1932

Abstract

Carbohydrates are the most difficult class of biological molecules to study by high-throughput methods owing to the chemical similarities between the constituent monosaccharide building blocks, template-less biosynthesis, and the lack of clearly identifiable consensus sequences for the glycan modification of cohorts of glycoproteins. These molecules are crucial for a wide variety of cellular processes ranging from cell-cell communication to immunity, and they are altered in disease states such as cancer and inflammation. Thus, there has been a dedicated effort to develop glycan analysis into a high-throughput analytical field termed glycomics. Herein we highlight major advances in applying separation, mass spectrometry, and microarray methods to the fields of glycomics and glycoproteomics. These new analytical techniques are rapidly advancing our understanding of the importance of glycosylation in biology and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061010-113951
2011-07-19
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/anchem/4/1/annurev-anchem-061010-113951.html?itemId=/content/journals/10.1146/annurev-anchem-061010-113951&mimeType=html&fmt=ahah

Literature Cited

  1. Ohtsubo K, Marth JD. 1.  2006. Glycosylation in cellular mechanisms of health and disease. Cell 126:855–67 [Google Scholar]
  2. Marth JD, Grewal PK. 2.  2008. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8:874–87 [Google Scholar]
  3. Sharon N.3.  2006. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim. Biophys. Acta 1760:527–37 [Google Scholar]
  4. Dube DH, Bertozzi CR. 4.  2005. Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4:477–88 [Google Scholar]
  5. Apweiler R, Hermjakob H, Sharon N. 5.  1999. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473:4–8 [Google Scholar]
  6. Haltiwanger RS, Lowe JB. 6.  2004. Role of gycosylation in development. Annu. Rev. Biochem. 73:491–537 [Google Scholar]
  7. Freeze HH.7.  2006. Genetic defects in the human glycome. Nat. Rev. Genet. 7:537–51 [Google Scholar]
  8. Fernandes B, Sagman U, Auger M, Demetrio M, Dennis JW. 8.  1991. β1–6 Branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res. 51:718–23 [Google Scholar]
  9. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR. 9.  et al. 2009. Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–9 [Google Scholar]
  10. Bao Y, Newburg DS. 10.  2008. Capillary electrophoresis of acidic oligosaccharides from human milk. Electrophoresis 29:2508–15 [Google Scholar]
  11. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P. 11.  et al. 2008. Essentials of Glycobiology Cold Spring Harbor, NY: Cold Spring Harb. Lab., 2nd. [Google Scholar]
  12. Zielinska DF, Gnad F, Wiśniewski JR, Mann M. 12.  2010. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907 [Google Scholar]
  13. Ten Hagen KG, Fritz TA, Tabak LA. 13.  2003. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 13:1–16R [Google Scholar]
  14. Stalnaker SH, Hashmi S, Lim JM, Aoki K, Porterfield M. 14.  et al. 2010. Site mapping and characterization of O-glycan structures on α-dystroglycan isolated from rabbit skeletal muscle. J. Biol. Chem. 285:24882–91 [Google Scholar]
  15. Lommel M, Strahl S. 15.  2009. Protein O-mannosylation: conserved from bacteria to humans. Glycobiology 19:816–28 [Google Scholar]
  16. Luther KB, Haltiwanger RS. 16.  2009. Role of unusual O-glycans in intercellular signaling. Int. J. Biochem. Cell Biol. 41:1011–24 [Google Scholar]
  17. de Wit J, Verhaagen J. 17.  2007. Proteoglycans as modulators of axon guidance cue function. Adv. Exp. Med. Biol. 600:73–89 [Google Scholar]
  18. Hart GW, Housley MP, Slawson C. 18.  2007. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–22 [Google Scholar]
  19. Slawson C, Housley MP, Hart GW. 19.  2006. O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks. J. Cell Biochem. 97:71–83 [Google Scholar]
  20. Hölzl G, Dormann P. 20.  2007. Structure and function of glycoglycerolipids in plants and bacteria. Prog. Lipid. Res. 46:225–43 [Google Scholar]
  21. Kotani N, Asano M, Iwakura Y, Takasaki S. 21.  2001. Knockout of mouse β1,4-galactosyltransferase-1 gene results in a dramatic shift of outer chain moities of N-glycans from type 2 to type 1 chains in hepatic membrane and plasma glycoproteins. Biochem. J. 357:827–34 [Google Scholar]
  22. Laine RA. 22.  1994. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: the isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4:759–67 [Google Scholar]
  23. Cummings R.23.  2009. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5:1087–104 [Google Scholar]
  24. Duk M, Ugorski M, Lisowska E. 24.  1997. β-Elimination of O-glycans from glycoproteins transferred to immobilon P membranes: method and some applications. Anal. Biochem. 253:98–102 [Google Scholar]
  25. Ito M, Yamagata T. 25.  1989. Purification and characterization of glycosphingolipid-specific endoglycosidases (endoglycoceramidases) from a mutant strain of Rhodococcus sp. Evidence for three molecular species of endoglycoceramidase with different specificities. J. Biol. Chem. 264:9510–19 [Google Scholar]
  26. Kannicht C, Grunow D, Lucka L. 26.  2008. Enzymatic sequence analysis of N-glycans by exoglycosidase cleavage and mass spectrometry—detection of Lewis X structures. Methods Mol. Biol. 446:255–66 [Google Scholar]
  27. Vanderschaeghe D, Festjens N, Delanghe J, Callewaert N. 27.  2010. Glycome profiling using modern glycomics technology: technical aspects and applications. Biol. Chem. 391:149–61 [Google Scholar]
  28. Mechref Y, Novotny M. 28.  2009. Glycomic analysis by capillary electrophoresis–mass spectrometry. Mass Spectrom. Rev. 28:207–22 [Google Scholar]
  29. Laroy W, Contreras R, Callewaert N. 29.  2006. Glycome mapping on DNA sequencing equipment. Nat. Protoc. 1:397–405 [Google Scholar]
  30. Schwarzer J, Rapp E, Hennig R, Genzel Y, Jordan I. 30.  et al. 2009. Glycan analysis in cell culture–based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin. Vaccine 27:4325–36 [Google Scholar]
  31. Vogel K, Kuhn J, Kleesiek K, Götting C. 31.  2006. A novel ultra-sensitive method for the quantification of glycosaminoglycan disaccharides using an automated DNA sequencer. Electrophoresis 27:1363–67 [Google Scholar]
  32. Vanderschaeghe D, Szekrenyes A, Wenz C, Gassmann M, Naik N. 32.  et al. 2010. High-throughput profiling of the serum N-glycome on capillary electrophoresis microfluidics systems: toward clinical implementation of GlycoHepatoTest. Anal. Chem. 82:7408–15 [Google Scholar]
  33. Cataldi TR, Campa C, Angelotti M, Bufo SA. 33.  1999. Isocratic separations of closely related mono- and disaccharides by high-performance anion-exchange chromatography with pulsed amperometric detection using dilute alkaline spiked with barium acetate. J. Chromatogr. A 855:539–50 [Google Scholar]
  34. Ceaglio N, Etcheverrigaray M, Conradt HS, Grammel N, Kratje R. 34.  et al. 2010. Highly glycosylated human α interferon: an insight into a new therapeutic candidate. J. Biotechnol. 146:74–83 [Google Scholar]
  35. Behan JL, Smith KD. 35.  2011. The analysis of glycosylation: a continued need for high pH anion exchange chromatography. Biomed. Chromatogr. 25:39–46 [Google Scholar]
  36. Royle L, Campbell MP, Radcliffe CM, White DM, Harvey DJ. 36.  et al. 2008. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376:1–12 [Google Scholar]
  37. Abd Hamid UM, Royle L, Saldova R, Radcliffe CM, Harvey DJ. 37.  et al. 2008. A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 18:1105–18 [Google Scholar]
  38. Knezević A, Polasek O, Gornik O, Rudan I, Campbell H. 38.  et al. 2009. Variability, heritability and environmental determinants of human plasma N-glycome. J. Proteome Res. 8:694–701 [Google Scholar]
  39. Pucic M, Pinto S, Novokmet M, Knezevic A, Gornik O. 39.  et al. 2010. Common aberrations from the normal human plasma N-glycan profile. Glycobiology 20:970–75 [Google Scholar]
  40. Knezevic A, Gornik O, Polasek O, Pucic M, Redzic I. 40.  et al. 2010. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiology 20:959–69 [Google Scholar]
  41. Stanta JL, Saldova R, Struwe WB, Byrne JC, Leweke FM. 41.  et al. 2010. Identification of N-glycosylation changes in the CSF and serum in patients with schizophrenia. J. Proteome Res. 9:4476–89 [Google Scholar]
  42. Campbell MP, Royle L, Radcliffe CM, Dwek RA, Rudd PM. 42.  2008. GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics 24:1214–16 [Google Scholar]
  43. Artemenko NV, Campbell MP, Rudd PM. 43.  2010. GlycoExtractor: a web-based interface for high throughput processing of HPLC-glycan data. J. Proteome Res. 9:2037–41 [Google Scholar]
  44. Vercoutter-Edouart AS, Slomianny MC, Dekeyzer-Beseme O, Haeuw JF, Michalski JC. 44.  2008. Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells. Proteomics 8:3236–56 [Google Scholar]
  45. Zhao J, Simeone DM, Heidt D, Anderson MA, Lubman DM. 45.  2006. Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J. Proteome Res. 5:1792–802 [Google Scholar]
  46. Dai Z, Fan J, Liu Y, Zhou J, Bai D. 46.  et al. 2007. Identification and analysis of α1,6-fucosylated proteins in human normal liver tissues by a target glycoproteomic approach. Electrophoresis 284382–91 [Google Scholar]
  47. Geyer H, Geyer R. 47.  2006. Strategies for analysis of glycoprotein glycosylation. Biochim. Biophys. Acta 1764:1853–69 [Google Scholar]
  48. Yang Z, Harris LE, Palmer-Toy DE, Hancock WS. 48.  2006. Multilectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients. Clin. Chem. 52:1897–905 [Google Scholar]
  49. Wuhrer M, de Boer AR, Deelder AM. 49.  2009. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev. 28:192–206 [Google Scholar]
  50. Calvano CD, Zambonin CG, Jensen ON. 50.  2008. Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. J. Proteomics 71:304–17 [Google Scholar]
  51. Sparbier K, Wenzel T, Kostrzewa M. 51.  2006. Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J. Chromatogr. B 840:29–36 [Google Scholar]
  52. Wollscheid B, Bausch-Fluck D, Henderson C, O'Brien R, Bibel M. 52.  et al. 2009. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat. Biotechnol. 27:378–86 [Google Scholar]
  53. Catalina MI, Koeleman CA, Deelder AM, Wuhrer M. 53.  2007. Electron transfer dissociation of N-glycopeptides: loss of the entire N-glycosylated asparagine side chain. Rapid Commun. Mass Spectrom. 21:1053–61 [Google Scholar]
  54. Alley WR Jr, Mechref Y, Novotny MV. 54.  2009. Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun. Mass Spectrom. 23:161–70 [Google Scholar]
  55. Zaia J.55.  2010. Mass spectrometry and glycomics. OMICS 14:401–18 [Google Scholar]
  56. Guillard M, Gloerich J, Wessels HJ, Morava E, Wevers RA. 56.  et al. 2009. Automated measurement of permethylated serum N-glycans by MALDI–linear ion trap mass spectrometry. Carbohydr. Res. 344:1550–57 [Google Scholar]
  57. Snovida SI, Perreault H. 57.  2007. A 2,5-dihydroxybenzoic acid/N,N-dimethylaniline matrix for the analysis of oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 21:3711–15 [Google Scholar]
  58. Ciucanu I, Kerek F. 58.  1984. A simple rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131:209–17 [Google Scholar]
  59. Lei M, Mechref Y, Novotny MV. 59.  2009. Structural analysis of sulfated glycans by sequential double-permethylation using methyl iodide and deuteromethyl iodide. J. Am. Soc. Mass Spectrom. 20:1660–71 [Google Scholar]
  60. Jang KS, Kim YG, Gil GC, Park SH, Kim BG. 60.  2009. Mass spectrometric quantification of neutral and sialylated N-glycans from a recombinant therapeutic glycoprotein produced in the two Chinese hamster ovary cell lines. Anal. Biochem. 386:228–36 [Google Scholar]
  61. An HJ, Kronewitter SR, de Leoz ML, Lebrilla CB. 61.  2009. Glycomics and disease markers. Curr. Opin. Chem. Biol. 13:601–7 [Google Scholar]
  62. Goldman R, Ressom HW, Varghese RS, Goldman L, Bascug G. 62.  et al. 2009. Detection of hepatocellular carcinoma using glycomic analysis. Clin. Cancer Res. 15:1808–13 [Google Scholar]
  63. Kam RK, Poon TC, Chan HL, Wong N, Hui AY. 63.  et al. 2007. High-throughput quantitative profiling of serum N-glycome by MALDI-TOF mass spectrometry and N-glycomic fingerprint of liver fibrosis. Clin. Chem. 53:1254–63 [Google Scholar]
  64. Barkauskas DA, An HJ, Kronewitter SR, de Leoz ML, Chew HK. 64.  et al. 2009. Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data. Bioinformatics 25:251–57 [Google Scholar]
  65. Liu Y, Palma AS, Feizi T. 65.  2009. Carbohydrate microarrays: key developments in glycobiology. Biol. Chem. 390:647–56 [Google Scholar]
  66. Ong SE, Kratchmarova I, Mann M. 66.  2003. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2:173–81 [Google Scholar]
  67. Xie Y, Liu J, Zhang J, Hedrick JL, Lebrilla CB. 67.  2004. Method for the comparative glycomic analyses of O-linked, mucin-type oligosaccharides. Anal. Chem. 76:5186–97 [Google Scholar]
  68. Xia B, Feasley CL, Sachdev GP, Smith DF, Cummings RD. 68.  2009. Glycan reductive isotope labeling for quantitative glycomics. Anal. Biochem. 387:162–70 [Google Scholar]
  69. Uematsu R, Furukawa J, Nakagawa H, Shinohara Y, Deguchi K. 69.  et al. 2005. High throughput quantitative glycomics and glycoform-focused proteomics of murine dermis and epidermis. Mol. Cell Proteomics 4:1977–89 [Google Scholar]
  70. Orlando R, Lim JM, Atwood JA 3rd, Angel PM, Fang M. 70.  2009. IDAWG: metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells. J. Proteome Res. 8:3816–23 [Google Scholar]
  71. Goldberg D, Bern M, Li B, Lebrilla CB. 71.  2006. Automatic determination of O-glycan structure from fragmentation spectra. J. Proteome Res. 5:1429–34 [Google Scholar]
  72. Goldberg D, Sutton-Smith M, Paulson J, Dell A. 72.  2005. Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra. Proteomics 5:865–75 [Google Scholar]
  73. Maass K, Ranzinger R, Geyer H, von der Lieth CW, Geyer R. 73.  2007. “GlycO-Peakfinder”—de novo composition analysis of glycoconjugates. Proteomics 7:4435–44 [Google Scholar]
  74. Ceroni A, Maass K, Geyer H, Geyer R, Dell A. 74.  et al. 2008. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7:1650–59 [Google Scholar]
  75. Apte A, Meitei NS. 75.  2010. Bioinformatics in glycomics: glycan characterization with mass spectrometric data using SimGlycan. Methods Mol. Biol. 600:269–81 [Google Scholar]
  76. Gaucher SP, Morrow J, Leary JA. 76.  2000. STAT: a saccharide topology analysis tool used in combination with tandem mass spectrometry. Anal. Chem. 72:2331–36 [Google Scholar]
  77. Lapadula AJ, Hatcher PJ, Hanneman AJ, Ashline DJ, Zhang H. 77.  et al. 2005. Congruent strategies for carbohydrate sequencing. 3. OSCAR: an algorithm for assigning oligosaccharide topology from MSn data. Anal. Chem. 77:6271–79 [Google Scholar]
  78. Ethier M, Saba JA, Spearman M, Krokhin O, Butler M. 78.  et al. 2003. Application of the StrOligo algorithm for the automated structure assignment of complex N-linked glycans from glycoproteins using tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17:2713–20 [Google Scholar]
  79. Song EH, Pohl NL. 79.  2009. Carbohydrate arrays: recent developments in fabrication and detection methods with applications. Curr. Opin. Chem. Biol. 13:626–32 [Google Scholar]
  80. Gornik O, Lauc G. 80.  2008. Glycosylation of serum proteins in inflammatory diseases. Dis. Markers 25:267–78 [Google Scholar]
  81. Tateno H, Nakamura-Tsuruta S, Hirabayashi J. 81.  2007. Frontal affinity chromatography: sugar-protein interactions. Nat. Protoc. 2:2529–37 [Google Scholar]
  82. Westerlund-Wikström B, Korhonen TK. 82.  2005. Molecular structure of adhesin domains in Escherichia coli fimbriae. Int. J. Med. Microbiol. 295:479–86 [Google Scholar]
  83. Rüdiger H, Gabius HJ. 83.  2001. Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj. J. 18:589–613 [Google Scholar]
  84. Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK. 84.  2005. Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem 6:985–89 [Google Scholar]
  85. Chen P, Liu Y, Kang X, Sun L, Yang P. 85.  et al. 2008. Identification of N-glycan of α-fetoprotein by lectin affinity microarray. J. Cancer Res. Clin. Oncol. 134:851–60 [Google Scholar]
  86. Hsu KL, Mahal LK. 86.  2006. A lectin microarray approach for the rapid analysis of bacterial glycans. Nat. Protoc. 1:543–49 [Google Scholar]
  87. Propheter DC, Hsu KL, Mahal LK. 87.  2010. Fabrication of an oriented lectin microarray. Chembiochem 11:1203–7 [Google Scholar]
  88. Krishnamoorthy L, Bess J Jr, Preston AB, Nagashima K, Mahal LK. 88.  2009. HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat. Chem. Biol. 5:244–50 [Google Scholar]
  89. Uchiyama N, Kuno A, Tateno H, Kubo Y, Mizuno M. 89.  et al. 2008. Optimization of evanescent-field fluorescence-assisted lectin microarray for high-sensitivity detection of monovalent oligosaccharides and glycoproteins. Proteomics 8:3042–50 [Google Scholar]
  90. Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T. 90.  et al. 2007. A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 17:1138–46 [Google Scholar]
  91. Pilobello KT, Slawek D, Mahal LK. 91.  2007. A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc. Natl. Acad. Sci. USA 104:11534–39 [Google Scholar]
  92. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S. 92.  et al. 2005. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat. Methods 2:851–56 [Google Scholar]
  93. Chen S, Zheng T, Shortreed MR, Alexander C, Smith LM. 93.  2007. Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal. Chem. 79:5698–702 [Google Scholar]
  94. Zheng T, Peelen D, Smith LM. 94.  2005. Lectin arrays for profiling cell surface carbohydrate expression. J. Am. Chem. Soc. 127:9982–83 [Google Scholar]
  95. Tao SC, Li Y, Zhou J, Qian J, Schnaar RL. 95.  et al. 2008. Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18:761–69 [Google Scholar]
  96. Hsu KL, Pilobello KT, Mahal LK. 96.  2006. Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat. Chem. Biol. 2:153–57 [Google Scholar]
  97. Gupta G, Surolia A, Sampathkumar SG. 97.  2010. Lectin microarrays for glycomic analysis. OMICS 14:419–36 [Google Scholar]
  98. Jin S, Cheng Y, Reid S, Li M, Wang B. 98.  2010. Carbohydrate recognition by boronolectins, small molecules, and lectins. Med. Res. Rev. 30:171–257 [Google Scholar]
  99. Manimala JC, Roach TA, Li Z, Gildersleeve JC. 99.  2007. High-throughput carbohydrate microarray profiling of 27 antibodies demonstrates widespread specificity problems. Glycobiology 17:17–23C [Google Scholar]
  100. Linman MJ, Taylor JD, Yu H, Chen X, Cheng Q. 100.  2008. Surface plasmon resonance study of protein-carbohydrate interactions using biotinylated sialosides. Anal. Chem. 80:4007–13 [Google Scholar]
  101. Zhao J, Patwa TH, Pal M, Qiu W, Lubman DM. 101.  2009. Analysis of protein glycosylation and phosphorylation using liquid phase separation, protein microarray technology, and mass spectrometry. Methods Mol. Biol. 492:321–51 [Google Scholar]
  102. Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D. 102.  et al. 2007. Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat. Methods 4:437–44 [Google Scholar]
  103. Qiu Y, Patwa TH, Xu L, Shedden K, Misek DE. 103.  et al. 2008. Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J. Proteome Res. 7:1693–703 [Google Scholar]
  104. Yue T, Goldstein IJ, Hollingsworth MA, Kaul K, Brand RE. 104.  et al. 2009. The prevalence and nature of glycan alterations on specific proteins in pancreatic cancer patients revealed using antibody-lectin sandwich array. Mol. Cell Proteomics 8:1697–707 [Google Scholar]
  105. Wu YM, Nowack DD, Omenn GS, Haab BB. 105.  2009. Mucin glycosylation is altered by pro-inflammatory signaling in pancreatic-cancer cells. J. Proteome Res. 8:1876–86 [Google Scholar]
  106. Forrester S, Hung KE, Kuick R, Kucherlapati R, Haab BB. 106.  2007. Low-volume, high-throughput sandwich immunoassays for profiling plasma proteins in mice: identification of early-stage systemic inflammation in a mouse model of intestinal cancer. Mol. Oncol. 1:216–25 [Google Scholar]
  107. Nilsson P, Paavilainen L, Larsson K, Odling J, Sundberg M. 107.  et al. 2005. Towards a human proteome atlas: high-throughput generation of mono-specific antibodies for tissue profiling. Proteomics 5:4327–37 [Google Scholar]
  108. Aoki-Kinoshita K.108.  2008. An introduction to bioinformatics for glycomics research. PLoS Comput. Biol. 4:e1000075 [Google Scholar]
  109. Frank M, Schloissnig S. 109.  2010. Bioinformatics and molecular modeling in glycobiology. Cell Mol. Life Sci. 67:2749–72 [Google Scholar]
  110. Doubet SAP. 110.  1992. CarbBank. Glycobiology 2:505 [Google Scholar]
  111. Porter A, Yue T, Heeringa L, Day S, Suh E. 111.  et al. 2010. A motif-based analysis of glycan array data to determine the specificities of glycan-binding proteins. Glycobiology 20:269–80 [Google Scholar]
  112. Gupta R, Brunak S. 112.  2002. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 2002:310–22 [Google Scholar]
  113. Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL. 113.  et al. 1998. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj. J. 15:115–30 [Google Scholar]
  114. Julenius K.114.  2007. NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology 17:868–76 [Google Scholar]
  115. York WS, Kochut KJ, Miller JA. 115.  2009. Integration of glycomics knowledge and data. Handbook of Glycomics RD Cummings, JM Pierce 179–95 New York: Academic [Google Scholar]
  116. Ito H, Kuno A, Sawaki H, Sogabe M, Ozaki H. 116.  et al. 2009. Strategy for glycoproteomics: identification of glyco-alteration using multiple glycan profiling tools. J. Proteome Res. 8:1358–67 [Google Scholar]
  117. Narimatsu H, Sawaki H, Kuno A, Kaji H, Ito H. 117.  et al. 2010. A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J. 277:95–105 [Google Scholar]
/content/journals/10.1146/annurev-anchem-061010-113951
Loading
/content/journals/10.1146/annurev-anchem-061010-113951
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error