1932

Abstract

Cancer remains one of the leading causes of death, and early detection of this disease is crucial for increasing survival rates. Although cancer can be diagnosed following tissue biopsy, the biopsy procedure is invasive; liquid biopsy provides an alternative that is more comfortable for the patient. While blood, urine, and cerebral spinal fluid can all be used as a source of liquid biopsy, saliva is an ideal source of body fluid that is readily available and easily collected in the most noninvasive manner. Characterization of salivary constituents in the disease setting provides critical data for understanding pathophysiology and the evaluation of diagnostic potential. The aim of saliva diagnostics is therefore to develop a rapid and noninvasive detection of oral and systemic diseases that could be used together with compact analysis systems in the clinic to facilitate point-of-care diagnostics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061020-123959
2022-06-13
2024-05-25
Loading full text...

Full text loading...

/deliver/fulltext/anchem/15/1/annurev-anchem-061020-123959.html?itemId=/content/journals/10.1146/annurev-anchem-061020-123959&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chiappin S, Antonelli G, Gatti R, De Palo EF. 2007. Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta 383:30–40
    [Google Scholar]
  2. 2.
    Lamy E, Mau M. 2012. Saliva proteomics as an emerging, non-invasive tool to study livestock physiology, nutrition and diseases. J. Proteom. 75:4251–58
    [Google Scholar]
  3. 3.
    Carpenter GH. 2013. The secretion, components, and properties of saliva. Annu. Rev. Food Sci. Technol. 4:267–76
    [Google Scholar]
  4. 4.
    Yan W, Apweiler R, Balgley BM, Boontheung P, Bundy JL et al. 2009. Systematic comparison of the human saliva and plasma proteomes. Proteom. Clin. Appl. 3:116–34
    [Google Scholar]
  5. 5.
    Ai J, Smith B, Wong DT 2010. Saliva ontology: an ontology-based framework for a Salivaomics Knowledge Base. BMC Bioinform. 11:302
    [Google Scholar]
  6. 6.
    Wong DT. 2012. Salivaomics. J. Am. Dent. Assoc. 143:19S–24S
    [Google Scholar]
  7. 7.
    Nonaka T, Wong DTW. 2017. Saliva-exosomics in cancer: molecular characterization of cancer-derived exosomes in saliva. Enzymes 42:125–51
    [Google Scholar]
  8. 8.
    Ferguson DB, Botchway CA 1979. Circadian variations in the flow rate and composition of whole saliva stimulated by mastication. Arch. Oral. Biol. 24:877–81
    [Google Scholar]
  9. 9.
    Mackie DA, Pangborn RM. 1990. Mastication and its influence on human salivary flow and alpha-amylase secretion. Physiol. Behav. 47:593–95
    [Google Scholar]
  10. 10.
    Helmerhorst EJ, Oppenheim FG. 2007. Saliva: a dynamic proteome. J. Dent. Res. 86:680–93
    [Google Scholar]
  11. 11.
    Diaz LA Jr., Bardelli A. 2014. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32:579–86
    [Google Scholar]
  12. 12.
    Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO et al. 2001. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61:1659–65
    [Google Scholar]
  13. 13.
    Beaver JA, Jelovac D, Balukrishna S, Cochran R, Croessmann S et al. 2014. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin. Cancer Res. 20:2643–50
    [Google Scholar]
  14. 14.
    Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y et al. 2014. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6:224ra24
    [Google Scholar]
  15. 15.
    Diehl F, Schmidt K, Choti MA, Romans K, Goodman S et al. 2008. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14:985–90
    [Google Scholar]
  16. 16.
    Newman AM, Bratman SV, To J, Wynne JF, Eclov NC et al. 2014. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20:548–54
    [Google Scholar]
  17. 17.
    Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E et al. 2014. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med. 20:430–35
    [Google Scholar]
  18. 18.
    Aarthy R, Mani S, Velusami S, Sundarsingh S, Rajkumar T 2015. Role of circulating cell-free DNA in cancers. Mol. Diagn. Ther. 19:339–50
    [Google Scholar]
  19. 19.
    Chaudhuri AA, Binkley MS, Osmundson EC, Alizadeh AA, Diehn M. 2015. Predicting radiotherapy responses and treatment outcomes through analysis of circulating tumor DNA. Semin. Radiat. Oncol. 25:305–12
    [Google Scholar]
  20. 20.
    Ignatiadis M, Lee M, Jeffrey SS 2015. Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin. Cancer Res. 21:4786–800
    [Google Scholar]
  21. 21.
    Polivka J Jr., Pesta M, Janku F. 2015. Testing for oncogenic molecular aberrations in cell-free DNA-based liquid biopsies in the clinic: Are we there yet?. Expert Rev. Mol. Diagn. 15:1631–44
    [Google Scholar]
  22. 22.
    Bonne NJ, Wong DT. 2012. Salivary biomarker development using genomic, proteomic and metabolomic approaches. Genome Med 4:82
    [Google Scholar]
  23. 23.
    Hansen TV, Simonsen MK, Nielsen FC, Hundrup YA. 2007. Collection of blood, saliva, and buccal cell samples in a pilot study on the Danish nurse cohort: comparison of the response rate and quality of genomic DNA. Cancer Epidemiol. Biomarkers Prev. 16:2072–76
    [Google Scholar]
  24. 24.
    Looi ML, Zakaria H, Osman J, Jamal R. 2012. Quantity and quality assessment of DNA extracted from saliva and blood. Clin. Lab. 58:307–12
    [Google Scholar]
  25. 25.
    Wang Y, Springer S, Mulvey CL, Silliman N, Schaefer J et al. 2015. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci. Transl. Med. 7:293ra104
    [Google Scholar]
  26. 26.
    Nonaka T, Wong DTW. 2018. Liquid biopsy in head and neck cancer: promises and challenges. J. Dent. Res. 97:701–8
    [Google Scholar]
  27. 27.
    Bahn JH, Zhang Q, Li F, Chan TM, Lin X et al. 2015. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin. Chem. 61:221–30
    [Google Scholar]
  28. 28.
    Park NJ, Li Y, Yu T, Brinkman BM, Wong DT 2006. Characterization of RNA in saliva. Clin. Chem. 52:988–94
    [Google Scholar]
  29. 29.
    Zhang L, Farrell JJ, Zhou H, Elashoff D, Akin D et al. 2010. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology 138:949–57.e7
    [Google Scholar]
  30. 30.
    Zhang L, Xiao H, Karlan S, Zhou H, Gross J et al. 2010. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLOS ONE 5:e15573
    [Google Scholar]
  31. 31.
    Lee YH, Kim JH, Zhou H, Kim BW, Wong DT 2012. Salivary transcriptomic biomarkers for detection of ovarian cancer: for serous papillary adenocarcinoma. J. Mol. Med. 90:427–34
    [Google Scholar]
  32. 32.
    Zhang L, Xiao H, Zhou H, Santiago S, Lee JM et al. 2012. Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell. Mol. Life Sci. 69:3341–50
    [Google Scholar]
  33. 33.
    Li Y, St. John MAR, Zhou X, Kim Y, Sinha U et al. 2004. Salivary transcriptome diagnostics for oral cancer detection. Clin. Cancer Res. 10:8442–50
    [Google Scholar]
  34. 34.
    Gallo A, Tandon M, Alevizos I, Illei GG 2012. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLOS ONE 7:e30679
    [Google Scholar]
  35. 35.
    Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA et al. 2010. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16:34–38
    [Google Scholar]
  36. 36.
    Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA et al. 2009. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res. 15:5473–77
    [Google Scholar]
  37. 37.
    Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW. 2012. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck 34:219–24
    [Google Scholar]
  38. 38.
    Momen-Heravi F, Trachtenberg AJ, Kuo WP, Cheng YS. 2014. Genomewide study of salivary microRNAs for detection of oral cancer. J. Dent. Res. 93:86S–93S
    [Google Scholar]
  39. 39.
    Duz MB, Karatas OF, Guzel E, Turgut NF, Yilmaz M et al. 2016. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cell. Oncol. 39:187–93
    [Google Scholar]
  40. 40.
    Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ et al. 2012. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev. Res. 5:492–97
    [Google Scholar]
  41. 41.
    Russo F, Di Bella S, Vannini F, Berti G, Scoyni F et al. 2018. miRandola 2017: a curated knowledge base of non-invasive biomarkers. Nucleic Acids Res. 46:D354–59
    [Google Scholar]
  42. 42.
    Hoerman KC, Chauncey HH, Herrold RD 1959. Parotid saliva acid phosphatase in prostatic cancer. Cancer 12:359–63
    [Google Scholar]
  43. 43.
    Denny P, Hagen FK, Hardt M, Liao L, Yan W et al. 2008. The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J. Proteome Res. 7:1994–2006
    [Google Scholar]
  44. 44.
    Bandhakavi S, Stone MD, Onsongo G, Van Riper SK, Griffin TJ. 2009. A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J. Proteome Res. 8:5590–600
    [Google Scholar]
  45. 45.
    Schulz BL, Cooper-White J, Punyadeera CK. 2013. Saliva proteome research: current status and future outlook. Crit. Rev. Biotechnol. 33:246–59
    [Google Scholar]
  46. 46.
    Esser D, Alvarez-Llamas G, de Vries MP, Weening D, Vonk RJ, Roelofsen H. 2008. Sample stability and protein composition of saliva: implications for its use as a diagnostic fluid. Biomarker Insights 3:25–27
    [Google Scholar]
  47. 47.
    Xiao H, Wong DT 2012. Method development for proteome stabilization in human saliva. Anal. Chim. Acta 722:63–69
    [Google Scholar]
  48. 48.
    Colombo M, Raposo G, Thery C 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30:255–89
    [Google Scholar]
  49. 49.
    Kourembanas S. 2015. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu. Rev. Physiol. 77:13–27
    [Google Scholar]
  50. 50.
    El Andaloussi S, Mäger I, Breakefield XO, Wood MJ. 2013. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12:347–57
    [Google Scholar]
  51. 51.
    Cheng J, Nonaka T, Wong DTW. 2019. Salivary exosomes as nanocarriers for cancer biomarker delivery. Materials 12:654
    [Google Scholar]
  52. 52.
    Al-Tarawneh SK, Border MB, Dibble CF, Bencharit S. 2011. Defining salivary biomarkers using mass spectrometry-based proteomics: a systematic review. OMICS 15:353–61
    [Google Scholar]
  53. 53.
    Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R. 2008. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol. Pharm. Bull. 31:1059–62
    [Google Scholar]
  54. 54.
    Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR et al. 2009. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J. Proteome Res. 8:1304–14
    [Google Scholar]
  55. 55.
    Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y et al. 2011. Proteomic analysis of two types of exosomes in human whole saliva. Biol. Pharm. Bull. 34:13–23
    [Google Scholar]
  56. 56.
    Berckmans RJ, Sturk A, van Tienen LM, Schaap MC, Nieuwland R. 2011. Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood 117:3172–80
    [Google Scholar]
  57. 57.
    Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT 2010. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLOS ONE 5:e8577
    [Google Scholar]
  58. 58.
    Ogawa Y, Taketomi Y, Murakami M, Tsujimoto M, Yanoshita R. 2013. Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol. Pharm. Bull. 36:66–75
    [Google Scholar]
  59. 59.
    Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT et al. 2011. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J. Transl. Med. 9:9
    [Google Scholar]
  60. 60.
    Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P et al. 2012. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLOS Biol. 10:e1001450
    [Google Scholar]
  61. 61.
    Simpson RJ, Kalra H, Mathivanan S. 2012. ExoCarta as a resource for exosomal research. J. Extracell. Vesicles 1:18374
    [Google Scholar]
  62. 62.
    Sharma S, Rasool HI, Palanisamy V, Mathisen C, Schmidt M et al. 2010. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano 4:1921–26
    [Google Scholar]
  63. 63.
    Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK 2011. Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir 27:14394–400
    [Google Scholar]
  64. 64.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L et al. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10:1470–76
    [Google Scholar]
  65. 65.
    Li Z, Ma YY, Wang J, Zeng XF, Li R et al. 2016. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther 9:139–48
    [Google Scholar]
  66. 66.
    Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T et al. 2013. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 119:1159–67
    [Google Scholar]
  67. 67.
    Kahlert C, Melo SA, Protopopov A, Tang J, Seth S et al. 2014. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289:3869–75
    [Google Scholar]
  68. 68.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST et al. 2015. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–82
    [Google Scholar]
  69. 69.
    Lau C, Kim Y, Chia D, Spielmann N, Eibl G et al. 2013. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J. Biol. Chem. 288:26888–97
    [Google Scholar]
  70. 70.
    Katsiougiannis S, Chia D, Kim Y, Singh RP, Wong DT. 2017. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity. FASEB J. 31:998–1010
    [Google Scholar]
  71. 71.
    Yang J, Wei F, Schafer C, Wong DT. 2014. Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva. PLOS ONE 9:e110641
    [Google Scholar]
  72. 72.
    Thery C, Amigorena S, Raposo G, Clayton A 2006. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006:3.22.1–29
    [Google Scholar]
  73. 73.
    Li F, Wei F, Huang WL, Lin CC, Li L et al. 2020. Ultra-short circulating tumor DNA (usctDNA) in plasma and saliva of non-small cell lung cancer (NSCLC) patients. Cancers 12:2041
    [Google Scholar]
  74. 74.
    Wei F, Wang J, Liao W, Zimmermann BG, Wong DT, Ho CM. 2008. Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe. Nucleic Acids Res. 36:e65
    [Google Scholar]
  75. 75.
    Wei F, Yang J, Wong DT 2013. Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM). Biosens. Bioelectron. 44:115–21
    [Google Scholar]
  76. 76.
    Su X, Wu YJ, Robelek R, Knoll W 2005. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir 21:348–53
    [Google Scholar]
  77. 77.
    Gau V, Ma SC, Wang H, Tsukuda J, Kibler J, Haake DA. 2005. Electrochemical molecular analysis without nucleic acid amplification. Methods 37:73–83
    [Google Scholar]
  78. 78.
    Pu D, Liang H, Wei F, Akin D, Feng Z et al. 2016. Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: a pilot study. Thorac. Cancer 7:428–36
    [Google Scholar]
  79. 79.
    Wei F, Lin CC, Joon A, Feng Z, Troche G et al. 2014. Noninvasive saliva-based EGFR gene mutation detection in patients with lung cancer. Am. J. Respir. Crit. Care Med. 190:1117–26
    [Google Scholar]
  80. 80.
    Kim C, Xi L, Cultraro CM, Wei F, Jones G et al. 2021. Longitudinal circulating tumor DNA analysis in blood and saliva for prediction of response to Osimertinib and disease progression in EGFR-mutant lung adenocarcinoma. Cancers 13:3342
    [Google Scholar]
  81. 81.
    Du J, Zhang L. 2017. Analysis of salivary microRNA expression profiles and identification of novel biomarkers in esophageal cancer. Oncol. Lett. 14:1387–94
    [Google Scholar]
  82. 82.
    Navarro MA, Mesia R, Diez-Gibert O, Rueda A, Ojeda B, Alonso MC. 1997. Epidermal growth factor in plasma and saliva of patients with active breast cancer and breast cancer patients in follow-up compared with healthy women. Breast Cancer Res. Treat. 42:83–86
    [Google Scholar]
  83. 83.
    Streckfus C, Bigler L, Dellinger T, Dai X, Kingman A, Thigpen JT 2000. The presence of soluble c-erbB-2 in saliva and serum among women with breast carcinoma: a preliminary study. Clin. Cancer Res. 6:2363–70
    [Google Scholar]
  84. 84.
    Streckfus C, Bigler L, Tucci M, Thigpen JT 2000. A preliminary study of CA15-3, c-erbB-2, epidermal growth factor receptor, cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Investig 18:101–9
    [Google Scholar]
  85. 85.
    Brooks MN, Wang J, Li Y, Zhang R, Elashoff D, Wong DT 2008. Salivary protein factors are elevated in breast cancer patients. Mol. Med. Rep. 1:375–78
    [Google Scholar]
  86. 86.
    Wood N, Streckfus CF 2015. The expression of lung resistance protein in saliva: a novel prognostic indicator protein for carcinoma of the breast. Cancer Investig. 33:510–15
    [Google Scholar]
  87. 87.
    Xiao H, Zhang Y, Kim Y, Kim S, Kim JJ et al. 2016. Differential proteomic analysis of human saliva using tandem mass tags quantification for gastric cancer detection. Sci. Rep. 6:22165
    [Google Scholar]
  88. 88.
    Ohshiro K, Rosenthal DI, Koomen JM, Streckfus CF, Chambers M et al. 2007. Pre-analytic saliva processing affect proteomic results and biomarker screening of head and neck squamous carcinoma. Int. J. Oncol. 30:743–49
    [Google Scholar]
  89. 89.
    Hu S, Arellano M, Boontheung P, Wang J, Zhou H et al. 2008. Salivary proteomics for oral cancer biomarker discovery. Clin. Cancer Res. 14:6246–52
    [Google Scholar]
  90. 90.
    Dowling P, Wormald R, Meleady P, Henry M, Curran A, Clynes M. 2008. Analysis of the saliva proteome from patients with head and neck squamous cell carcinoma reveals differences in abundance levels of proteins associated with tumour progression and metastasis. J. Proteom. 71:168–75
    [Google Scholar]
  91. 91.
    Rai B, Kaur J, Jacobs R, Anand SC. 2011. Adenosine deaminase in saliva as a diagnostic marker of squamous cell carcinoma of tongue. Clin. Oral Investig. 15:347–49
    [Google Scholar]
  92. 92.
    Elashoff D, Zhou H, Reiss J, Wang J, Xiao H et al. 2012. Prevalidation of salivary biomarkers for oral cancer detection. Cancer Epidemiol. Biomarkers Prev. 21:664–72
    [Google Scholar]
  93. 93.
    Winck FV, Prado Ribeiro AC, Ramos Domingues R, Ling LY, Riano-Pachon DM et al. 2015. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles. Sci. Rep. 5:16305
    [Google Scholar]
  94. 94.
    Xiao H, Zhang L, Zhou H, Lee JM, Garon EB, Wong DTW. 2012. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol. Cell. Proteom. 11: https://doi.org/10.1074/mcp.M111.012112
    [Crossref] [Google Scholar]
  95. 95.
    Sun Y, Xia Z, Shang Z, Sun K, Niu X et al. 2016. Facile preparation of salivary extracellular vesicles for cancer proteomics. Sci. Rep. 6:24669
    [Google Scholar]
  96. 96.
    Chen DX, Schwartz PE, Li FQ. 1990. Saliva and serum CA 125 assays for detecting malignant ovarian tumors. Obstet. Gynecol. 75:701–4
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061020-123959
Loading
/content/journals/10.1146/annurev-anchem-061020-123959
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error