1932

Abstract

Bioelectronics, originating from Galvani's eighteenth-century experiments, blends biology, medicine, and electronics to create devices that can be closely connected to biological systems. This review focuses on bioelectronic large-area field-effect transistor (FET) sensing devices, emphasizing their sensitivity, specificity, and reliability. The role of analytical chemistry in optimizing performance-level control is pivotal, and the review discusses key performance metrics, including limit of identification (LOI), reliability and selectivity. The assessment of the LOI level is addressed using examples of FET-based bioelectronic sensors capable of detecting concentrations at least in the picomolar range. Examples of sensors capable of detecting concentrations in the tens of zeptomolar range are also provided, demonstrating that a single molecule in 0.1 mL can be reliably detected. Working at the LOI also minimizes random errors, which can be as low as 1%. The review also explores the use of molecularly imprinted polymers for highly selective FET bioelectronic detections, noting their sustainability and robustness in comparison to natural antibodies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061522-034729
2025-05-15
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/anchem/18/1/annurev-anchem-061522-034729.html?itemId=/content/journals/10.1146/annurev-anchem-061522-034729&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Willner I, Katz E. 2005.. Bioelectronics—an introduction. . In Bioelectronics: From Theory to Applications, ed. I Willner, E Katz , pp. 113. New York:: Wiley
    [Google Scholar]
  2. 2.
    Liang Y, Offenhäusser A, Ingebrandt S, Mayer D. 2021.. PEDOT:PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals. . Adv. Healthc. Mater. 10:(11):2100061
    [Crossref] [Google Scholar]
  3. 3.
    Piccolino M. 1998.. Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. . Brain Res. Bull. 46:(5):381407
    [Crossref] [Google Scholar]
  4. 4.
    Wang Z, Xiao M, Li Z, Wang X, Li F, et al. 2024.. Microneedle patches—integrated transdermal bioelectronics for minimally invasive disease theranostics. . Adv. Healthc. Mater. 13:(17):2303921
    [Crossref] [Google Scholar]
  5. 5.
    Yu Y, Nyein HYY, Gao W, Javey A. 2020.. Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. . Adv. Mater. 32:(15):1902083
    [Crossref] [Google Scholar]
  6. 6.
    Cucchi M, Parker D, Stavrinidou E, Gkoupidenis P, Kleemann H. 2023.. In liquido computation with electrochemical transistors and mixed conductors for intelligent bioelectronics. . Adv. Mater. 35:(15):2209516
    [Crossref] [Google Scholar]
  7. 7.
    Takemoto A, Araki T, Nishimura K, Akiyama M, Uemura T, et al. 2023.. Fully transparent, ultrathin flexible organic electrochemical transistors with additive integration for bioelectronic applications. . Adv. Sci. 10:(2):2204746
    [Crossref] [Google Scholar]
  8. 8.
    Macchia E, Torricelli F, Caputo M, Sarcina L, Scandurra C, et al. 2023.. Point-of-care ultra-portable single-molecule bioassays for one-health. . Adv. Mater. 36:(13):2309705
    [Crossref] [Google Scholar]
  9. 9.
    Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, et al. 2021.. Electrolyte-gated transistors for enhanced performance bioelectronics. . Nat. Rev. Methods Primers 1:(1):66
    [Crossref] [Google Scholar]
  10. 10.
    Picca RA, Manoli K, Macchia E, Sarcina L, Di Franco C, et al. 2020.. Ultimately sensitive organic bioelectronic transistor sensors by materials and device structure design. . Adv. Funct. Mater. 30:(20):1904513
    [Crossref] [Google Scholar]
  11. 11.
    Tseng C-P, Liu F, Zhang X, Huang P-C, Campbell I, et al. 2022.. Solution-deposited and patternable conductive polymer thin-film electrodes for microbial bioelectronics. . Adv. Mater. 34:(13):2109442
    [Crossref] [Google Scholar]
  12. 12.
    Kim H, Won Y, Song HW, Kwon Y, Jun M, Oh JH. 2024.. Organic mixed ionic–electronic conductors for bioelectronic sensors: materials and operation mechanisms. . Adv. Sci. 11:(27):2306191
    [Crossref] [Google Scholar]
  13. 13.
    Luo X, Davis JJ. 2013.. Electrical biosensors and the label free detection of protein disease biomarkers. . Chem. Soc. Rev. 42:(13):594462
    [Crossref] [Google Scholar]
  14. 14.
    Jeong J-Y, Cha YK, Ahn SR, Shin J, Choi Y, et al. 2022.. Ultrasensitive bioelectronic tongue based on the Venus flytrap domain of a human sweet taste receptor. . ACS Appl. Mater. Interfaces 14:(2):247887
    [Crossref] [Google Scholar]
  15. 15.
    Lee MY, Lee HR, Park CH, Han SG, Oh JH. 2018.. Organic transistor-based chemical sensors for wearable bioelectronics. . Acc. Chem. Res. 51:(11):282938
    [Crossref] [Google Scholar]
  16. 16.
    Li P, Lee G-H, Kim SY, Kwon SY, Kim H-R, Park S. 2021.. From diagnosis to treatment: recent advances in patient-friendly biosensors and implantable devices. . ACS Nano 15:(2):19602004
    [Crossref] [Google Scholar]
  17. 17.
    Guo L, Zhao Y, Huang Q, Huang J, Tao Y, et al. 2024.. Electrochemical protein biosensors for disease marker detection: progress and opportunities. . Microsyst. Nanoeng. 10:(1):65
    [Crossref] [Google Scholar]
  18. 18.
    Papier K, Atkins JR, Tong TYN, Gaitskell K, Desai T, et al. 2024.. Identifying proteomic risk factors for cancer using prospective and exome analyses of 1463 circulating proteins and risk of 19 cancers in the UK Biobank. . Nat. Commun. 15::4010
    [Crossref] [Google Scholar]
  19. 19.
    Genco E, Modena F, Sarcina L, Björkström K, Brunetti C, et al. 2023.. A single-molecule bioelectronic portable array for early diagnosis of pancreatic cancer precursors. . Adv. Mater. 35:(42):2304102
    [Crossref] [Google Scholar]
  20. 20.
    Alix-Panabières C. 2020.. The future of liquid biopsy. . Nature 579:(7800):S9
    [Crossref] [Google Scholar]
  21. 21.
    Erlich A, Gelfand D, Sninsky JJ. 1991.. Recent advances in the polymerase chain reaction. . Science 252::164351
    [Crossref] [Google Scholar]
  22. 22.
    Kaiser J. 2018.. ‘ Liquid biopsy’ for cancer promises early detection: combining DNA and protein markers brings researchers closer to a universal cancer screening test. . Science 359:(6373):259
    [Crossref] [Google Scholar]
  23. 23.
    Reed BD, Meyer MJ, Abramzon V, Ad O, Adcock P, et al. 2022.. Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device. . Science 378:(6616):18692
    [Crossref] [Google Scholar]
  24. 24.
    Floyd BM, Marcotte EM. 2022.. Protein sequencing, one molecule at a time. . Annu. Rev. Biophys. 51::181200
    [Crossref] [Google Scholar]
  25. 25.
    Rissin DM, Walt DR. 2006.. Digital concentration readout of single enzyme molecules using femtoliter arrays and poisson statistics. . Nano Lett. 6:(3):52023
    [Crossref] [Google Scholar]
  26. 26.
    Macchia E, Kovács-Vajna ZM, Loconsole D, Sarcina L, Redolfi M, et al. 2022.. A handheld intelligent single-molecule binary bioelectronic system for fast and reliable immunometric point-of-care testing. . Sci. Adv. 8:(27):eabo0881
    [Crossref] [Google Scholar]
  27. 27.
    Liang Y, Xiao M, Wu D, Lin Y, Liu L, et al. 2020.. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. . ACS Nano 14:(7):886674
    [Crossref] [Google Scholar]
  28. 28.
    Macchia E, Manoli K, Holzer B, Di Franco C, Ghittorelli M, et al. 2018.. Single-molecule detection with a millimetre-sized transistor. . Nat. Commun. 9::3223
    [Crossref] [Google Scholar]
  29. 29.
    Macchia E, Manoli K, Di Franco C, Picca RA, Österbacka R, et al. 2020.. Organic field-effect transistor platform for label-free, single-molecule detection of genomic biomarkers. . ACS Sens. 5:(6):182230
    [Crossref] [Google Scholar]
  30. 30.
    Macchia E, Romele P, Manoli K, Ghittorelli M, Magliulo M, et al. 2018.. Ultra-sensitive protein detection with organic electrochemical transistors printed on plastic substrates. . Flex. Print. Electron. 3::034002
    [Crossref] [Google Scholar]
  31. 31.
    Guo K, Wustoni S, Koklu A, Díaz-Galicia E, Moser M, et al. 2021.. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. . Nat. Biomed. Eng. 5:(7):66677
    [Crossref] [Google Scholar]
  32. 32.
    Ricci S, Casalini S, Parkula V, Selvaraj M, Saygin GD, et al. 2020.. Label-free immunodetection of α-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor. . Biosens. Bioelectron. 167::112433
    [Crossref] [Google Scholar]
  33. 33.
    Palit S, Singh K, Lou B-S, Her J-L, Pang S-T, Pan T-M. 2020.. Ultrasensitive dopamine detection of indium-zinc oxide on PET flexible based extended-gate field-effect transistor. . Sens. Actuators B 310::127850
    [Crossref] [Google Scholar]
  34. 34.
    Macchia E, Torricelli F, Bollella P, Sarcina L, Tricase A, et al. 2022.. Large-area interfaces for single-molecule label-free bioelectronic detection. . Chem. Rev. 122:(4):463699
    [Crossref] [Google Scholar]
  35. 35.
    Macchia E, Alberga D, Manoli K, Mangiatordi GF, Magliulo M, et al. 2016.. Organic bioelectronics probing conformational changes in surface confined proteins. . Sci. Rep. 6::28085
    [Crossref] [Google Scholar]
  36. 36.
    Macchia E, Picca RA, Manoli K, Franco CD, Blasi D, et al. 2020.. About the amplification factors in organic bioelectronic sensors. . Mater. Horiz. 7:(4):9991013
    [Crossref] [Google Scholar]
  37. 37.
    Macchia E, Manoli K, Di Franco C, Scamarcio G, Torsi L. 2020.. New trends in single-molecule bioanalytical detection. . Anal. Bioanal. Chem. 412:(21):500514
    [Crossref] [Google Scholar]
  38. 38.
    Macchia E, De Caro L, Torricelli F, Franco CD, Mangiatordi GF, et al. 2022.. Why a diffusing single-molecule can be detected in few minutes by a large capturing bioelectronic interface. . Adv. Sci. 9:(20):2104381
    [Crossref] [Google Scholar]
  39. 39.
    Mohammad Ghafari A, Catacchio M, Rosqvist E, Luukkonen A, Eklund A, et al. 2023.. Experimental design of stencil-printed high-performance organic electrochemical transistors. . Mater. Adv. 4:(24):671829
    [Crossref] [Google Scholar]
  40. 40.
    White SP, Dorfman KD, Frisbie CD. 2016.. Operating and sensing mechanism of electrolyte-gated transistors with floating gates: building a platform for amplified biodetection. . J. Phys. Chem. C 120:(1):10817
    [Crossref] [Google Scholar]
  41. 41.
    Thompson M, Ellison SLR, Wood R. 2002.. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). . Pure Appl. Chem. 74:(5):83555
    [Crossref] [Google Scholar]
  42. 42.
    Sarcina L, Viola F, Modena F, Picca RA, Bollella P, et al. 2022.. A large-area organic transistor with 3D-printed sensing gate for noninvasive single-molecule detection of pancreatic mucinous cyst markers. . Anal. Bioanal. Chem. 414:(18):565769
    [Crossref] [Google Scholar]
  43. 43.
    Macchia E, Sarcina L, Driescher C, Gounani Z, Tewari A, et al. 2021.. Single-molecule bioelectronic label-free assay of both protein and genomic markers of pancreatic mucinous cysts in whole blood serum. . Adv. Electron. Mater. 7:(9):2100304
    [Crossref] [Google Scholar]
  44. 44.
    Macchia E, Manoli K, Di Franco C, Picca RA, Österbacka R, et al. 2020.. Organic field-effect transistor platform for label-free, single-molecule detection of genomic biomarkers. . ACS Sens. 5:(6):182230
    [Crossref] [Google Scholar]
  45. 45.
    Scandurra C, Björkström K, Sarcina L, Imbriano A, Di Franco C, et al. 2023.. Single molecule with a large transistor—SiMoT cytokine IL-6 detection benchmarked against a chemiluminescent ultrasensitive immunoassay array. . Adv. Mater. Technol. 8:(11):2201910
    [Crossref] [Google Scholar]
  46. 46.
    Macchia E, Manoli K, Holzer B, Di Franco C, Picca RA, et al. 2019.. Selective single-molecule analytical detection of C-reactive protein in saliva with an organic transistor. . Anal. Bioanal. Chem. 411:(19):4899908
    [Crossref] [Google Scholar]
  47. 47.
    Macchia E, Tiwari A, Manoli K, Holzer B, Ditaranto N, et al. 2019.. Label-free and selective single-molecule bioelectronic sensing with a millimeter-wide self-assembled monolayer of anti-immunoglobulins. . Chem. Mater. 31:(17):647683
    [Crossref] [Google Scholar]
  48. 48.
    Holzer B, Manoli K, Ditaranto N, Macchia E, Tiwari A, et al. 2017.. Characterization of covalently bound anti-human immunoglobulins on self-assembled monolayer modified gold electrodes. . Adv. Biosyst. 1:(11):1700055
    [Crossref] [Google Scholar]
  49. 49.
    Macchia E, Sarcina L, Picca RA, Manoli K, Di Franco C, et al. 2020.. Ultra-low HIV-1 p24 detection limits with a bioelectronic sensor. . Anal. Bioanal. Chem. 412:(4):81118
    [Crossref] [Google Scholar]
  50. 50.
    Sailapu SK, Macchia E, Merino-Jimenez I, Esquivel JP, Sarcina L, et al. 2020.. Standalone operation of an EGOFET for ultra-sensitive detection of HIV. . Biosens. Bioelectron. 156::112103
    [Crossref] [Google Scholar]
  51. 51.
    Sarcina L, Macchia E, Loconsole G, D'Attoma G, Bollella P, et al. 2022.. Fast and reliable electronic assay of a Xylella fastidiosa single bacterium in infected plants sap. . Adv. Sci. 9:(30):2203900
    [Crossref] [Google Scholar]
  52. 52.
    Di Franco C, Macchia E, Sarcina L, Ditaranto N, Khaliq A, et al. 2023.. Extended work function shift of large-area biofunctionalized surfaces triggered by a few single-molecule affinity binding events. . Adv. Mater. Interfaces 10:(6):2201829
    [Crossref] [Google Scholar]
  53. 53.
    Franco CD, Piscitelli M, Macchia E, Scandurra C, Catacchio M, et al. 2023.. Kelvin probe force microscopy on patterned large-area biofunctionalized surfaces: a reliable ultrasensitive platform for biomarker detection. . J. Mater. Chem. C 12:(1):7379
    [Crossref] [Google Scholar]
  54. 54.
    Cheng S, Hotani K, Hideshima S, Kuroiwa S, Nakanishi T, et al. 2014.. Field effect transistor biosensor using antigen binding fragment for detecting tumor marker in human serum. . Materials 7:(4):2490500
    [Crossref] [Google Scholar]
  55. 55.
    Sharma PS, Dabrowski M, D'Souza F, Kutner W. 2013.. Surface development of molecularly imprinted polymer films to enhance sensing signals. . Trends Anal. Chem. 51::14657
    [Crossref] [Google Scholar]
  56. 56.
    Uzun L, Turner AP. 2016.. Molecularly-imprinted polymer sensors: realising their potential. . Biosens. Bioelectron. 76::13144
    [Crossref] [Google Scholar]
  57. 57.
    McCluskey A, Holdsworth CI, Bowyer MC. 2007.. Molecularly imprinted polymers (MIPs): Sensing, an explosive new opportunity?. Organ. Biomol. Chem. 5:(20):323344
    [Crossref] [Google Scholar]
  58. 58.
    BelBruno JJ. 2018.. Molecularly imprinted polymers. . Chem. Rev. 119:(1):94119
    [Crossref] [Google Scholar]
  59. 59.
    Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, et al. 2011.. The rational development of molecularly imprinted polymer-based sensors for protein detection. . Chem. Soc. Rev. 40:(3):154771
    [Crossref] [Google Scholar]
  60. 60.
    Leibl N, Haupt K, Gonzato C, Duma L. 2021.. Molecularly imprinted polymers for chemical sensing: a tutorial review. . Chemosensors 9:(6):123
    [Crossref] [Google Scholar]
  61. 61.
    Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA. 2019.. Molecularly imprinted polymers in electrochemical and optical sensors. . Trends Biotechnol. 37:(3):294309
    [Crossref] [Google Scholar]
  62. 62.
    Feroz M, Vadgama P. 2020.. Molecular imprinted polymer modified electrochemical sensors for small drug analysis: progress to practical application. . Electroanalysis 32:(11):236186
    [Crossref] [Google Scholar]
  63. 63.
    Elfadil D, Lamaoui A, Della Pelle F, Amine A, Compagnone D. 2021.. Molecularly imprinted polymers combined with electrochemical sensors for food contaminants analysis. . Molecules 26:(15):4607
    [Crossref] [Google Scholar]
  64. 64.
    Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, et al. 2021.. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. . Chem. Soc. Rev. 50:(23):1301289
    [Crossref] [Google Scholar]
  65. 65.
    Lorenzo RA, Carro AM, Alvarez-Lorenzo C, Concheiro A. 2011.. To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs). . Int. J. Mol. Sci. 12:(7):432747
    [Crossref] [Google Scholar]
  66. 66.
    Lamaoui A, Mani V, Durmus C, Salama KN, Amine A. 2023.. Molecularly imprinted polymers: a closer look at the template removal and analyte binding. . Biosens. Bioelectron. 243::115774
    [Crossref] [Google Scholar]
  67. 67.
    Garg M, Pamme N. 2024.. Strategies to remove templates from molecularly imprinted polymer (MIP) for biosensors. . Trends Anal. Chem. 170::117437
    [Crossref] [Google Scholar]
  68. 68.
    Valentino M, Imbriano A, Tricase A, Della Pelle F, Compagnone D, et al. 2023.. Electropolymerized molecularly imprinted polypyrrole film for dimethoate sensing: investigation on template removal after the imprinting process. . Anal. Methods 15:(10):125053
    [Crossref] [Google Scholar]
  69. 69.
    Ellwanger A, Berggren C, Bayoudh S, Crecenzi C, Karlsson L, et al. 2001.. Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. . Analyst 126:(6):78492
    [Crossref] [Google Scholar]
  70. 70.
    Pirzada M, Altintas Z. 2021.. Template removal in molecular imprinting: principles, strategies, and challenges. . In Molecular Imprinting for Nanosensors and Other Sensing Applications, ed. A Denizli , pp. 367406. Amsterdam:: Elsevier
    [Google Scholar]
  71. 71.
    Piletsky S, Canfarotta F, Poma A, Bossi AM, Piletsky S. 2020.. Molecularly imprinted polymers for cell recognition. . Trends Biotechnol. 38:(4):36887
    [Crossref] [Google Scholar]
  72. 72.
    Becskereki G, Horvai G, Tóth B. 2021.. The selectivity of molecularly imprinted polymers. . Polymers 13:(11):1781
    [Crossref] [Google Scholar]
  73. 73.
    Hajian R, Balderston S, Tran T, deBoer T, Etienne J, et al. 2019.. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. . Nat. Biomed. Eng. 3:(6):42737
    [Crossref] [Google Scholar]
  74. 74.
    Palazzo G, De Tullio D, Magliulo M, Mallardi A, Intranuovo F, et al. 2015.. Detection beyond Debye's length with an electrolyte-gated organic field-effect transistor. . Adv. Mater. 27:(5):91116
    [Crossref] [Google Scholar]
  75. 75.
    Bergveld P. 1991.. A critical evaluation of direct electrical protein detection methods. . Biosens. Bioelectron. 6:(1):5572
    [Crossref] [Google Scholar]
  76. 76.
    Mujahid A, Afzal A, Dickert FL. 2023.. Transitioning from supramolecular chemistry to molecularly imprinted polymers in chemical sensing. . Sensors 23:(17):7457
    [Crossref] [Google Scholar]
  77. 77.
    Haupt K, Mosbach K. 2000.. Molecularly imprinted polymers and their use in biomimetic sensors. . Chem. Rev. 100:(7):2495504
    [Crossref] [Google Scholar]
  78. 78.
    Schirhagl R. 2014.. Bioapplications for molecularly imprinted polymers. . Anal. Chem. 86:(1):25061
    [Crossref] [Google Scholar]
  79. 79.
    Parnianchi F, Kashanian S, Nazari M, Santoro C, Bollella P, Varmira K. 2021.. Highly selective and sensitive molecularly imprinting electrochemical sensing platform for bilirubin detection in saliva. . Microchem. J. 168::106367
    [Crossref] [Google Scholar]
  80. 80.
    Tricase A, Marchianò V, Macchia E, Ditaranto N, Torsi L, Bollella P. 2024.. Ultrasensitive and highly selective O-phenylenediamine molecularly imprinted polymer for the detection of 2, 4-dichlorophenoxyacetic acid. . Electrochim. Acta 494::144430
    [Crossref] [Google Scholar]
  81. 81.
    Bartold K, Iskierko Z, Borowicz P, Noworyta K, Lin C-Y, et al. 2022.. Molecularly imprinted polymer-based extended-gate field-effect transistor (EG-FET) chemosensor for selective determination of matrix metalloproteinase 1 (MMP-1) protein. . Biosens. Bioelectron. 208::114203
    [Crossref] [Google Scholar]
  82. 82.
    Iskierko Z, Sharma PS, Noworyta KR, Borowicz P, Cieplak M, et al. 2019.. Selective PQQPFPQQ gluten epitope chemical sensor with a molecularly imprinted polymer recognition unit and an extended-gate field-effect transistor transduction unit. . Anal. Chem. 91:(7):453743
    [Crossref] [Google Scholar]
  83. 83.
    Bartold K, Iskierko Z, Borowicz P, Noworyta K, Nikiforow K, et al. 2024.. An extended-gate field-effect transistor (EG-FET) signal transducing combined with epitope molecular imprinting for selective chemosensing of chosen idiopathic pulmonary fibrosis (IPF) biomarkers. . Electrochim. Acta 486::144153
    [Crossref] [Google Scholar]
  84. 84.
    Lelis GC, Fonseca WT, De Lima AH, Okazaki AK, Figueiredo EC, et al. 2025.. Harnessing small-molecule analyte detection in complex media: combining molecularly imprinted polymers, electrolytic transistors, and machine learning. . ACS Appl. Mater. Interfaces 17:(9):129903000
    [Crossref] [Google Scholar]
  85. 85.
    Zhou Q, Wang M, Yagi S, Minami T. 2021.. Extended gate–type organic transistor functionalized by molecularly imprinted polymer for taurine detection. . Nanoscale 13:(1):1007
    [Crossref] [Google Scholar]
  86. 86.
    Torsi L, Magliulo M, Manoli K, Palazzo G. 2013.. Organic field-effect transistor sensors: a tutorial review. . Chem. Soc. Rev. 42:(22):861228
    [Crossref] [Google Scholar]
  87. 87.
    Ramanavicius S, Jagminas A, Ramanavicius A. 2021.. Advances in molecularly imprinted polymers based affinity sensors. . Polymers 13:(6):974
    [Crossref] [Google Scholar]
  88. 88.
    Tiwari MP, Prasad A. 2015.. Molecularly imprinted polymer based enantioselective sensing devices: a review. . Anal. Chim. Acta 853::118
    [Crossref] [Google Scholar]
  89. 89.
    Sensi M, Berto M, Gentile S, Pinti M, Conti A, et al. 2021.. Anti-drug antibody detection with label-free electrolyte-gated organic field-effect transistors. . Chem. Commun. 57:(3):36770
    [Crossref] [Google Scholar]
  90. 90.
    Oh J, Yang H, Jeong GE, Moon D, Kwon OS, et al. 2019.. Ultrasensitive, selective, and highly stable bioelectronic nose that detects the liquid and gaseous cadaverine. . Anal. Chem. 91:(19):1218190
    [Crossref] [Google Scholar]
  91. 91.
    Fathil MFM, Md Arshad MK, Ruslinda AR, Gopinath SCB, Nuzaihan M, et al. 2017.. Substrate–gate coupling in ZnO-FET biosensor for cardiac troponin I detection. . Sens. Actuators B 242::114254
    [Crossref] [Google Scholar]
  92. 92.
    Seo G, Lee G, Kim MJ, Baek S-H, Choi M, et al. 2020.. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. . ACS Nano 14:(4):513542
    [Crossref] [Google Scholar]
  93. 93.
    Li Y, Zeng B, Yang Y, Liang H, Yang Y, Yuan Q. 2020.. Design of high stability thin-film transistor biosensor for the diagnosis of bladder cancer. . Chin. Chem. Lett. 31:(6):138791
    [Crossref] [Google Scholar]
  94. 94.
    Yu J, Xu M, Liang L, Guan M, Zhang Y, et al. 2020.. Separative extended-gate AlGaAs/GaAs HEMT biosensors based on capacitance change strategy. . Appl. Phys. Lett. 116::123704
    [Crossref] [Google Scholar]
  95. 95.
    Lee J, Kim MJ, Yang H, Kim S, Yeom S, et al. 2021.. Extended-gate amorphous InGaZnO thin film transistor for biochemical sensing. . IEEE Sens. J. 21:(1):17884
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061522-034729
Loading
/content/journals/10.1146/annurev-anchem-061522-034729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error