1932

Abstract

Protein engineering has been extensively applied to the development of genetically encoded reporters for spatiotemporally resolved monitoring of dynamic biochemical activity across cellular compartments in living cells. Genetically encoded reporters facilitate the visualization and recording of cellular processes, including transmission of signaling molecules, protease activity, and protein–protein interactions. In this review, we describe and assess common reporter motifs and protein engineering strategies for designing genetically encoded reporters. We also discuss essential parameters for evaluating genetically encoded reporters, along with future protein engineering opportunities in this field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-070124-035857
2025-05-15
2025-06-15
Loading full text...

Full text loading...

/deliver/fulltext/anchem/18/1/annurev-anchem-070124-035857.html?itemId=/content/journals/10.1146/annurev-anchem-070124-035857&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Newman RH, Fosbrink MD, Zhang J. 2011.. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. . Chem. Rev. 111::361466
    [Crossref] [Google Scholar]
  2. 2.
    Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, et al. 2017.. The growing and glowing toolbox of fluorescent and photoactive proteins. . Trends Biochem. Sci. 42::11129
    [Crossref] [Google Scholar]
  3. 3.
    Costantini LM, Baloban M, Markwardt ML, Rizzo MA, Guo F, et al. 2015.. A palette of fluorescent proteins optimized for diverse cellular environments. . Nat. Commun. 6::7670
    [Crossref] [Google Scholar]
  4. 4.
    Köhler RH. 1998.. GFP for in vivo imaging of subcellular structures in plant cells. . Trends Plant Sci. 3::31720
    [Crossref] [Google Scholar]
  5. 5.
    Shen Y, Wen Y, Sposini S, Vishwanath AA, Abdelfattah AS, et al. 2023.. Rational engineering of an improved genetically encoded pH sensor based on superecliptic pHluorin. . ACS Sens. 8::301422
    [Crossref] [Google Scholar]
  6. 6.
    Miesenbock G, De Angelis DA, Rothman JE. 1998.. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. . Nature 394::19295
    [Crossref] [Google Scholar]
  7. 7.
    Drepper T, Eggert T, Circolone F, Heck A, Krauss U, et al. 2007.. Reporter proteins for in vivo fluorescence without oxygen. . Nat. Biotechnol. 25::44345
    [Crossref] [Google Scholar]
  8. 8.
    Fischer AJ, Lagarias JC. 2004.. Harnessing phytochrome's glowing potential. . PNAS 101::1733439
    [Crossref] [Google Scholar]
  9. 9.
    Shu X, Royant A, Lin MZ, Aguilera TA, Lev-Ram V, et al. 2009.. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. . Science 324::8047
    [Crossref] [Google Scholar]
  10. 10.
    Kumagai A, Ando R, Miyatake H, Greimel P, Kobayashi T, et al. 2013.. A bilirubin-inducible fluorescent protein from eel muscle. . Cell 153::160211
    [Crossref] [Google Scholar]
  11. 11.
    Rodriguez EA, Tran GN, Gross LA, Crisp JL, Shu X, et al. 2016.. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. . Nat. Methods 13::76369
    [Crossref] [Google Scholar]
  12. 12.
    Shemetov AA, Oliinyk OS, Verkhusha VV. 2017.. How to increase brightness of near-infrared fluorescent proteins in mammalian cells. . Cell Chem. Biol. 24::75866.e3
    [Crossref] [Google Scholar]
  13. 13.
    Matlashov ME, Shcherbakova DM, Alvelid J, Baloban M, Pennacchietti F, et al. 2020.. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. . Nat. Commun. 11::239
    [Crossref] [Google Scholar]
  14. 14.
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. 2003.. A general method for the covalent labeling of fusion proteins with small molecules in vivo. . Nat. Biotechnol. 21::8689
    [Crossref] [Google Scholar]
  15. 15.
    Gautier A, Juillerat A, Heinis C, Correa IR Jr., Kindermann M, et al. 2008.. An engineered protein tag for multiprotein labeling in living cells. . Chem. Biol. 15::12836
    [Crossref] [Google Scholar]
  16. 16.
    Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, et al. 2008.. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. . ACS Chem. Biol. 3::37382
    [Crossref] [Google Scholar]
  17. 17.
    Szent-Gyorgyi C, Schmidt BF, Creeger Y, Fisher GW, Zakel KL, et al. 2008.. Fluorogen-activating single-chain antibodies for imaging cell surface proteins. . Nat. Biotechnol. 26::23540
    [Crossref] [Google Scholar]
  18. 18.
    Xu S, Hu HY. 2018.. Fluorogen-activating proteins: beyond classical fluorescent proteins. . Acta Pharm. Sin. B 8::33948
    [Crossref] [Google Scholar]
  19. 19.
    Plamont MA, Billon-Denis E, Maurin S, Gauron C, Pimenta FM, et al. 2016.. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo. . PNAS 113::497502
    [Crossref] [Google Scholar]
  20. 20.
    Benaissa H, Ounoughi K, Aujard I, Fischer E, Goiame R, et al. 2021.. Engineering of a fluorescent chemogenetic reporter with tunable color for advanced live-cell imaging. . Nat. Commun. 12::6989
    [Crossref] [Google Scholar]
  21. 21.
    de Wet JR, Wood KV, Helinski DR, DeLuca M. 1985.. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. . PNAS 82::787073
    [Crossref] [Google Scholar]
  22. 22.
    Thorne N, Inglese J, Auld DS. 2010.. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. . Chem. Biol. 17::64657
    [Crossref] [Google Scholar]
  23. 23.
    Lorenz WW, McCann RO, Longiaru M, Cormier MJ. 1991.. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. . PNAS 88::443842
    [Crossref] [Google Scholar]
  24. 24.
    Wurdinger T, Badr C, Pike L, de Kleine R, Weissleder R, et al. 2008.. A secreted luciferase for ex vivo monitoring of in vivo processes. . Nat. Methods 5::17173
    [Crossref] [Google Scholar]
  25. 25.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, et al. 2012.. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. . ACS Chem. Biol. 7::184857
    [Crossref] [Google Scholar]
  26. 26.
    Liu S, Su Y, Lin MZ, Ronald JA. 2021.. Brightening up biology: advances in luciferase systems for in vivo imaging. . ACS Chem. Biol. 16::270718
    [Crossref] [Google Scholar]
  27. 27.
    Fleiss A, Sarkisyan KS. 2019.. A brief review of bioluminescent systems. 2019:. Curr. Genet. 65::87782
    [Crossref] [Google Scholar]
  28. 28.
    Syed AJ, Anderson JC. 2021.. Applications of bioluminescence in biotechnology and beyond. . Chem. Soc. Rev. 50::5668705
    [Crossref] [Google Scholar]
  29. 29.
    Cho KF, Branon TC, Udeshi ND, Myers SA, Carr SA, Ting AY. 2020.. Proximity labeling in mammalian cells with TurboID and split-TurboID. . Nat. Protoc. 15::397199
    [Crossref] [Google Scholar]
  30. 30.
    Porstmann B, Porstmann T, Nugel E, Evers U. 1985.. Which of the commonly used marker enzymes gives the best results in colorimetric and fluorimetric enzyme immunoassays: horseradish peroxidase, alkaline phosphatase or β-galactosidase?. J. Immunol. Methods 79::2737
    [Crossref] [Google Scholar]
  31. 31.
    Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, et al. 2012.. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. . Nat. Biotechnol. 30::114318
    [Crossref] [Google Scholar]
  32. 32.
    Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, et al. 2015.. Directed evolution of APEX2 for electron microscopy and proximity labeling. . Nat. Methods 12::5154
    [Crossref] [Google Scholar]
  33. 33.
    Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, et al. 2018.. Efficient proximity labeling in living cells and organisms with TurboID. . Nat. Biotechnol. 36::88087
    [Crossref] [Google Scholar]
  34. 34.
    Han Y, Branon TC, Martell JD, Boassa D, Shechner D, et al. 2019.. Directed evolution of split APEX2 peroxidase. . ACS Chem. Biol. 14::61935
    [Crossref] [Google Scholar]
  35. 35.
    Zhou G, Wan WW, Wang W. 2022.. Modular peroxidase-based reporters for detecting protease activity and protein interactions with temporal gating. . J. Am. Chem. Soc. 144::2293340
    [Crossref] [Google Scholar]
  36. 36.
    Zhang R, Anguiano M, Aarrestad IK, Lin S, Chandra J, et al. 2024.. Rapid, biochemical tagging of cellular activity history in vivo. . Nat. Methods 21:172535
    [Google Scholar]
  37. 37.
    Wu Y, Jiang T. 2022.. Developments in FRET- and BRET-based biosensors. . Micromachines 13::1789
    [Crossref] [Google Scholar]
  38. 38.
    Greenwald EC, Mehta S, Zhang J. 2018.. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. . Chem. Rev. 118::1170794
    [Crossref] [Google Scholar]
  39. 39.
    Buch S. 2014.. Growth factor signaling: implications for disease and therapeutics. . J. Neuroimmune Pharmacol. 9::6568
    [Crossref] [Google Scholar]
  40. 40.
    Teleanu RI, Niculescu AG, Roza E, Vladacenco O, Grumezescu AM, Teleanu DM. 2022.. Neurotransmitters—key factors in neurological and neurodegenerative disorders of the central nervous system. . Int. J. Mol. Sci. 23::5954
    [Crossref] [Google Scholar]
  41. 41.
    Baird GS, Zacharias DA, Tsien RY. 1999.. Circular permutation and receptor insertion within green fluorescent proteins. . PNAS 96::1124146
    [Crossref] [Google Scholar]
  42. 42.
    Hackley CR, Mazzoni EO, Blau J. 2018.. cAMPr: a single-wavelength fluorescent sensor for cyclic AMP. . Sci. Signal. 11::eaah3738
    [Crossref] [Google Scholar]
  43. 43.
    Nakai J, Ohkura M, Imoto K. 2001.. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. . Nat. Biotechnol. 19::13741
    [Crossref] [Google Scholar]
  44. 44.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, et al. 2009.. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. . Nat. Methods 6::87581
    [Crossref] [Google Scholar]
  45. 45.
    Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, et al. 2013.. Ultrasensitive fluorescent proteins for imaging neuronal activity. . Nature 499::295300
    [Crossref] [Google Scholar]
  46. 46.
    Zhang Y, Rozsa M, Liang Y, Bushey D, Wei Z, et al. 2023.. Fast and sensitive GCaMP calcium indicators for imaging neural populations. . Nature 615::88491
    [Crossref] [Google Scholar]
  47. 47.
    Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, et al. 2011.. An expanded palette of genetically encoded Ca2+ indicators. . Science 333::188891
    [Crossref] [Google Scholar]
  48. 48.
    Inoue M, Takeuchi A, Horigane S, Ohkura M, Gengyo-Ando K, et al. 2015.. Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. . Nat. Methods 12::6470
    [Crossref] [Google Scholar]
  49. 49.
    Mohr MA, Bushey D, Aggarwal A, Marvin JS, Kim JJ, et al. 2020.. jYCaMP: an optimized calcium indicator for two-photon imaging at fiber laser wavelengths. . Nat. Methods 17::69497
    [Crossref] [Google Scholar]
  50. 50.
    Deo C, Abdelfattah AS, Bhargava HK, Berro AJ, Falco N, et al. 2021.. The HaloTag as a general scaffold for far-red tunable chemigenetic indicators. . Nat. Chem. Biol. 17::71823
    [Crossref] [Google Scholar]
  51. 51.
    Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, et al. 2013.. An optimized fluorescent probe for visualizing glutamate neurotransmission. . Nat. Methods 10::16270
    [Crossref] [Google Scholar]
  52. 52.
    Helassa N, Dürst CD, Coates C, Kerruth S, Arif U, et al. 2018.. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. . PNAS 115::559499
    [Crossref] [Google Scholar]
  53. 53.
    Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, et al. 2018.. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. . Nat. Methods 15::93639
    [Crossref] [Google Scholar]
  54. 54.
    Marvin JS, Shimoda Y, Magloire V, Leite M, Kawashima T, et al. 2019.. A genetically encoded fluorescent sensor for in vivo imaging of GABA. . Nat. Methods 16::76370
    [Crossref] [Google Scholar]
  55. 55.
    Unger EK, Keller JP, Altermatt M, Liang R, Matsui A, et al. 2020.. Directed evolution of a selective and sensitive serotonin sensor via machine learning. . Cell 183::19862002.e26
    [Crossref] [Google Scholar]
  56. 56.
    Marvin JS, Schreiter ER, Echevarria IM, Looger LL. 2011.. A genetically encoded, high-signal-to-noise maltose sensor. . Proteins 79::302536
    [Crossref] [Google Scholar]
  57. 57.
    Jing M, Li Y, Zeng J, Huang P, Skirzewski M, et al. 2020.. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. . Nat. Methods 17::113946
    [Crossref] [Google Scholar]
  58. 58.
    Jing M, Zhang P, Wang G, Feng J, Mesik L, et al. 2018.. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. . Nat. Biotechnol. 36::72637
    [Crossref] [Google Scholar]
  59. 59.
    Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, et al. 2018.. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. . Science 360::eaat4422
    [Crossref] [Google Scholar]
  60. 60.
    Sun F, Zeng J, Jing M, Zhou J, Feng J, et al. 2018.. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. . Cell 174::48196.e19
    [Crossref] [Google Scholar]
  61. 61.
    Wan J, Peng W, Li X, Qian T, Song K, et al. 2021.. A genetically encoded sensor for measuring serotonin dynamics. . Nat. Neurosci. 24::74652
    [Crossref] [Google Scholar]
  62. 62.
    Dong C, Ly C, Dunlap LE, Vargas MV, Sun J, et al. 2021.. Psychedelic-inspired drug discovery using an engineered biosensor. . Cell 184::277992.e18
    [Crossref] [Google Scholar]
  63. 63.
    Kubitschke M, Muller M, Wallhorn L, Pulin M, Mittag M, et al. 2022.. Next generation genetically encoded fluorescent sensors for serotonin. . Nat. Commun. 13::7525
    [Crossref] [Google Scholar]
  64. 64.
    Dong C, Zheng Y, Long-Iyer K, Wright EC, Li Y, Tian L. 2022.. Fluorescence imaging of neural activity, neurochemical dynamics, and drug-specific receptor conformation with genetically encoded sensors. . Annu. Rev. Neurosci. 45::27394
    [Crossref] [Google Scholar]
  65. 65.
    Kostyuk AI, Demidovich AD, Kotova DA, Belousov VV, Bilan DS. 2019.. Circularly permuted fluorescent protein–based indicators: history, principles, and classification. . Int. J. Mol. Sci. 20::4200
    [Crossref] [Google Scholar]
  66. 66.
    Fosque BF, Sun Y, Dana H, Yang CT, Ohyama T, et al. 2015.. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. . Science 347::75560
    [Crossref] [Google Scholar]
  67. 67.
    Moeyaert B, Holt G, Madangopal R, Perez-Alvarez A, Fearey BC, et al. 2018.. Improved methods for marking active neuron populations. . Nat. Commun. 9::4440
    [Crossref] [Google Scholar]
  68. 68.
    Huppertz MC, Wilhelm J, Grenier V, Schneider MW, Falt T, et al. 2024.. Recording physiological history of cells with chemical labeling. . Science 383::89097
    [Crossref] [Google Scholar]
  69. 69.
    Kroning KE, Wang W. 2021.. Designing a single protein-chain reporter for opioid detection at cellular resolution. . Angew. Chem. Int. Ed. 60::1335865
    [Crossref] [Google Scholar]
  70. 70.
    Kroning K, Gannot N, Li X, Putansu A, Zhou G, et al. 2024.. Single-chain fluorescent integrators for mapping G-protein-coupled receptor agonists. . PNAS 121::e2307090121
    [Crossref] [Google Scholar]
  71. 71.
    Sanchez MI, Nguyen QA, Wang W, Soltesz I, Ting AY. 2020.. Transcriptional readout of neuronal activity via an engineered Ca2+-activated protease. . PNAS 117::3318696
    [Crossref] [Google Scholar]
  72. 72.
    Erdenee E, Ting AY. 2022.. A dual-purpose real-time indicator and transcriptional integrator for calcium detection in living cells. . ACS Synth. Biol. 11::108695
    [Crossref] [Google Scholar]
  73. 73.
    Svoboda M, Konvalinka J, Trempe JF, Grantz Saskova K. 2019.. The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response. . DNA Repair 80::4551
    [Crossref] [Google Scholar]
  74. 74.
    Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. 2013.. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. . BMC Cell Biol. 14::32
    [Crossref] [Google Scholar]
  75. 75.
    Zephyr J, Yilmaz NK, Schiffer CA. 2021.. Viral proteases: structure, mechanism and inhibition. . Enzymes 50::30133
    [Crossref] [Google Scholar]
  76. 76.
    Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, et al. 2022.. The SARS-CoV-2 main protease (Mpro): structure, function, and emerging therapies for COVID-19. . MedComm 3::e151
    [Crossref] [Google Scholar]
  77. 77.
    Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. 2018.. Proteases and protease inhibitors in infectious diseases. . Med. Res. Rev. 38::1295331
    [Crossref] [Google Scholar]
  78. 78.
    McIlwain DR, Berger T, Mak TW. 2013.. Caspase functions in cell death and disease. . Cold Spring Harb. Perspect. Biol. 5::a008656
    [Crossref] [Google Scholar]
  79. 79.
    Fan F, Binkowski BF, Butler BL, Stecha PF, Lewis MK, Wood KV. 2008.. Novel genetically encoded biosensors using firefly luciferase. . ACS Chem. Biol. 3::34651
    [Crossref] [Google Scholar]
  80. 80.
    Wigdal SS, Anderson JL, Vidugiris GJ, Shultz J, Wood KV, Fan F. 2008.. A novel bioluminescent protease assay using engineered firefly luciferase. . Curr. Chem. Genom. 2::1628
    [Crossref] [Google Scholar]
  81. 81.
    Gerber PP, Duncan LM, Greenwood EJ, Marelli S, Naamati A, et al. 2022.. A protease-activatable luminescent biosensor and reporter cell line for authentic SARS-CoV-2 infection. . PLOS Pathog. 18::e1010265
    [Crossref] [Google Scholar]
  82. 82.
    Zhang J, Wang X, Cui W, Wang W, Zhang H, et al. 2013.. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. . Nat. Commun. 4::2157
    [Crossref] [Google Scholar]
  83. 83.
    Wang Y, Lu T, Sun G, Zheng Y, Yang S, et al. 2019.. Targeting of apoptosis gene loci by reprogramming factors leads to selective eradication of leukemia cells. . Nat. Commun. 10::5594
    [Crossref] [Google Scholar]
  84. 84.
    To TL, Schepis A, Ruiz-Gonzalez R, Zhang Q, Yu D, et al. 2016.. Rational design of a GFP-based fluorogenic caspase reporter for imaging apoptosis in vivo. . Cell Chem. Biol. 23::87582
    [Crossref] [Google Scholar]
  85. 85.
    To TL, Piggott BJ, Makhijani K, Yu D, Jan YN, Shu X. 2015.. Rationally designed fluorogenic protease reporter visualizes spatiotemporal dynamics of apoptosis in vivo. . PNAS 112::333843
    [Crossref] [Google Scholar]
  86. 86.
    Dezfulian MH, Kula T, Pranzatelli T, Kamitaki N, Meng Q, et al. 2023.. TScan-II: a genome-scale platform for the de novo identification of CD4+ T cell epitopes. . Cell 186::556986.e21
    [Crossref] [Google Scholar]
  87. 87.
    Nicholls SB, Chu J, Abbruzzese G, Tremblay KD, Hardy JA. 2011.. Mechanism of a genetically encoded dark-to-bright reporter for caspase activity. . J. Biol. Chem. 286::2497786
    [Crossref] [Google Scholar]
  88. 88.
    Kroning KE, Li M, Shen J, Fiel H, Nassar M, Wang W. 2022.. A modular fluorescent sensor motif used to detect opioids, protein–protein interactions, and protease activity. . ACS Chem. Biol. 17::221220
    [Crossref] [Google Scholar]
  89. 89.
    Nicholls SB, Hardy JA. 2013.. Structural basis of fluorescence quenching in caspase activatable GFP. . Protein Sci. 22::24757
    [Crossref] [Google Scholar]
  90. 90.
    Wu P, Nicholls SB, Hardy JA. 2013.. A tunable, modular approach to fluorescent protease-activated reporters. . Biophys. J. 104::160514
    [Crossref] [Google Scholar]
  91. 91.
    Bartok E, Bauernfeind F, Khaminets MG, Jakobs C, Monks B, et al. 2013.. iGLuc: a luciferase-based inflammasome and protease activity reporter. . Nat. Methods 10::14754
    [Crossref] [Google Scholar]
  92. 92.
    Ludwig-Portugall I, Bartok E, Dhana E, Evers BD, Primiano MJ, et al. 2016.. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. . Kidney Int. 90::52539
    [Crossref] [Google Scholar]
  93. 93.
    Braun A, Farber MJ, Klase ZA, Berget PB, Myers KA. 2018.. A cell surface display fluorescent biosensor for measuring MMP14 activity in real-time. . Sci. Rep. 8::5916
    [Crossref] [Google Scholar]
  94. 94.
    Shekhawat SS, Porter JR, Sriprasad A, Ghosh I. 2009.. An autoinhibited coiled-coil design strategy for split-protein protease sensors. . J. Am. Chem. Soc. 131::1528490
    [Crossref] [Google Scholar]
  95. 95.
    Zhang Q, Schepis A, Huang H, Yang J, Ma W, et al. 2019.. Designing a green fluorogenic protease reporter by flipping a β strand of GFP for imaging apoptosis in animals. . J. Am. Chem. Soc. 141::452630
    [Crossref] [Google Scholar]
  96. 96.
    Froggatt HM, Heaton BE, Heaton NS. 2020.. Development of a fluorescence-based, high-throughput SARS-CoV-2 3CLpro reporter assay. . J. Virol. 94::0126520
    [Crossref] [Google Scholar]
  97. 97.
    Li X, Lidsky PV, Xiao Y, Wu CT, Garcia-Knight M, et al. 2021.. Ethacridine inhibits SARS-CoV-2 by inactivating viral particles. . PLOS Pathog. 17::e1009898
    [Crossref] [Google Scholar]
  98. 98.
    Ma C, Sacco MD, Xia Z, Lambrinidis G, Townsend JA, et al. 2021.. Discovery of SARS-CoV-2 papain-like protease inhibitors through a combination of high-throughput screening and a FlipGFP-based reporter assay. . ACS Cent. Sci. 7::124560
    [Crossref] [Google Scholar]
  99. 99.
    Drayman N, DeMarco JK, Jones KA, Azizi SA, Froggatt HM, et al. 2021.. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. . Science 373::93136
    [Crossref] [Google Scholar]
  100. 100.
    Arakawa M, Yoshida A, Okamura S, Ebina H, Morita E. 2023.. A highly sensitive NanoLuc-based protease biosensor for detecting apoptosis and SARS-CoV-2 infection. . Sci. Rep. 13::1753
    [Crossref] [Google Scholar]
  101. 101.
    Coppola JM, Ross BD, Rehemtulla A. 2008.. Noninvasive imaging of apoptosis and its application in cancer therapeutics. . Clin. Cancer Res. 14::2492501
    [Crossref] [Google Scholar]
  102. 102.
    Wang L, Fu Q, Dong Y, Zhou Y, Jia S, et al. 2010.. Bioluminescence imaging of hepatitis C virus NS3/4A serine protease activity in cells and living animals. . Antiviral Res. 87::5056
    [Crossref] [Google Scholar]
  103. 103.
    Pawson T, Nash P. 2000.. Protein–protein interactions define specificity in signal transduction. . Genes Dev. 14::102747
    [Crossref] [Google Scholar]
  104. 104.
    Goos H, Kinnunen M, Salokas K, Tan Z, Liu X, et al. 2022.. Human transcription factor protein interaction networks. . Nat. Commun. 13::766
    [Crossref] [Google Scholar]
  105. 105.
    Lu H, Zhou Q, He J, Jiang Z, Peng C, et al. 2020.. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. . Signal Transduct. Target Ther. 5::213
    [Crossref] [Google Scholar]
  106. 106.
    Xing S, Wallmeroth N, Berendzen KW, Grefen C. 2016.. Techniques for the analysis of protein–protein interactions in vivo. . Plant Physiol. 171::72758
    [Google Scholar]
  107. 107.
    Elhabashy H, Merino F, Alva V, Kohlbacher O, Lupas AN. 2022.. Exploring protein–protein interactions at the proteome level. . Structure 30::46275
    [Crossref] [Google Scholar]
  108. 108.
    Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P, et al. 2016.. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. . ACS Chem. Biol. 11::4008
    [Crossref] [Google Scholar]
  109. 109.
    Li JF, Bush J, Xiong Y, Li L, McCormack M. 2011.. Large-scale protein–protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation. . PLOS ONE 6::e27364
    [Crossref] [Google Scholar]
  110. 110.
    Luker KE, Luker GD. 2014.. Split Gaussia luciferase for imaging ligand–receptor binding. . Methods Mol. Biol. 1098::5969
    [Crossref] [Google Scholar]
  111. 111.
    Lund CH, Bromley JR, Stenbaek A, Rasmussen RE, Scheller HV, Sakuragi Y. 2015.. A reversible Renilla luciferase protein complementation assay for rapid identification of protein–protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus. . J. Exp. Bot. 66::8597
    [Crossref] [Google Scholar]
  112. 112.
    To TL, Zhang Q, Shu X. 2016.. Structure-guided design of a reversible fluorogenic reporter of protein–protein interactions. . Protein Sci. 25::74853
    [Crossref] [Google Scholar]
  113. 113.
    Yang J, Xiao Y, Lidsky PV, Wu CT, Bonser LR, et al. 2023.. Fluorogenic reporter enables identification of compounds that inhibit SARS-CoV-2. . Nat. Microbiol. 8::12134
    [Crossref] [Google Scholar]
  114. 114.
    Tchekanda E, Sivanesan D, Michnick SW. 2014.. An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions. . Nat. Methods 11::64144
    [Crossref] [Google Scholar]
  115. 115.
    Tebo AG, Gautier A. 2019.. A split fluorescent reporter with rapid and reversible complementation. . Nat. Commun. 10::2822
    [Crossref] [Google Scholar]
  116. 116.
    Feng S, Sekine S, Pessino V, Li H, Leonetti MD, Huang B. 2017.. Improved split fluorescent proteins for endogenous protein labeling. . Nat. Commun. 8::370
    [Crossref] [Google Scholar]
  117. 117.
    Bill A, Espinola S, Guthy D, Haling JR, Lanter M, et al. 2021.. EndoBind detects endogenous protein–protein interactions in real time. . Commun. Biol. 4::1085
    [Crossref] [Google Scholar]
  118. 118.
    Makhija S, Brown D, Rudlaff RM, Doh JK, Bourke S, et al. 2021.. Versatile labeling and detection of endogenous proteins using tag-assisted split enzyme complementation. . ACS Chem. Biol. 16::67181
    [Crossref] [Google Scholar]
  119. 119.
    Ohmuro-Matsuyama Y, Ueda H. 2018.. Homogeneous noncompetitive luminescent immunodetection of small molecules by ternary protein fragment complementation. . Anal. Chem. 90::30014
    [Crossref] [Google Scholar]
  120. 120.
    Bottone S, Broch F, Brion A, Hajji LE, Benaissa H, Gautier A. 2023.. A tripartite chemogenetic fluorescent reporter for imaging ternary protein interactions. . bioRxiv 563144. https://doi.org/10.1101/2023.10.19.563144
  121. 121.
    Romei MG, Boxer SG. 2019.. Split green fluorescent proteins: scope, limitations, and outlook. . Annu. Rev. Biophys. 48::1944
    [Crossref] [Google Scholar]
  122. 122.
    Offenborn JN, Waadt R, Kudla J. 2015.. Visualization and translocation of ternary Calcineurin-A/Calcineurin-B/Calmodulin-2 protein complexes by dual-color trimolecular fluorescence complementation. . New Phytol. 208::26979
    [Crossref] [Google Scholar]
  123. 123.
    Villalobos V, Naik S, Bruinsma M, Dothager RS, Pan MH, et al. 2010.. Dual-color click beetle luciferase heteroprotein fragment complementation assays. . Chem. Biol. 17::101829
    [Crossref] [Google Scholar]
  124. 124.
    Bruckner A, Polge C, Lentze N, Auerbach D, Schlattner U. 2009.. Yeast two-hybrid, a powerful tool for systems biology. . Int. J. Mol. Sci. 10::276388
    [Crossref] [Google Scholar]
  125. 125.
    Petschnigg J, Groisman B, Kotlyar M, Taipale M, Zheng Y, et al. 2014.. The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. . Nat. Methods 11::58592
    [Crossref] [Google Scholar]
  126. 126.
    Stagljar I, Korostensky C, Johnsson N, te Heesen S. 1998.. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. . PNAS 95::518792
    [Crossref] [Google Scholar]
  127. 127.
    Wehr MC, Laage R, Bolz U, Fischer TM, Grunewald S, et al. 2006.. Monitoring regulated protein-protein interactions using split TEV. . Nat. Methods 3::98593
    [Crossref] [Google Scholar]
  128. 128.
    Barnea G, Strapps W, Herrada G, Berman Y, Ong J, et al. 2008.. The genetic design of signaling cascades to record receptor activation. . PNAS 105::6469
    [Crossref] [Google Scholar]
  129. 129.
    Lee D, Creed M, Jung K, Stefanelli T, Wendler DJ, et al. 2017.. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. . Nat. Methods 14::495503
    [Crossref] [Google Scholar]
  130. 130.
    Lee D, Hyun JH, Jung K, Hannan P, Kwon HB. 2017.. A calcium- and light-gated switch to induce gene expression in activated neurons. . Nat. Biotechnol. 35::85863
    [Crossref] [Google Scholar]
  131. 131.
    Wang W, Wildes CP, Pattarabanjird T, Sanchez MI, Glober GF, et al. 2017.. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. . Nat. Biotechnol. 35::86471
    [Crossref] [Google Scholar]
  132. 132.
    Kim MW, Wang W, Sanchez MI, Coukos R, von Zastrow M, Ting AY. 2017.. Time-gated detection of protein–protein interactions with transcriptional readout. . eLife 6::e30233
    [Crossref] [Google Scholar]
  133. 133.
    Kim CK, Cho KF, Kim MW, Ting AY. 2019.. Luciferase-LOV BRET enables versatile and specific transcriptional readout of cellular protein–protein interactions. . eLife 8::e43826
    [Crossref] [Google Scholar]
  134. 134.
    Sanchez MI, Ting AY. 2020.. Directed evolution improves the catalytic efficiency of TEV protease. . Nat. Methods 17::16774
    [Crossref] [Google Scholar]
  135. 135.
    Kim CK, Sanchez MI, Hoerbelt P, Fenno LE, Malenka RC, et al. 2020.. A molecular calcium integrator reveals a striatal cell type driving aversion. . Cell 183::200319.e16
    [Crossref] [Google Scholar]
  136. 136.
    Coukos R, Yao D, Sanchez MI, Strand ET, Olive ME, et al. 2021.. An engineered transcriptional reporter of protein localization identifies regulators of mitochondrial and ER membrane protein trafficking in high-throughput CRISPRi screens. . eLife 10::e69142
    [Crossref] [Google Scholar]
  137. 137.
    Lee SY, Cheah JS, Zhao B, Xu C, Roh H, et al. 2023.. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. . Nat. Methods 20::90817
    [Crossref] [Google Scholar]
  138. 138.
    Minner-Meinen R, Weber JN, Albrecht A, Matis R, Behnecke M, et al. 2021.. Split-HaloTag imaging assay for sophisticated microscopy of protein–protein interactions in planta. . Plant Commun. 2::100212
    [Crossref] [Google Scholar]
  139. 139.
    Kompa J, Bruins J, Glogger M, Wilhelm J, Frei MS, et al. 2023.. Exchangeable HaloTag ligands for super-resolution fluorescence microscopy. . J. Am. Chem. Soc. 145::307583
    [Crossref] [Google Scholar]
  140. 140.
    Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, et al. 2021.. De novo design of modular and tunable protein biosensors. . Nature 591::48287
    [Crossref] [Google Scholar]
  141. 141.
    Feng S, Varshney A, Coto Villa D, Modavi C, Kohler J, et al. 2019.. Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses. . Commun. Biol. 2::344
    [Crossref] [Google Scholar]
  142. 142.
    Martell JD, Yamagata M, Deerinck TJ, Phan S, Kwa CG, et al. 2016.. A split horseradish peroxidase for the detection of intercellular protein–protein interactions and sensitive visualization of synapses. . Nat. Biotechnol. 34::77480
    [Crossref] [Google Scholar]
  143. 143.
    Cho KF, Branon TC, Rajeev S, Svinkina T, Udeshi ND, et al. 2020.. Split-TurboID enables contact-dependent proximity labeling in cells. . PNAS 117::1214354
    [Crossref] [Google Scholar]
  144. 144.
    Shao S, Zhang H, Zeng Y, Li Y, Sun C, Sun Y. 2021.. TagBiFC technique allows long-term single-molecule tracking of protein–protein interactions in living cells. . Commun. Biol. 4::378
    [Crossref] [Google Scholar]
  145. 145.
    Mie M, Naoki T, Kobatake E. 2015.. Tracking a protein following dissociation from a protein-protein complex using a split SNAP-tag system. . Anal. Biochem. 477::5345
    [Crossref] [Google Scholar]
  146. 146.
    Mie M, Naoki T, Kobatake E. 2016.. Development of a split SNAP-CLIP double labeling system for tracking proteins following dissociation from protein–protein complexes in living cells. . Anal. Chem. 88::816671
    [Crossref] [Google Scholar]
  147. 147.
    Mie M, Naoki T, Uchida K, Kobatake E. 2012.. Development of a split SNAP-tag protein complementation assay for visualization of protein-protein interactions in living cells. . Analyst 137::476065
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-070124-035857
Loading
/content/journals/10.1146/annurev-anchem-070124-035857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error