling 23:4287–94
    [Google Scholar]
  175. 175. 
    Yool AJ, Grau SM, Hadfield MG, Jensen RA, Markell DA, Morse DE 1986. Excess potassium induces larval metamorphosis in four marine invertebrate species. Biol. Bull. 170:2255–66
    [Google Scholar]
  176. 176. 
    Zheng J, McKinnie SMK, El Gamal A, Feng W, Dong Y et al. 2018. Organohalogens naturally biosynthesized in marine environments and produced as disinfection byproducts alter sarco/endoplasmic reticulum Ca2+ dynamics. Environ. Sci. Technol. 52:95469–78
    [Google Scholar]
  177. 177. 
    Zimmer-Faust RK, Tamburri MN. 1994. Chemical identity and ecological implications of a waterborne, larval settlement cue. Limnol. Oceanogr. 39:51075–87
    [Google Scholar]
  178. 178. 
    Zobell CE, Allen EC. 1935. The significance of marine bacteria in the fouling of submerged surfaces. J. Bacteriol. 29:3239–51
    [Google Scholar]
/content/journals/10.1146/annurev-micro-011320-012753
Loading
/content/journals/10.1146/annurev-micro-011320-012753
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error