1932

Abstract

The design and implementation of biomedical devices for both diagnostic and direct medical applications have revolutionized patient care, paving the way for improved patient outcomes. Understanding the characteristics of materials used in the design of new devices is essential for their advancement. In this review, our goal is to assist biomedical researchers in appreciating the importance of these properties and the role of selecting the proper measurement. We discuss how the nanoscopic molecular composition, arrangement, and interactions generate the properties of liquids, solids, viscoelastic materials, and colloids and discuss the measurement techniques that can be used to assess these properties from the nanoscale to the macroscale. We explore the linear and nonlinear mechanical responses of materials, elucidate their behaviors under varying conditions, and discuss corresponding measurement techniques. Finally, we highlight the importance of tailoring measurements to the underlying biological processes and applications being investigated.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-015821
2025-05-15
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/anchem/18/1/annurev-anchem-061622-015821.html?itemId=/content/journals/10.1146/annurev-anchem-061622-015821&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ramakrishna S, Mayer J, Wintermantel E, Leong KW. 2001.. Biomedical applications of polymer-composite materials: a review. . Compos. Sci. Technol. 61::1189224
    [Crossref] [Google Scholar]
  2. 2.
    Marin E, Lanzutti A. 2023.. Biomedical applications of titanium alloys: a comprehensive review. . Materials 17::114
    [Crossref] [Google Scholar]
  3. 3.
    Elaissari A, ed. 2003.. Colloidal Biomolecules, Biomaterials, and Biomedical Applications. London:: Routledge
    [Google Scholar]
  4. 4.
    Gharib G, Butun I, Muganli Z, Kozalak G, Namli I, et al. 2022.. Biomedical applications of microfluidic devices: a review. . Biosensors 12::1023
    [Crossref] [Google Scholar]
  5. 5.
    Huang D, Huang Y, Xiao Y, Yang X, Lin H, et al. 2019.. Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. . Acta Biomater. 97::7492
    [Crossref] [Google Scholar]
  6. 6.
    Fainerman VB, Trukhin DV, Zinkovych II, Miller R. 2018.. Interfacial tensiometry and dilational surface visco-elasticity of biological liquids in medicine. . Adv. Colloid Interface Sci. 255::3446
    [Crossref] [Google Scholar]
  7. 7.
    Jovin DG, Mortlock R. 2023.. Introduction: fluids. . Yale J. Biol. Med. 96::12
    [Google Scholar]
  8. 8.
    Alexander DE. 2017.. Biological materials blur boundaries. . In Nature's Machines: An Introduction to Organismal Biomechanics, pp. 99120. San Diego, CA:: Academic
    [Google Scholar]
  9. 9.
    Barbon CEA, Steele CM. 2018.. Thickened liquids for dysphagia management: a current review of the measurement of liquid flow. . Curr. Phys. Med. Rehabil. Rep. 6::22026
    [Crossref] [Google Scholar]
  10. 10.
    Chatté G, Comtet J, Niguès A, Bocquet L, Siria A, et al. 2018.. Shear thinning in non-Brownian suspensions. . Soft Matter 14::87993
    [Crossref] [Google Scholar]
  11. 11.
    Leo JA, Simmonds MJ, Sabapathy S. 2020.. Shear-thinning behaviour of blood in response to active hyperaemia: implications for the assessment of arterial shear stress–mediated dilatation. . Exp. Physiol. 105::24457
    [Crossref] [Google Scholar]
  12. 12.
    Miller GE. 2012.. Biomedical transport processes. . In Introduction to Biomedical Engineering, ed. JD Enderle, JD Bronzino , pp. 93793. Boston:: Academic. , 3rd ed..
    [Google Scholar]
  13. 13.
    Lahiri AK. 2005.. Transport phenomena and metals properties. . In Fundamentals of Metallurgy, ed. S Seetharaman , pp. 178236. Sawston, UK:: Woodhead
    [Google Scholar]
  14. 14.
    McCallion ONM, Patel MJ. 1996.. Viscosity effects on nebulisation of aqueous solutions. . Int. J. Pharm. 130::24549
    [Crossref] [Google Scholar]
  15. 15.
    Bhattacharya S. 2023.. Quality characteristics. . In Snack Foods, pp. 383459. San Diego, CA:: Academic
    [Google Scholar]
  16. 16.
    Markovitz H, Elyash LJ, Padden FJ, DeWitt TW. 1955.. A cone-and-plate viscometer. . J. Colloid Sci. 10::16573
    [Crossref] [Google Scholar]
  17. 17.
    Neagu A. 2023.. Multicellular self-assembly. . In Towards 4D Bioprinting, pp. 189208. San Diego, CA:: Academic
    [Google Scholar]
  18. 18.
    Guo F, Pei J, Zhang J, Xue B, Sun G, Li R. 2020.. Study on the adhesion property between asphalt binder and aggregate: a state-of-the-art review. . Constr. Build. Mater. 256::119474
    [Crossref] [Google Scholar]
  19. 19.
    Chen Z, Zhong M, Luo Y, Deng L, Hu Z, Song Y. 2019.. Determination of rheology and surface tension of airway surface liquid: a review of clinical relevance and measurement techniques. . Respir. Res. 20::274
    [Crossref] [Google Scholar]
  20. 20.
    Milad N, Morissette MC. 2021.. Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure. . Eur. Respir. Rev. 30::210077
    [Crossref] [Google Scholar]
  21. 21.
    Vargha-Butler EI, Foldvari M, Mezei M. 1989.. Study of the sedimentation behaviour of liposomal drug delivery system. . Colloids Surfaces 42::37589
    [Crossref] [Google Scholar]
  22. 22.
    Sun L, Guo J, Chen H, Zhang D, Shang L, et al. 2021.. Tailoring materials with specific wettability in biomedical engineering. . Adv. Sci. 8::2100126
    [Crossref] [Google Scholar]
  23. 23.
    Birdi KS. 2013.. Surface Chemistry Essentials. London:: Taylor & Francis
    [Google Scholar]
  24. 24.
    Lim YW, Jin J, Bae BS. 2020.. Optically transparent multiscale composite films for flexible and wearable electronics. . Adv. Mater. 32::1907143
    [Crossref] [Google Scholar]
  25. 25.
    Rempel D, Serina E, Klinenberg E, Martin BJ, Armstrong TJ, et al. 1997.. The effect of keyboard keyswitch make force on applied force and finger flexor muscle activity. . Ergonomics 40::8008
    [Crossref] [Google Scholar]
  26. 26.
    Gariboldi F, Pasquarelli D, Cutti AG. 2022.. Structural testing of lower-limb prosthetic sockets: a systematic review. . Med. Eng. Phys. 99::103742
    [Crossref] [Google Scholar]
  27. 27.
    Solórzano W, Ojeda C, Diaz Lantada A. 2020.. Biomechanical study of proximal femur for designing stems for total hip replacement. . Appl. Sci. 10::4208
    [Crossref] [Google Scholar]
  28. 28.
    Kang K, Ye S, Jeong C, Jeong J, Ye Y-S, et al. 2024.. Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function. . Nat. Commun. 15::10
    [Crossref] [Google Scholar]
  29. 29.
    Burgio V, Civera M, Rodriguez Reinoso M, Pizzolante E, Prezioso S, et al. 2022.. Mechanical properties of animal tendons: a review and comparative study for the identification of the most suitable human tendon surrogates. . Processes 10::485
    [Crossref] [Google Scholar]
  30. 30.
    Richardson BM, Walker CJ, Maples MM, Randolph MA, Bryant SJ, Anseth KS. 2021.. Mechanobiological interactions between dynamic compressive loading and viscoelasticity on chondrocytes in hydrazone covalent adaptable networks for cartilage tissue engineering. . Adv. Healthc. Mater. 10::2002030
    [Crossref] [Google Scholar]
  31. 31.
    Pang S, Schwarcz HP, Jasiuk I. 2021.. Interfacial bonding between mineral platelets in bone and its effect on mechanical properties of bone. . J. Mech. Behav. Biomed. Mater. 113::104132
    [Crossref] [Google Scholar]
  32. 32.
    Schaffer JP. 1999.. The Science and Design of Engineering Materials. Boston:: McGraw-Hill. , 2nd ed..
    [Google Scholar]
  33. 33.
    Jacobs TD, Junge T, Pastewka L. 2017.. Quantitative characterization of surface topography using spectral analysis. . Surf. Topogr. Metrol. Prop. 5::013001
    [Crossref] [Google Scholar]
  34. 34.
    Temenoff JS, Mikos AG. 2008.. Biomaterials: The Intersection of Biology and Materials Science. Upper Saddle River, NJ:: Pearson/Prentice Hall
    [Google Scholar]
  35. 35.
    Greaves GN, Greer AL, Lakes RS, Rouxel T. 2011.. Poisson's ratio and modern materials. . Nat. Mater. 10::82337
    [Crossref] [Google Scholar]
  36. 36.
    Roeder RK. 2013.. Mechanical characterization of biomaterials. . In Characterization of Biomaterials, ed. A Bandyopadhyay, S Bose , pp. 49104. Amsterdam:: Elsevier
    [Google Scholar]
  37. 37.
    Aifantis EC. 1987.. The physics of plastic deformation. . Int. J. Plast. 3::21147
    [Crossref] [Google Scholar]
  38. 38.
    Gyurkó Z, Nemes R. 2018.. Energy-based evaluation of hardness testing with discrete element method. . IOP Conf. Ser. Mater. Sci. Eng. 426::012013
    [Crossref] [Google Scholar]
  39. 39.
    Kelly P. 2013.. Solid mechanics. Part I: An introduction to solid mechanics. Lect. Notes, Univ. Auckland, Auckland, N. Z:. https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/Part_I/index.html
    [Google Scholar]
  40. 40.
    Cacopardo L, Guazzelli N, Ahluwalia A. 2022.. Characterizing and engineering biomimetic materials for viscoelastic mechanotransduction studies. . Tissue Eng. B 28::91225
    [Crossref] [Google Scholar]
  41. 41.
    Rubinstein M, Colby RH. 2003.. Polymer Physics. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  42. 42.
    Rouillard KR, Esther CP, Kissner WJ, Plott LM, Bowman DW, et al. 2024.. Combination treatment to improve mucociliary transport of Pseudomonas aeruginosa biofilms. . PLOS ONE 19::e0294120
    [Crossref] [Google Scholar]
  43. 43.
    Stossel TP. 1984.. Contribution of actin to the structure of the cytoplasmic matrix. . J. Cell Biol. 99:(Suppl.):S1521
    [Crossref] [Google Scholar]
  44. 44.
    Anand M, Rajagopal KR. 2017.. A short review of advances in the modelling of blood rheology and clot formation. . Fluids 2::35
    [Crossref] [Google Scholar]
  45. 45.
    Hill DB, Button B, Rubinstein M, Boucher RC. 2022.. Physiology and pathophysiology of human airway mucus. . Physiol. Rev. 102::1757836
    [Crossref] [Google Scholar]
  46. 46.
    Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, et al. 2021.. Molecular characterization of polymer networks. . Chem. Rev. 121::504292
    [Crossref] [Google Scholar]
  47. 47.
    Hill DB, Button B. 2012.. Establishment of respiratory air–liquid interface cultures and their use in studying mucin production, secretion, and function. . Methods Mol. Biol. 842::24558
    [Crossref] [Google Scholar]
  48. 48.
    Matsui H, Wagner VE, Hill DB, Schwab UE, Rogers TD, et al. 2006.. A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. . PNAS 103::1813136
    [Crossref] [Google Scholar]
  49. 49.
    Anderson WH, Coakley RD, Button B, Henderson AG, Zeman KL, et al. 2015.. The relationship of mucus concentration (hydration) to mucus osmotic pressure and transport in chronic bronchitis. . Am. J. Respir. Crit. Care Med. 192::18290
    [Crossref] [Google Scholar]
  50. 50.
    Phillips JE, Case NR, Celly C, Chapman RW, Hey JA, Minnicozzi M. 2006.. An enzyme-linked immunosorbent assay (ELISA) for the determination of mucin levels in bronchoalveolar lavage fluid. . J. Pharmacol. Toxicol. Methods 53::16067
    [Crossref] [Google Scholar]
  51. 51.
    Wyatt PJ. 1993.. Light scattering and the absolute characterization of macromolecules. . Anal. Chim. Acta 272::140
    [Crossref] [Google Scholar]
  52. 52.
    Folta-Stogniew E, Williams KR. 1999.. Determination of molecular masses of proteins in solution: implementation of an HPLC size exclusion chromatography and laser light scattering service in a core laboratory. . J. Biomol. Tech. 10::5163
    [Google Scholar]
  53. 53.
    Smithies O. 1959.. Zone electrophoresis in starch gels and its application to studies of serum proteins. . Adv. Protein Chem. 14::65113
    [Crossref] [Google Scholar]
  54. 54.
    Schurr JM. 1977.. Dynamic light scattering of biopolymers and biocolloids. . CRC Crit. Rev. Biochem. 4::371431
    [Crossref] [Google Scholar]
  55. 55.
    Macosko CW. 1994.. Rheology: Principles, Measurements, and Applications. New York:: Wiley
    [Google Scholar]
  56. 56.
    Ferry J. 1980.. Viscoelastic Properties of Polymers. New York:: Wiley. , 3rd ed..
    [Google Scholar]
  57. 57.
    Evans RML, Tassieri M, Auhl D, Waigh TA. 2009.. Direct conversion of rheological compliance measurements into storage and loss moduli. . Phys. Rev. E 80::012501
    [Crossref] [Google Scholar]
  58. 58.
    Dickinson E. 1999.. Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. . Colloids Surf. B 15::16176
    [Crossref] [Google Scholar]
  59. 59.
    Anzueto A, Jubran A, Ohar JA, Piquette CA, Rennard SI, et al. 1997.. Effects of aerosolized surfactant in patients with stable chronic bronchitis: a prospective randomized controlled trial. . JAMA 278::142631
    [Crossref] [Google Scholar]
  60. 60.
    Desanctis GT, Tomkiewicz RP, Rubin BK, Schurch S, King M. 1994.. Exogenous surfactant enhances mucociliary clearance in the anesthetized dog. . Eur. Respir. J. 7::161621
    [Crossref] [Google Scholar]
  61. 61.
    Taylor DJF, Thomas RK, Penfold J. 2007.. Polymer/surfactant interactions at the air/water interface. . Adv. Colloid Interface Sci. 132::69110
    [Crossref] [Google Scholar]
  62. 62.
    Cone RA. 2009.. Barrier properties of mucus. . Adv. Drug Deliv. Rev. 61::7585
    [Crossref] [Google Scholar]
  63. 63.
    Lai SK, Wang YY, Wirtz D, Hanes J. 2009.. Micro- and macrorheology of mucus. . Adv. Drug Deliv. Rev. 61::86100
    [Crossref] [Google Scholar]
  64. 64.
    Zahm JM, King M, Duvivier C, Pierrot D, Girod S, Puchelle E. 1991.. Role of simulated repetitive coughing in mucus clearance. . Eur. Respir. J. 4::31115
    [Crossref] [Google Scholar]
  65. 65.
    Kavishvar D, Ramachandran A. 2023.. The yielding behaviour of human mucus. . Adv. Colloid Interface Sci. 322::103049
    [Crossref] [Google Scholar]
  66. 66.
    Mason TG. 2000.. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. . Rheol. Acta 39::37178
    [Crossref] [Google Scholar]
  67. 67.
    Waigh TA. 2016.. Advances in the microrheology of complex fluids. . Rep. Prog. Phys. 79::074601
    [Crossref] [Google Scholar]
  68. 68.
    Waigh TA. 2005.. Microrheology of complex fluids. . Rep. Prog. Phys. 68::685742
    [Crossref] [Google Scholar]
  69. 69.
    Ozeri-Galai E, Friedman L, Barchad-Avitzur O, Markovetz MR, Boone W, et al. 2023.. Delivery characterization of SPL84 inhaled antisense oligonucleotide drug for 3849 + 10 kb C→T cystic fibrosis patients. . Nucleic Acid Ther. 33::30618
    [Crossref] [Google Scholar]
  70. 70.
    Sears PR, Bustamante-Marin XM, Gong H, Markovetz MR, Superfine R, et al. 2021.. Induction of ciliary orientation by matrix patterning and characterization of mucociliary transport. . Biophys. J. 120::138795
    [Crossref] [Google Scholar]
  71. 71.
    Esther CR Jr., Muhlebach MS, Ehre C, Hill DB, Wolfgang MC, et al. 2019.. Mucus accumulation in the lungs precedes structural changes and infection in children with cystic fibrosis. . Sci. Transl. Med. 11::eaav3488
    [Crossref] [Google Scholar]
  72. 72.
    Hill D, Long R, Atieh E, Markovetz M, Garbarine I, et al. 2018.. Pathological mucus and impaired mucus clearance in cystic fibrosis patients results from increased concentration, not altered pH. . Eur. Respir. J. 52::1801297
    [Crossref] [Google Scholar]
  73. 73.
    Hill DB, Vasquez PA, Mellnik J, McKinley SA, Vose A, et al. 2014.. A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease. . PLOS ONE 9::e87681
    [Crossref] [Google Scholar]
  74. 74.
    Duncan GA, Jung J, Joseph A, Thaxton AL, West NE, et al. 2016.. Microstructural alterations of sputum in cystic fibrosis lung disease. . JCI Insight 1::e88198
    [Crossref] [Google Scholar]
  75. 75.
    Duncan GA, Jung J, Hanes J, Suk JS. 2016.. The mucus barrier to inhaled gene therapy. . Mol. Ther. 24::204353
    [Crossref] [Google Scholar]
  76. 76.
    Dawson M, Wirtz D, Hanes J. 2003.. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. . J. Biol. Chem. 278::50393401
    [Crossref] [Google Scholar]
  77. 77.
    Furtado KL, Plott L, Markovetz M, Powers D, Wang H, et al. 2024.. Clostridioides difficile–mucus interactions encompass shifts in gene expression, metabolism, and biofilm formation. . mSphere 9::e00081
    [Crossref] [Google Scholar]
  78. 78.
    Howard RL, Markovetz M, Wang Y, Ehre C, Sheikh SZ, et al. 2021.. Biochemical and rheological analysis of human colonic culture mucus reveals similarity to gut mucus. . Biophys. J. 120::538494
    [Crossref] [Google Scholar]
  79. 79.
    Wang YY, Lai SK, Ensign LM, Zhong W, Cone R, Hanes J. 2013.. The microstructure and bulk rheology of human cervicovaginal mucus are remarkably resistant to changes in pH. . Biomacromolecules 14::442935
    [Crossref] [Google Scholar]
  80. 80.
    Lai SK, O'Hanlon DE, Harrold S, Man ST, Wang YY, et al. 2007.. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. . PNAS 104::148287
    [Crossref] [Google Scholar]
  81. 81.
    Rouillard KR, Markovetz MR, Bacudio LG, Hill DB, Schoenfisch MH. 2020.. Pseudomonas aeruginosa biofilm eradication via nitric oxide–releasing cyclodextrins. . ACS Infect. Dis. 6::194050
    [Crossref] [Google Scholar]
  82. 82.
    Rouillard KR, Hill DB, Schoenfisch MH. 2020.. Antibiofilm and mucolytic action of nitric oxide delivered via gas or macromolecular donor using in vitro and ex vivo models. . J. Cyst. Fibros. 19::100410
    [Crossref] [Google Scholar]
  83. 83.
    Ahonen MJR, Hill DB, Schoenfisch MH. 2019.. Nitric oxide–releasing alginates as mucolytic agents. . ACS Biomater. Sci. Eng. 5::340918
    [Crossref] [Google Scholar]
  84. 84.
    Reighard KP, Hill DB, Dixon GA, Worley BV, Schoenfisch MH. 2015.. Disruption and eradication of P. aeruginosa biofilms using nitric oxide–releasing chitosan oligosaccharides. . Biofouling 31::77587
    [Crossref] [Google Scholar]
  85. 85.
    Rouillard KR, Markovetz MR, Kissner WJ, Boone WL, Plott LM, Hill DB. 2023.. Altering the viscoelastic properties of mucus-grown Pseudomonas aeruginosa biofilms affects antibiotic susceptibility. . Biofilm 5::100104
    [Crossref] [Google Scholar]
  86. 86.
    Rouillard KR, Kissner WJ, Markovetz MR, Hill DB. 2022.. Effects of mucin and DNA concentrations in airway mucus on Pseudomonas aeruginosa biofilm recalcitrance. . mSphere 7:e00291
    [Google Scholar]
  87. 87.
    Tang XX, Ostedgaard LS, Hoegger MJ, Moninger TO, Karp PH, et al. 2016.. Acidic pH increases airway surface liquid viscosity in cystic fibrosis. . J. Clin. Investig. 126::87991
    [Crossref] [Google Scholar]
  88. 88.
    Peters R, Peters J, Tews KH, Bähr W. 1974.. A microfluorimetric study of translational diffusion in erythrocyte membranes. . Biochim. Biophys. Acta Biomembr. 367::28294
    [Crossref] [Google Scholar]
  89. 89.
    Rouillard KR, Novak OP, Pistiolis AM, Yang L, Ahonen MJR, et al. 2021.. Exogenous nitric oxide improves antibiotic susceptibility in resistant bacteria. . ACS Infect. Dis. 7::2333
    [Crossref] [Google Scholar]
  90. 90.
    Lai SK, Wang Y-Y, Hanes J. 2009.. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. . Adv. Drug Deliv. Rev. 61::15871
    [Crossref] [Google Scholar]
  91. 91.
    Crick FHC, Hughes AFW. 1950.. The physical properties of cytoplasm. A study by means of the magnetic particle method. Part I. Experimental. . Exp. Cell Res. 1::3780
    [Crossref] [Google Scholar]
  92. 92.
    Cribb JA, Vasquez PA, Moore P, Norris S, Shah S, et al. 2013.. Nonlinear signatures of entangled polymer solutions in active microbead rheology. . J. Rheol. 57::1247
    [Crossref] [Google Scholar]
  93. 93.
    King M. 1980.. Viscoelastic properties of airway mucus. . Fed. Proc. 39::308085
    [Google Scholar]
  94. 94.
    Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E. 1998.. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. . Biophys. J. 75::203849
    [Crossref] [Google Scholar]
  95. 95.
    Mai Z, Lin Y, Lin P, Zhao X, Cui L. 2024.. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. . Cell Death Dis. 15::307
    [Crossref] [Google Scholar]
  96. 96.
    Matijević E, ed. 2008.. Medical Applications of Colloids. New York:: Springer
    [Google Scholar]
  97. 97.
    Aho J, Hvidt S, Baldursdottir S. 2016.. Rheology in pharmaceutical sciences. . In Analytical Techniques in the Pharmaceutical Sciences, ed. A Müllertz, Y Perrie, T Rades , pp. 71950. New York:: Springer
    [Google Scholar]
  98. 98.
    Russel WB, Saville DA, Schowalter WR. 1989.. Colloidal Dispersions. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  99. 99.
    Mewis J, Wagner NJ. 2011.. Colloidal Suspension Rheology. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  100. 100.
    Cheng Z, Chaikin PM, Russel WB, Meyer WV, Zhu J, et al. 2001.. Phase diagram of hard spheres. . Mater. Design 22::52934
    [Crossref] [Google Scholar]
  101. 101.
    Li B, Zhou D, Han Y. 2016.. Assembly and phase transitions of colloidal crystals. . Nat. Rev. Mater. 1::15011
    [Crossref] [Google Scholar]
  102. 102.
    Horner JS, Wagner NJ, Beris AN. 2021.. A comparative study of blood rheology across species. . Soft Matter 17::476674
    [Crossref] [Google Scholar]
  103. 103.
    Cheng X, McCoy JH, Israelachvili JN, Cohen I. 2011.. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. . Science 333::127679
    [Crossref] [Google Scholar]
  104. 104.
    Wagner NJ, Brady JF. 2009.. Shear thickening in colloidal dispersions. . Phys. Today 62::2732
    [Crossref] [Google Scholar]
  105. 105.
    Brader JM. 2010.. Nonlinear rheology of colloidal dispersions. . J. Phys. Condens. Matter 22::363101
    [Crossref] [Google Scholar]
  106. 106.
    Torquato S. 2018.. Basic understanding of condensed phases of matter via packing models. . J. Chem. Phys. 149::020901
    [Crossref] [Google Scholar]
  107. 107.
    Hsiao LC, Newman RS, Glotzer SC, Solomon MJ. 2012.. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. . PNAS 109::1602934
    [Crossref] [Google Scholar]
  108. 108.
    Beris AN, Horner JS, Jariwala S, Armstrong MJ, Wagner NJ. 2021.. Recent advances in blood rheology: a review. . Soft Matter 17::10591613
    [Crossref] [Google Scholar]
  109. 109.
    Furst EM, Squires TM. 2017.. Microrheology. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  110. 110.
    Puertas AM, Voigtmann T. 2014.. Microrheology of colloidal systems. . J. Phys. Condens. Matter 26::243101
    [Crossref] [Google Scholar]
  111. 111.
    Mao Y, Nielsen P, Ali J. 2022.. Passive and active microrheology for biomedical systems. . Front. Bioeng. Biotechnol. 10::916354
    [Crossref] [Google Scholar]
  112. 112.
    Guzman-Sepulveda JR, Batarseh M, Wu R, DeCampli WM, Dogariu A. 2022.. Passive high-frequency microrheology of blood. . Soft Matter 18::245261
    [Crossref] [Google Scholar]
  113. 113.
    Schroyen B, Vlassopoulos D, Van Puyvelde P, Vermant J. 2020.. Bulk rheometry at high frequencies: a review of experimental approaches. . Rheol. Acta 59::122
    [Crossref] [Google Scholar]
  114. 114.
    Johannsmann D, Langhoff A, Bode B, Mpoukouvalas K, Heimann A, et al. 2013.. Towards in vivo differentiation of brain tumor versus normal tissue by means of torsional resonators. . Sens. Actuators A 190::2531
    [Crossref] [Google Scholar]
  115. 115.
    Schroyen B, Swan JW, Puyvelde PV, Vermant J. 2017.. Quantifying the dispersion quality of partially aggregated colloidal dispersions by high frequency rheology. . Soft Matter 13::7897906
    [Crossref] [Google Scholar]
  116. 116.
    Nader E, Skinner S, Romana M, Fort R, Lemonne N, et al. 2019.. Blood rheology: key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. . Front. Physiol. 10::1329
    [Crossref] [Google Scholar]
  117. 117.
    Li M, Gao Z, Cui J. 2022.. Modulation of colloidal particle stiffness for the exploration of bio–nano interactions. . Langmuir 38::678085
    [Crossref] [Google Scholar]
  118. 118.
    Rigato A, Miyagi A, Scheuring S, Rico F. 2017.. High-frequency microrheology reveals cytoskeleton dynamics in living cells. . Nat. Phys. 13::77175
    [Crossref] [Google Scholar]
  119. 119.
    Jeong MH, Im H, Dahl JB. 2023.. Non-contact microfluidic analysis of the stiffness of single large extracellular vesicles from IDH1-mutated glioblastoma cells. . Adv. Mater. Technol. 8::2201412
    [Crossref] [Google Scholar]
  120. 120.
    Beija M, Salvayre R, Viguerie NLD, Marty J-D. 2012.. Colloidal systems for drug delivery: from design to therapy. . Trends Biotechnol. 30::48596
    [Crossref] [Google Scholar]
  121. 121.
    Hu M, Hsu C-P, Isa L. 2020.. Particle surface roughness as a design tool for colloidal systems. . Langmuir 36::1117182
    [Crossref] [Google Scholar]
  122. 122.
    Müller K, Fedosov DA, Gompper G. 2014.. Margination of micro- and nano-particles in blood flow and its effect on drug delivery. . Sci. Rep. 4::4871
    [Crossref] [Google Scholar]
  123. 123.
    Mourdikoudis S, Pallares RM, Thanh NTK. 2018.. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. . Nanoscale 10::12871934
    [Crossref] [Google Scholar]
  124. 124.
    Portela R, Almeida PL, Sobral RG, Leal CR. 2019.. Motility and cell shape roles in the rheology of growing bacteria cultures. . Eur. Phys. J. E 42::26
    [Crossref] [Google Scholar]
  125. 125.
    Peng Z, Brady JF. 2022.. Forced microrheology of active colloids. . J. Rheol. 66::95572
    [Crossref] [Google Scholar]
  126. 126.
    Romero CP, Jeldres RI, Quezada GR, Concha F, Toledo PG. 2018.. Zeta potential and viscosity of colloidal silica suspensions: effect of seawater salts, pH, flocculant, and shear rate. . Colloids Surf. A 538::21018
    [Crossref] [Google Scholar]
  127. 127.
    Wang S, Walker-Gibbons R, Watkins B, Flynn M, Krishnan M. 2024.. A charge-dependent long-ranged force drives tailored assembly of matter in solution. . Nat. Nanotechnol. 19::48593
    [Crossref] [Google Scholar]
  128. 128.
    Ulusoy U. 2023.. A review of particle shape effects on material properties for various engineering applications: from macro to nanoscale. . Minerals 13::91
    [Crossref] [Google Scholar]
  129. 129.
    Konijn BJ, Sanderink OBJ, Kruyt NP. 2014.. Experimental study of the viscosity of suspensions: effect of solid fraction, particle size and suspending liquid. . Powder Technol. 266::6169
    [Crossref] [Google Scholar]
  130. 130.
    Olhero SM, Ferreira JMF. 2004.. Influence of particle size distribution on rheology and particle packing of silica-based suspensions. . Powder Technol. 139::6975
    [Crossref] [Google Scholar]
  131. 131.
    Chang C, Powell RL. 1994.. Effect of particle size distributions on the rheology of concentrated bimodal suspensions. . J. Rheol. 38::8598
    [Crossref] [Google Scholar]
  132. 132.
    Liu Y, Zhang Q, Liu R. 2021.. Effect of particle size distribution and shear rate on relative viscosity of concentrated suspensions. . Rheol. Acta 60::76374
    [Crossref] [Google Scholar]
  133. 133.
    Luckham PF, Ukeje MA. 1999.. Effect of particle size distribution on the rheology of dispersed systems. . J. Colloid Interface Sci. 220::34756
    [Crossref] [Google Scholar]
  134. 134.
    Hsiao LC, Pradeep S. 2019.. Experimental synthesis and characterization of rough particles for colloidal and granular rheology. . Curr. Opin. Colloid Interface Sci. 43::94112
    [Crossref] [Google Scholar]
  135. 135.
    Papadopoulou A, Gillissen JJJ, Tiwari MK, Balabani S. 2020.. Effect of particle specific surface area on the rheology of non-Brownian silica suspensions. . Materials 13::4628
    [Crossref] [Google Scholar]
  136. 136.
    Vlassopoulos D, Cloitre M. 2014.. Tunable rheology of dense soft deformable colloids. . Curr. Opin. Colloid Interface Sci. 19::56174
    [Crossref] [Google Scholar]
  137. 137.
    Jamali S, Boromand A, Wagner N, Maia J. 2015.. Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions. . J. Rheol. 59::137795
    [Crossref] [Google Scholar]
  138. 138.
    Nakamura H, Makino S, Ishii M. 2021.. Effects of electrostatic interaction on rheological behavior and microstructure of concentrated colloidal suspensions. . Colloids Surf. A 623::126576
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-015821
Loading
/content/journals/10.1146/annurev-anchem-061622-015821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error