1932

Abstract

Point-of-care (POC) devices have become rising stars in the biosensing field, aiming at prognosis and diagnosis of diseases with a positive impact on the patient but also on healthcare and social care systems. Putting the patient at the center of interest requires the implementation of noninvasive technologies for collecting biofluids and the development of wearable platforms with integrated artificial intelligence–based tools for improved analytical accuracy and wireless readout technologies. Many electrical and electrochemical transducer technologies have been proposed for POC-based sensing, but several necessitate further development before being widely deployable. This review focuses on recent innovations in electrochemical and electrical biosensors and their growth opportunities for nanotechnology-driven multidisciplinary approaches. With a focus on analytical aspects to pave the way for future electrical/electrochemical diagnostics tests, current limitations and drawbacks as well as directions for future developments are highlighted.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-012029
2024-07-17
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061622-012029.html?itemId=/content/journals/10.1146/annurev-anchem-061622-012029&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Daniels J, Wadekar S, DeCubellis K, Jackson GW, Chiu AS, et al. 2021.. A mask-based diagnostic platform for point-of-care screening of Covid-19. . Biosens. Bioelectron. 192::113486
    [Crossref] [Google Scholar]
  2. 2.
    Xue Q, Kan X, Pan Z, Li Z, Pan W, et al. 2021.. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. . Biosens. Bioelectron. 186::113286
    [Crossref] [Google Scholar]
  3. 3.
    Burnet M, Metcalf DG, Milo S, Gamerith C, Heinzle A, et al. 2022.. A host-directed approach to the detection of infection in hard-to-heal wounds. . Diagnostics 12::2408
    [Crossref] [Google Scholar]
  4. 4.
    Marazza G. 2023.. Biosensors in 2022. . Biosensors 13::407
    [Crossref] [Google Scholar]
  5. 5.
    Altug H, Oh SH, Maier SA, Homola J. 2022.. Advances and applications of nanophotonic biosensors. . Nat. Nanotechnol. 17::516
    [Crossref] [Google Scholar]
  6. 6.
    Lee EK, Kim MK, Lee CH. 2019.. Skin-mountable biosensors and therapeutics: a review. . Annu. Rev. Biomed. Eng. 21::299323
    [Crossref] [Google Scholar]
  7. 7.
    Engvall E, Perlmann P. 1972.. Enzyme-linked immunosorbent assay, ELISA: III. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. . J. Immunol. 109::12935
    [Crossref] [Google Scholar]
  8. 8.
    Lopes LC, Santos A, Bueno PR. 2022.. An outlook on electrochemical approaches for molecular diagnostics assays and discussions on the limitations of miniaturized technologies for point-of-care devices. . Sens. Actuators Rep. 4::100087
    [Crossref] [Google Scholar]
  9. 9.
    Wu J, Liu H, Chen W, Ma B, Ju H. 2023.. Device integration of electrochemical biosensors. . Nat. Rev. Bioeng. 1::34660
    [Crossref] [Google Scholar]
  10. 10.
    Pagneux Q, Rossel A, Saada H, Cambillau C, Amigues B, et al. 2022.. SARS-CoV-2 detection using a nanobody-functionalized voltammetric device. . Commun. Med. 2::56
    [Crossref] [Google Scholar]
  11. 11.
    Liu D, Wang J, Wu L, Huang Y, Zhang Y, et al. 2020.. Trends in miniaturized biosensors for point-of-care testing. . Trends Anal. Chem. 122::115701
    [Crossref] [Google Scholar]
  12. 12.
    Madhurantakam S, Muthukumar S, Prasad S. 2022.. Emerging electrochemical biosensing trends for rapid diagnosis of COVID-19 biomarkers as point-of-care platforms: a critical review. . ACS Omega 7::1246773
    [Crossref] [Google Scholar]
  13. 13.
    Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, et al. 2021.. Electrolyte-gated transistors for enhanced performance bioelectronics. . Nat. Rev. Methods Primers 1::66
    [Crossref] [Google Scholar]
  14. 14.
    Béraud A, Sauvage M, Bazán C, Tie M, Bencherif M, Bouilly D. 2021.. Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. . Analyst 146::40328
    [Crossref] [Google Scholar]
  15. 15.
    Gao N, Gao T, Yang X, Dai X, Zhou W, et al. 2016.. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. . PNAS 51::1463338
    [Crossref] [Google Scholar]
  16. 16.
    Gao N, Zhou W, Jiang X, Hong G, Fu T-M, Lieber CM. 2015.. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. . Nano Lett. 15::214348
    [Crossref] [Google Scholar]
  17. 17.
    Kesler V, Murmann B, Soh HT. 2020.. Going beyond the Debye length: overcoming charge screening limitations in next-generation bioelectronic sensors. . ACS Nano 14::16194201
    [Crossref] [Google Scholar]
  18. 18.
    Szunerits S, Rodrigues T, Bagale R, Happy H, Boukherroub R, Knoll W. 2023.. Graphene-based field-effect transistors for biosensing: Where is the field heading to?. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-023-04760-1
    [Google Scholar]
  19. 19.
    Gokturk PA, Sujanani R, Qian J, Wang Y, Katz LE, et al. 2022.. The Donnan potential revealed. . Nat. Commun. 13::5880
    [Crossref] [Google Scholar]
  20. 20.
    Stern E, Vacic A, Rajan NK, Criscione JM, Park J, et al. 2010.. Label-free biomarker detection from whole blood. . Nat. Nanotechol. 5::13842
    [Crossref] [Google Scholar]
  21. 21.
    Wang G, Han R, Li Q, Han Y, Luo X. 2020.. Electrochemical biosensors capable of detecting biomarkers in human serum with unique long-term antifouling abilities based on designed multi-functional peptides. . Anal. Chem. 92::718693
    [Crossref] [Google Scholar]
  22. 22.
    Song Z, Chen M, Ding C, Luo X. 2020.. Designed three-in-one peptides with anchoring, antifouling, and recognizing capabilities for highly sensitive and low-fouling electrochemical sensing in complex biological media. . Anal. Chem. 92::5795580
    [Crossref] [Google Scholar]
  23. 23.
    Timilsina SS, Durr N, Yafia M, Sallum H, Jolly P, Ingber DE. 2022.. Ultrarapid method for coating electrochemical sensors with antifouling conductive nanomaterials enables highly sensitive multiplexed detection in whole blood. . Adv. Healthcare Mater. 11::2102244
    [Crossref] [Google Scholar]
  24. 24.
    Zupančič U, Jolly P, Estrela P, Moschou D, Ingber DE. 2021.. Graphene enabled low-noise surface chemistry for multiplexed sepsis biomarker detection in whole blood. . Adv. Funct. Mater. 31::2010638
    [Crossref] [Google Scholar]
  25. 25.
    Sabate Del Río J, Henry OYF, Jolly P, Ingber D. 2019.. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. . Nat. Nanotechnol. 17::114349
    [Crossref] [Google Scholar]
  26. 26.
    Jeong S, Park J, Pathania D, Castro CM, Weissleder R, Lee H. 2016.. Integrated magneto-electrochemical sensor for exosome analysis. . ACS Nano 10::18029
    [Crossref] [Google Scholar]
  27. 27.
    Ozer T, McMahon C, Henry CS. 2020.. Advances in paper-based analytical devices. . Annu. Rev. Anal. Chem. 13::85109
    [Crossref] [Google Scholar]
  28. 28.
    Noviana E, Ozer T, Carrell CS, Link JS, McMahon C, et al. 2021.. Microfluidic paper-based analytical devices: from design to applications. . Chem. Rev. 121::1183585
    [Crossref] [Google Scholar]
  29. 29.
    Puiu M, Mirceski V, Bala C. 2021.. Paper-based diagnostic platforms and devices. . Curr. Opin. Electrochem. 27::100726
    [Crossref] [Google Scholar]
  30. 30.
    Yakoh A, Chaiyo S, Siangproh W, Chailapakul O. 2019.. 3D capillary-driven paper-based sequential microfluidic device for electrochemical sensing applications. . ACS Sens. 4::121121
    [Crossref] [Google Scholar]
  31. 31.
    Cinti S, Moscone D, Arduini F. 2019.. Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. . Nat. Protoc. 14::243751
    [Crossref] [Google Scholar]
  32. 32.
    Weng X, Kang Y, Guo Q, Peng B, Jianga H. 2019.. Recent advances in thread-based microfluidics for diagnostic applications. . Biosens. Bioelectron. 132::17185
    [Crossref] [Google Scholar]
  33. 33.
    Oliveira ACM, Gouveia Araújo DA, Pradela-Filho LA, Takeuchi RM, Gonçalves Trindade MA, dos Santos AL. 2022.. Threads in tubing: an innovative approach towards improved electrochemical thread-based microfluidic devices. . Lab Chip 22::304554
    [Crossref] [Google Scholar]
  34. 34.
    Foysal KH, Seo SE, Kim MJ, Kwon OS, Chong JW. 2019.. Analyte quantity detection from lateral flow assay using a smartphone. . Sensors 19::4812
    [Crossref] [Google Scholar]
  35. 35.
    Perju A, Wongkaew N. 2021.. Integrating high-performing electrochemical transducers in lateral flow assay. . Anal. Bioanal. Chem. 413::553549
    [Crossref] [Google Scholar]
  36. 36.
    Sinawang PD, Rai V, Ionescu RE, Marks RS. 2016.. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. . Biosens. Bioelectron. 77::4008
    [Crossref] [Google Scholar]
  37. 37.
    Gonzalez-Macia L, Li Y, Zhang K, Nunez-Bajo E, Barandun G, et al. 2023.. Facilitating electrochemical lateral flow assay using NFC-enabled potentiostat and nitrocellulose-based metal electrodes. . BioRxiv 2023.03.09.531916. https://doi.org/10.1101/2023.03.09.531916
  38. 38.
    Grinnell F, Feld MK. 1981.. Adsorption characteristics of plasma fibronectin in relationship to biological activity. . J. Biomed. Mater. Res. 15::36381
    [Crossref] [Google Scholar]
  39. 39.
    Thevenot P, Hu W, Tang L. 2008.. Surface chemistry influences implant biocompatibility. . Curr. Top. Med. Chem. 8::27080
    [Crossref] [Google Scholar]
  40. 40.
    Tricase A, Imbriano A, Macchia E. 2022.. Electrochemical investigation of self-assembling monolayers toward ultrasensitive sensing. . In 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), pp. 14. New York:: IEEE
    [Google Scholar]
  41. 41.
    Zhang Z, Vaisocherová H, Cheng G, Yang W, Xue H, Jiang S. 2008.. Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects. . Biomacromolecules 9::268692
    [Crossref] [Google Scholar]
  42. 42.
    Patel J, Radhakrishnan L, Zhao B, Uppalapati B, Daniels RC, et al. 2013.. Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions. . Anal. Chem. 58::1161018
    [Crossref] [Google Scholar]
  43. 43.
    Matharu Z, Daggumati P, Wang L, Dorofeeva TS, Li Z, Seker E. 2017.. Nanoporous-gold-based electrode morphology libraries for investigating structure-property relationships in nucleic acid based electrochemical biosensors. . ACS Appl. Mater. Interfaces 9::1295966
    [Crossref] [Google Scholar]
  44. 44.
    Deleted in proof
  45. 45.
    Boulahneche S, Jijie R, Chekin F, Teodorescu F, Singh SK, et al. 2017.. On demand release of drugs from porous reduced graphene oxide modified flexible electrodes. . J. Mater. Chem. B 5::655765
    [Crossref] [Google Scholar]
  46. 46.
    Wang Z, Hao Z, Yang C, Wang H, Huang C, et al. 2022.. Ultra-sensitive and rapid screening of acute myocardial infarction using 3D-affinity graphene biosensor. . Cell Rep. 3::100855
    [Google Scholar]
  47. 47.
    Neumann B, Wollenberger U. 2020.. Electrochemical biosensors employing natural and artificial heme peroxidases on semiconductors. . Sensors 20::3692
    [Crossref] [Google Scholar]
  48. 48.
    Das B, Franco JL, Logan N, Balasubramanian P, Kim MI, Cao C. 2021.. Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. . Nano-Micro Lett. 13::193
    [Crossref] [Google Scholar]
  49. 49.
    Rhouati A, Marty J-L, Vasilescu A. 2021.. Electrochemical biosensors combining aptamers and enzymatic activity: challenges and analytical opportunities. . Electrochim. Acta 390::138863
    [Crossref] [Google Scholar]
  50. 50.
    Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz S, Shim Y-B, Shiddiky MJ. 2020.. Nanozyme-based electrochemical biosensors for disease bio-marker detection. . Analyst 145::4398420
    [Crossref] [Google Scholar]
  51. 51.
    Bialas K, Moschou D, Marken F, Esrela P. 2022.. Electrochemical sensors based on metal nanoparticles with biocatalytic activity. . Microchem. Acta 189::172
    [Crossref] [Google Scholar]
  52. 52.
    Fenoy GE, Marisollé WA, Knoll W, Azzaroni O. 2022.. Highly sensitive urine glucose detection with graphene field-effect transistor functionalized with electropolymerized nanofilms. . Sens. Diagn. 1::13948
    [Crossref] [Google Scholar]
  53. 53.
    Fenoy GE, Piccinini E, Knoll W, Marisollé WA, Azzaroni O. 2022.. The effect of amine-phosphate interactions on the biosensing performance of enzymatic graphene field-effect transistors. . Anal. Chem. 94::13820
    [Crossref] [Google Scholar]
  54. 54.
    Drummond TG, Hill MG, Barton JK. 2003.. Electrochemical DNA sensors. . Nat. Biotechnol. 21::119299
    [Crossref] [Google Scholar]
  55. 55.
    Shaver A, Arroyo-Curras N. 2022.. The challenge of long-term stability for nucleic acid-based electrochemical sensors. . Curr. Opin. Electrochem. 312::100902
    [Crossref] [Google Scholar]
  56. 56.
    Hwang MT, Heiranian M, Kim Y, You S, Leem J, et al. 2020.. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. . Nat. Commun. 11::1543
    [Crossref] [Google Scholar]
  57. 57.
    Ganguli A, Faramarzi V, Mostafa A, Hwang MT, You S, Bashir R. 2020.. High sensitivity graphene field effect transistor-based detection of DNA amplification. . Adv. Funct. Mater. 30::2001031
    [Crossref] [Google Scholar]
  58. 58.
    Bauer M, Strom M, Hammond DS, Shigdar S. 2019.. Anything you can do, I can do better: Can aptamers replace antibodies in clinical diagnostic applications?. Molecules 24::4377
    [Crossref] [Google Scholar]
  59. 59.
    Sanchez-Bascones E, Parra F, Lobo-Castoanon MJ. 2021.. Aptamers against viruses: selection strategies and bioanalytical applications. . Trends Anal. Chem. 143::116349
    [Crossref] [Google Scholar]
  60. 60.
    Gao Y, Nguyen DT, Yeo T, Lim SB, Madden LE, et al. 2021.. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. . Sci. Adv. 1::eabg9614
    [Crossref] [Google Scholar]
  61. 61.
    Mishyn V, Aslan M, Hugo A, Rodrigues T, Happy H, et al. 2022.. Catch and release strategy of matrix metalloprotease aptamers via thiol-disulfide exchange reaction on a graphene based electrochemical sensor. . Sens. Diagn. 1::73949
    [Crossref] [Google Scholar]
  62. 62.
    Vasilescu A, Wang Q, Li M, Boukherroub R, Szunerits S. 2016.. Aptamer-based electrochemical sensing of lysozyme. . Chemosensors 4::10
    [Crossref] [Google Scholar]
  63. 63.
    Rodrigues T, Mishyn V, Leroux YR, Butuille L, Woitrain E, et al. 2022.. Highly performing graphene-based field effect transistor for the differentiation between mild-moderate-severe myocardial injury. . NanoToday 43::101391
    [Crossref] [Google Scholar]
  64. 64.
    Kwon J, Lee Y, Lee T, Ahn J-H. 2020.. Aptamer-based field-effect transistor for detection of avian influenza virus in chicken serum. . Anal. Chem. 92::552431
    [Crossref] [Google Scholar]
  65. 65.
    Mishyn V, Rodrigues T, Leroux YR, Butuille L, Woitrain E, et al. 2022.. Electrochemical and electronic detection of biomarkers in serum: a systematic comparison using aptamer-functionalized surfaces. Anal. Bioanal. Chem. 414::531927
    [Crossref] [Google Scholar]
  66. 66.
    Rodrigues T, Curti F, Leroux YR, Barras A, Pagneux Q, et al. 2023.. Discovery of a peptide nucleic acid (PNA) aptamer for cardiac troponin I: substituting DNA with neutral PNA maintains picomolar affinity and improves performances for electronic sensing with graphene field-effect transistors (gFET). . NanoToday 50::101840
    [Crossref] [Google Scholar]
  67. 67.
    Saadati A, Hassanpour S, de la Guardia M, Mosafer J, Hashemzai M, et al. 2019.. Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. . Trends Anal. Chem. 114::5668
    [Crossref] [Google Scholar]
  68. 68.
    Lai Q, Chen W, Zhanga Y, Liu Z. 2021.. Application strategies of peptide nucleic acids toward electrochemical nucleic acid sensors. . Analyst 146::582235
    [Crossref] [Google Scholar]
  69. 69.
    Moccia M, Caratelli V, Cinti S, Pede B, Avitabile C, et al. 2020.. Paper-based electrochemical peptide nucleic acid (PNA) biosensor for detection of miRNA-492: a pancreatic ductal adenocarcinoma biomarker. . Biosens. Bioelectron. 164::112371
    [Crossref] [Google Scholar]
  70. 70.
    Vanova V, Mitrevska K, Milosavljevic V, Hynek D, Richtera L, Adam V. 2021.. Peptide-based electrochemical biosensors utilized for protein detection. Biosens. Bioelectron. 180::113087
    [Crossref] [Google Scholar]
  71. 71.
    Sfragano PS, Moro G, Polo F, Palchetti I. 2021.. The role of peptides in the design of electrochemical biosensors for clinical diagnostics. . Biosensors 11::246
    [Crossref] [Google Scholar]
  72. 72.
    Cui M, Wang Y, Jiao M, Jayachandran S, Wu Y, et al. 2017.. Mixed self-assembled aptamer and newly designed zwitterionic peptide as antifouling biosensing interface for electrochemical detection of alpha-fetoprotein. . ACS Sens. 2::49094
    [Crossref] [Google Scholar]
  73. 73.
    Guo K, Wustoni S, Koklu A, Diaz-Galicia E, Moser M, et al. 2021.. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. . Nat. Biomed. Eng. 5::666
    [Crossref] [Google Scholar]
  74. 74.
    Pagneux Q, Garnier N, Fabregue M, Sharkaoui S, Mazzoli S, et al. 2023. nanoCLAMP potently neutralizes SARS-CoV-2 and protects K18-hACE2 mice from infection. . BioRxiv 2023.04.03.535401. https://doi.org/10.1101/2023.04.03.535401
  75. 75.
    Muyldermans S. 2021.. Applications of nanobodies. . Annu. Rev. Anim. Biosci. 9::40121
    [Crossref] [Google Scholar]
  76. 76.
    Suderman RJ, Rice DA, Gibson SD, Strick EJ, Chao DM. 2017.. Development of polyol-responsive antibody mimetics for single-step protein purification. . Protein Expr. Purif. 134::11424
    [Crossref] [Google Scholar]
  77. 77.
    Lerner M, D'Souza J, Pazina T, Dailey J, Goldsmith B, et al. 2012.. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. . ACS Nano 6::514349
    [Crossref] [Google Scholar]
  78. 78.
    Grewal YS, Shiddiky MJA, Gray SA, Weigel KM, Cangelosi GA, Trau M. 2013.. Label-free electrochemical detection of an Entamoeba histolytica antigen using cell-free yeast-scFv probes. . Chem. Commun. 49::155153
    [Crossref] [Google Scholar]
  79. 79.
    Zhao Z, Huang C, Huang Z, Lin F, He Q, et al. 2021.. Advancements in electrochemical biosensing for respiratory virus detection: a review. . Trends Anal. Chem. 139::116253
    [Crossref] [Google Scholar]
  80. 80.
    Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, et al. 2012.. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. . PNAS 109::E69097
    [Crossref] [Google Scholar]
  81. 81.
    Mishyn V, Hugo A, Rodrigues T, Aspermair P, Happy H, et al. 2021.. The holy grail of pyrene-based surface ligands on the sensitivity of graphene-based field effect transistors. . Sens. Diagn. 1::23544
    [Crossref] [Google Scholar]
  82. 82.
    Rodrigues D, Barbosa AI, Rebelo R, Kwon IK, Reis RL, Correlo VM. 2020.. Skin-integrated wearable systems and implantable biosensors: a comprehensive review. . Biosensors 10::79
    [Crossref] [Google Scholar]
  83. 83.
    Mishyn V, Rodrigues T, Leroux YR, Aspermair P, Happy H, et al. 2021.. Controlled covalent functionalization of a graphene-channel of a field effect transistor as an ideal platform for (bio)sensing applications. . Nanoscale Horiz. 6::81929
    [Crossref] [Google Scholar]
  84. 84.
    Wang S, Hossain MZ, Shinozuka K, Shimizu N, Kitada S, et al. 2020.. Graphene field-effect transistor biosensor for detection of biotin with ultrahigh sensitivity and specificity. Biosens. Bioelectron. 165::112363
    [Crossref] [Google Scholar]
  85. 85.
    Sempionatto JR, Lasalde-Ramirez JA, Mahato K, Wang J, Gao W. 2021.. Wearable chemical sensors for biomarker discovery in the omics area. . Nat. Rev. Chem. 6::899915
    [Crossref] [Google Scholar]
  86. 86.
    Szunerits S, Dörfler H, Pagneux Q, Daniels J, Wadekar S, et al. 2023.. Exhaled breath condensate as bioanalyte: from collection considerations to biomarker sensing. . Anal. Bioanal. Chem. 415::2734
    [Crossref] [Google Scholar]
  87. 87.
    Ban DK, Bodily T, Karkisaval AG, Dong Y, Natani S, et al. 2022.. Rapid self-test of unprocessed virus of SARS-CoV-2 and its variants in saliva by portable wireless graphene biosensor. . PNAS 28::e220652119
    [Google Scholar]
  88. 88.
    Jia W, Bandodkar AJ, Valdés-Ramírez, Windmiller JR, Yang Z, et al. 2013.. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. . Anal. Chem. 85::655360
    [Crossref] [Google Scholar]
  89. 89.
    Yang Y-L, Chuang M-C, Loub S-L, Wang J. 2010.. Thick-film textile-based amperometric sensors and biosensors. . Analyst 135::123034
    [Crossref] [Google Scholar]
  90. 90.
    Zhang Y, Guo H, Kim SB, Wu Y, Ostojich D, et al. 2019.. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. . Lab Chip 19::154555
    [Crossref] [Google Scholar]
  91. 91.
    Lee H, Choi TK, Lee TB, Cho HR, Ghaffari R, et al. 2016.. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. . Nat. Nanotechnol. 11::56672
    [Crossref] [Google Scholar]
  92. 92.
    Emaminejad S, Gao W, Wu E, Davies ZA, Nyein HYY, et al. 2017.. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. . PNAS 114::462530
    [Crossref] [Google Scholar]
  93. 93.
    Sempionatto JR, Lin M, Yin L, de la Paz E, Pei K, et al. 2021.. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. . Nat. Biomed. Eng. 5::73748
    [Crossref] [Google Scholar]
  94. 94.
    Bandodkar AJ, Gutruf P, Choi J, Lee KH, Sekine Y, et al. 2019.. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. . Sci. Adv. 5::eaav3294
    [Crossref] [Google Scholar]
  95. 95.
    Farooqui MF, Shamim A. 2016.. Low cost inkjet printed smart bandage for wireless monitoring of chronic wounds. . Sci. Rep. 6::28949
    [Crossref] [Google Scholar]
  96. 96.
    Guinovart T, Valdés-Ramírez G, Windmiller JR, Andrade FJ, Wang J. 2014.. Bandage-based wearable potentiometric sensor for monitoring wound pH. . Electroanalysis 26::134553
    [Crossref] [Google Scholar]
  97. 97.
    Mostafalu P, Tamayol A, Rahimi R, Ochoa M, Khalilpour A, et al. 2018.. Smart bandage for monitoring and treatment of chronic wounds. . Small 14::17035509
    [Google Scholar]
  98. 98.
    Hugo A, Rodrigues T, Mader JK, Knoll W, Bouchiat V, et al. 2023.. Matrix metalloproteinase sensing in wound fluids: Are graphene-based field effect transistors a viable alternative?. Biosens. Bioelectron. X 13::100305
    [Google Scholar]
  99. 99.
    Pagneux Q, Ye R, Chengnan L, Barras A, Hennuyer N, et al. 2020.. Electrothermal patches driving the transdermal delivery of insulin. . Nanoscale Horiz. 5::66370
    [Crossref] [Google Scholar]
  100. 100.
    Macchia E, Kovács-Vajna ZM, Loconsole D, Sarcina L, Redolfi M, et al. 2022.. A handheld intelligent single-molecule binary bioelectronic system for fast and reliable immunometric point-of-care testing. . Sci. Adv. 8::eabo0881
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-012029
Loading
/content/journals/10.1146/annurev-anchem-061622-012029
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error