1932

Abstract

Mass spectrometry (MS)-based top-down proteomics (TDP) characterizes proteoforms in cells, tissues, and biological fluids (e.g., human plasma) to better our understanding of protein function and to discover new protein biomarkers for disease diagnosis and therapeutic development. Separations of proteoforms with high peak capacity are needed due to the high complexity of biological samples. Capillary electrophoresis (CE)-MS has been recognized as a powerful analytical tool for protein analysis since the 1980s owing to its high separation efficiency and sensitivity of CE-MS for proteoforms. Here, we review benefits of CE-MS for advancing TDP, challenges and solutions of the method, and the main research areas in which CE-MS-based TDP can make significant contributions. We provide a brief perspective of CE-MS-based TDP moving forward.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071124-092242
2025-05-15
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/anchem/18/1/annurev-anchem-071124-092242.html?itemId=/content/journals/10.1146/annurev-anchem-071124-092242&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Smith LM, Kelleher NL. 2013.. Proteoform: a single term describing protein complexity. . Nat. Methods 10:(3):18687
    [Crossref] [Google Scholar]
  2. 2.
    Costa HA, Leitner MG, Sos ML, Mavrantoni A, Rychkova A, et al. 2015.. Discovery and functional characterization of a neomorphic PTEN mutation. . PNAS 112:(45):1397681
    [Crossref] [Google Scholar]
  3. 3.
    Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, et al. 2016.. Widespread expansion of protein interaction capabilities by alternative splicing. . Cell 164:(4):80517
    [Crossref] [Google Scholar]
  4. 4.
    Fox GC, Poncha KF, Smith BR, van der Maas LN, Robbins NN, et al. 2024.. Histone H3K18 & H3K23 acetylation directs establishment of MLL-mediated H3K4 methylation. . J. Biol. Chem. 300:(8):107527
    [Crossref] [Google Scholar]
  5. 5.
    Adams LM, DeHart CJ, Drown BS, Anderson LC, Bocik W, et al. 2023.. Mapping the KRAS proteoform landscape in colorectal cancer identifies truncated KRAS4B that decreases MAPK signaling. . J. Biol. Chem. 299:(1):102768
    [Crossref] [Google Scholar]
  6. 6.
    Nesvizhskii AI, Aebersold R. 2005.. Interpretation of shotgun proteomic data: the protein inference problem. . Mol. Cell. Proteom. 4:(10):141940
    [Crossref] [Google Scholar]
  7. 7.
    Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, et al. 2024.. Top-down proteomics. . Nat. Rev. Methods Primers 4::38
    [Crossref] [Google Scholar]
  8. 8.
    Toby TK, Fornelli L, Kelleher NL. 2016.. Progress in top-down proteomics and the analysis of proteoforms. . Annu. Rev. Anal. Chem. 9::499519
    [Crossref] [Google Scholar]
  9. 9.
    Xu T, Wang Q, Wang Q, Sun L. 2024.. Mass spectrometry-intensive top-down proteomics: an update on technology advancements and biomedical applications. . Anal. Methods 16:(28):466482
    [Crossref] [Google Scholar]
  10. 10.
    Smith LM, Agar JN, Chamot-Rooke J, Danis PO, Ge Y, et al. 2021.. The Human Proteoform Project: defining the human proteome. . Sci. Adv. 7:(46):eabk0734
    [Crossref] [Google Scholar]
  11. 11.
    Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, et al. 2018.. How many human proteoforms are there?. Nat. Chem. Biol. 14:(3):20614
    [Crossref] [Google Scholar]
  12. 12.
    Chen D, McCool EN, Yang Z, Shen X, Lubeckyj RA, et al. 2023.. Recent advances (2019–2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. . Mass Spectrom. Rev. 42:(2):61742
    [Crossref] [Google Scholar]
  13. 13.
    Xu T, Sun L. 2021.. A mini review on capillary isoelectric focusing-mass spectrometry for top-down proteomics. . Front Chem. 9::651757
    [Crossref] [Google Scholar]
  14. 14.
    Shen X, Yang Z, McCool EN, Lubeckyj RA, Chen D, Sun L. 2019.. Capillary zone electrophoresis-mass spectrometry for top-down proteomics. . Trends Anal. Chem. 120::115644
    [Crossref] [Google Scholar]
  15. 15.
    Schaffer LV, Millikin RJ, Miller RM, Anderson LC, Fellers RT, et al. 2019.. Identification and quantification of proteoforms by mass spectrometry. . Proteomics 19:(10):1800361
    [Crossref] [Google Scholar]
  16. 16.
    Valaskovic GA, Kelleher NL, McLafferty FW. 1996.. Attomole protein characterization by capillary electrophoresis-mass spectrometry. . Science 273:(5279):11991202
    [Crossref] [Google Scholar]
  17. 17.
    Loo JA, Udseth HR, Smith RD. 1989.. Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. . Anal. Biochem. 179:(2):40412
    [Crossref] [Google Scholar]
  18. 18.
    Qing T, Harrata AK, Lee CS. 1995.. Capillary isoelectric focusing-electrospray mass spectrometry for protein analysis. . Anal. Chem. 67:(19):351519
    [Crossref] [Google Scholar]
  19. 19.
    Yang L, Lee CS, Hofstadler SA, Pasa-Tolic L, Smith RD. 1998.. Capillary isoelectric focusing-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for protein characterization. . Anal. Chem. 70:(15):323541
    [Crossref] [Google Scholar]
  20. 20.
    Paša-Tolić L, Jensen PK, Anderson GA, Lipton MS, Peden KK, et al. 1999.. High throughput proteome-wide precision measurements of protein expression using mass spectrometry. . J. Am. Chem. Soc. 121:(34):794950
    [Crossref] [Google Scholar]
  21. 21.
    Jorgenson JW, Lukacs KD. 1983.. Capillary zone electrophoresis. . Science 222:(4621):26672
    [Crossref] [Google Scholar]
  22. 22.
    Righetti PG, Gelfi C, Conti M. 1997.. Current trends in capillary isoelectric focusing of proteins. . J. Chromatogr. B Biomed. Sci. Appl. 699:(1–2):91104
    [Crossref] [Google Scholar]
  23. 23.
    Gomes FP, Yates JR 3rd. 2019.. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. . Mass Spectr. Rev. 38:(6):44560
    [Crossref] [Google Scholar]
  24. 24.
    Schwenzer A-K, Kruse L, Jooß K, Neusüß C. 2024.. Capillary electrophoresis-mass spectrometry for protein analyses under native conditions: current progress and perspectives. . Proteomics 24:(3–4):2300135
    [Crossref] [Google Scholar]
  25. 25.
    Lubeckyj RA, McCool EN, Shen X, Kou Q, Liu X, Sun L. 2017.. Single-shot top-down proteomics with capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for identification of nearly 600 Escherichia coli proteoforms. . Anal. Chem. 89:(22):1205967
    [Crossref] [Google Scholar]
  26. 26.
    Lubeckyj RA, Basharat AR, Shen X, Liu X, Sun L. 2019.. Large-scale qualitative and quantitative top-down proteomics using capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry with nanograms of proteome samples. . J. Am. Soc. Mass. Spectrom. 30:(8):143545
    [Crossref] [Google Scholar]
  27. 27.
    McCool EN, Lubeckyj RA, Shen X, Chen D, Kou Q, et al. 2018.. Deep top-down proteomics using capillary zone electrophoresis-tandem mass spectrometry: identification of 5700 proteoforms from the Escherichia coli proteome. . Anal. Chem. 90:(9):552933
    [Crossref] [Google Scholar]
  28. 28.
    Dai J, Lamp J, Xia Q, Zhang Y. 2018.. Capillary isoelectric focusing-mass spectrometry method for the separation and online characterization of intact monoclonal antibody charge variants. . Anal. Chem. 90:(3):224654
    [Crossref] [Google Scholar]
  29. 29.
    Wang L, Bo T, Zhang Z, Wang G, Tong W, Da Yong Chen D. 2018.. High resolution capillary isoelectric focusing mass spectrometry analysis of peptides, proteins, and monoclonal antibodies with a flow-through microvial interface. . Anal. Chem. 90:(15):9495503
    [Crossref] [Google Scholar]
  30. 30.
    Xu T, Han L, Thompson AMG, Sun L. 2022.. An improved capillary isoelectric focusing-mass spectrometry method for high-resolution characterization of monoclonal antibody charge variants. . Anal. Methods 14:(4):38393
    [Crossref] [Google Scholar]
  31. 31.
    Ostrowski MA, Mack S, Ninonuevo M, Yan J, ElNaggar M, et al. 2023.. Rapid multi-attribute characterization of intact bispecific antibodies by a microfluidic chip-based integrated icIEF-MS technology. . Electrophoresis 44:(3–4):37886
    [Crossref] [Google Scholar]
  32. 32.
    Xu T, Shen X, Yang Z, Chen D, Lubeckyj RA, et al. 2020.. Automated capillary isoelectric focusing-tandem mass spectrometry for qualitative and quantitative top-down proteomics. . Anal. Chem. 92:(24):1589098
    [Crossref] [Google Scholar]
  33. 33.
    Sadeghi SA, Chen W, Wang Q, Wang Q, Fang F, et al. 2024.. Pilot evaluation of the long-term reproducibility of capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics of a complex proteome sample. . J. Proteome Res. 23:(4):13991407
    [Crossref] [Google Scholar]
  34. 34.
    Zhao Z, Guo Y, Chowdhury T, Anjum S, Li J, et al. 2024.. Top-down proteomics analysis of picogram-level complex samples using spray-capillary-based capillary electrophoresis-mass spectrometry. . Anal. Chem. 96:(21):876371
    [Crossref] [Google Scholar]
  35. 35.
    Johnson KR, Gao Y, Greguš M, Ivanov AR. 2022.. On-capillary cell lysis enables top-down proteomic analysis of single mammalian cells by CE-MS/MS. . Anal. Chem. 94:(41):1435867
    [Crossref] [Google Scholar]
  36. 36.
    Ludwig KR, Sun L, Zhu G, Dovichi NJ, Hummon AB. 2015.. Over 2300 phosphorylated peptide identifications with single-shot capillary zone electrophoresis-tandem mass spectrometry in a 100 min separation. . Anal. Chem. 87:(19):953237
    [Crossref] [Google Scholar]
  37. 37.
    Zhu G, Sun L, Yan X, Dovichi NJ. 2013.. Single-shot proteomics using capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry with production of more than 1250 Escherichia coli peptide identifications in a 50 min separation. . Anal. Chem. 85:(5):256973
    [Crossref] [Google Scholar]
  38. 38.
    Wang Y, Fonslow BR, Wong CCL, Nakorchevsky A, Yates JRI. 2012.. Improving the comprehensiveness and sensitivity of sheathless capillary electrophoresis-tandem mass spectrometry for proteomic analysis. . Anal. Chem. 84:(20):850513
    [Crossref] [Google Scholar]
  39. 39.
    Han X, Wang Y, Aslanian A, Fonslow B, Graczyk B, et al. 2014.. In-line separation by capillary electrophoresis prior to analysis by top-down mass spectrometry enables sensitive characterization of protein complexes. . J. Proteome Res. 13:(12):607886
    [Crossref] [Google Scholar]
  40. 40.
    McCool EN, Sun L. 2019.. Comparing nanoflow reversed-phase liquid chromatography-tandem mass spectrometry and capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics. . Chin. J. Chromatogr. 37:(8):87886
    [Crossref] [Google Scholar]
  41. 41.
    Sun L, Zhu G, Zhang Z, Mou S, Dovichi NJ. 2015.. A third-generation electro-kinetically pumped sheath flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests. . J. Proteome Res. 14:(5):231221
    [Crossref] [Google Scholar]
  42. 42.
    Moini M. 2007.. Simplifying CE–MS operation. 2. Interfacing low-flow separation techniques to mass spectrometry using a porous tip. . Anal. Chem. 79:(11):424146
    [Crossref] [Google Scholar]
  43. 43.
    Fang F, Chen D, Basharat AR, Poulos W, Wang Q, et al. 2024.. Quantitative proteomics reveals the dynamic proteome landscape of zebrafish embryos during the maternal-to-zygotic transition. . iScience 27:(6):109944
    [Crossref] [Google Scholar]
  44. 44.
    Li Y, Champion MM, Sun L, Champion PAD, Wojcik R, Dovichi NJ. 2012.. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry as an alternative proteomics platform to ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry for samples of intermediate complexity. . Anal. Chem. 84:(3):161722
    [Crossref] [Google Scholar]
  45. 45.
    Yang Z, Shen X, Chen D, Sun L. 2019.. Improved nanoflow RPLC-CZE-MS/MS system with high peak capacity and sensitivity for nanogram bottom-up proteomics. . J. Proteome Res. 18:(11):404654
    [Crossref] [Google Scholar]
  46. 46.
    Yang Z, Shen X, Chen D, Sun L. 2018.. Microscale reversed-phase liquid chromatography/capillary zone electrophoresis-tandem mass spectrometry for deep and highly sensitive bottom-up proteomics: identification of 7500 proteins with five micrograms of an MCF7 proteome digest. . Anal. Chem. 90:(17):1047986
    [Crossref] [Google Scholar]
  47. 47.
    Drown BS, Jooß K, Melani RD, Lloyd-Jones C, Camarillo JM, Kelleher NL. 2022.. Mapping the proteoform landscape of five human tissues. . J. Proteome Res. 21:(5):12991310
    [Crossref] [Google Scholar]
  48. 48.
    Wang Q, Xu T, Fang F, Wang Q, Lundquist P, Sun L. 2023.. Capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics of mouse brain integral membrane proteins. . Anal. Chem. 95:(34):1259094
    [Crossref] [Google Scholar]
  49. 49.
    McCool EN, Xu T, Chen W, Beller NC, Nolan SM, et al. 2022.. Deep top-down proteomics revealed significant proteoform-level differences between metastatic and nonmetastatic colorectal cancer cells. . Sci. Adv. 8:(51):eabq6348
    [Crossref] [Google Scholar]
  50. 50.
    Wang Q, Sun L, Lundquist PK. 2023.. Large-scale top-down proteomics of the Arabidopsis thaliana leaf and chloroplast proteomes. . Proteomics 23:(3–4):e2100377
    [Crossref] [Google Scholar]
  51. 51.
    McCool EN, Lodge JM, Basharat AR, Liu X, Coon JJ, Sun L. 2019.. Capillary zone electrophoresis-tandem mass spectrometry with activated ion electron transfer dissociation for large-scale top-down proteomics. . J. Am. Soc. Mass Spectrom. 30:(12):247079
    [Crossref] [Google Scholar]
  52. 52.
    Wang Q, Wang Q, Qi Z, Moeller W, Wysocki VH, Sun L. 2024.. Native proteomics by capillary zone electrophoresis-mass spectrometry. . Angew. Chem. Int. Ed. 136::e202408370
    [Crossref] [Google Scholar]
  53. 53.
    Xu T, Han L, Sun L. 2022.. Automated capillary isoelectric focusing-mass spectrometry with ultrahigh resolution for characterizing microheterogeneity and isoelectric points of intact protein complexes. . Anal. Chem. 94:(27):967482
    [Crossref] [Google Scholar]
  54. 54.
    Shen X, Kou Q, Guo R, Yang Z, Chen D, et al. 2018.. Native proteomics in discovery mode using size-exclusion chromatography-capillary zone electrophoresis-tandem mass spectrometry. . Anal. Chem. 90:(17):1009599
    [Crossref] [Google Scholar]
  55. 55.
    Marie A-L, Georgescauld F, Johnson KR, Ray S, Engen JR, Ivanov AR. 2024.. Native capillary electrophoresis-mass spectrometry of near 1 MDa non-covalent GroEL/GroES/substrate protein complexes. . Adv. Sci. 11:(11):e2306824
    [Crossref] [Google Scholar]
  56. 56.
    Jooß K, Schachner LF, Watson R, Gillespie ZB, Howard SA, et al. 2021.. Separation and characterization of endogenous nucleosomes by native capillary zone electrophoresis-top-down mass spectrometry. . Anal. Chem. 93:(12):515160
    [Crossref] [Google Scholar]
  57. 57.
    Jooß K, McGee JP, Melani RD, Kelleher NL. 2021.. Standard procedures for native CZE-MS of proteins and protein complexes up to 800 kDa. . Electrophoresis 42:(9–10):105059
    [Crossref] [Google Scholar]
  58. 58.
    Chen D, Lubeckyj RA, Yang Z, McCool EN, Shen X, et al. 2020.. Predicting electrophoretic mobility of proteoforms for large-scale top-down proteomics. . Anal. Chem. 92:(5):35037
    [Crossref] [Google Scholar]
  59. 59.
    Chen D, Yang Z, Shen X, Sun L. 2021.. Capillary zone electrophoresis-tandem mass spectrometry as an alternative to liquid chromatography-tandem mass spectrometry for top-down proteomics of histones. . Anal. Chem. 93:(10):441724
    [Crossref] [Google Scholar]
  60. 60.
    Nadendla K, Friedman SH. 2017.. Light control of protein solubility through isoelectric point modulation. . J. Am. Chem. Soc. 139:(49):1786169
    [Crossref] [Google Scholar]
  61. 61.
    Sivasankar S, Subramaniam S, Leckband D. 1998.. Direct molecular level measurements of the electrostatic properties of a protein surface. . PNAS 95:(22):1296166
    [Crossref] [Google Scholar]
  62. 62.
    Smith RD, Barinaga CJ, Udseth HR. 1988.. Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry. . Anal. Chem. 60:(18):194852
    [Crossref] [Google Scholar]
  63. 63.
    Maxwell EJ, Chen DDY. 2008.. Twenty years of interface development for capillary electrophoresis-electrospray ionization-mass spectrometry. . Anal. Chim. Acta 627:(1):2533
    [Crossref] [Google Scholar]
  64. 64.
    Mellors JS, Gorbounov V, Ramsey RS, Ramsey JM. 2008.. Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry. . Anal. Chem. 80:(18):688187
    [Crossref] [Google Scholar]
  65. 65.
    Maxwell EJ, Zhong X, Zhang H, van Zeijl N, Chen DDY. 2010.. Decoupling CE and ESI for a more robust interface with MS. . Electrophoresis 31:(7):113037
    [Crossref] [Google Scholar]
  66. 66.
    Wojcik R, Dada OO, Sadilek M, Dovichi NJ. 2010.. Simplified capillary electrophoresis nanospray sheath-flow interface for high efficiency and sensitive peptide analysis. . Rapid Commun. Mass Spectr. 24:(17):255460
    [Crossref] [Google Scholar]
  67. 67.
    Sun L, Zhu G, Zhao Y, Yan X, Mou S, Dovichi NJ. 2013.. Ultrasensitive and fast bottom-up analysis of femtogram amounts of complex proteome digests. . Angew. Chem. Int. Ed. 52:(51):1366164
    [Crossref] [Google Scholar]
  68. 68.
    Gomes FP, Diedrich JK, Saviola AJ, Memili E, Moura AA, Yates JR. 2020.. EThcD and 213 nm UVPD for top-down analysis of bovine seminal plasma proteoforms on electrophoretic and chromatographic time frames. . Anal. Chem. 92:(4):297987
    [Crossref] [Google Scholar]
  69. 69.
    Han X, Wang Y, Aslanian A, Bern M, Lavallée-Adam M, Yates JRI. 2014.. Sheathless capillary electrophoresis-tandem mass spectrometry for top-down characterization of Pyrococcus furiosus proteins on a proteome scale. . Anal. Chem. 86:(22):1100612
    [Crossref] [Google Scholar]
  70. 70.
    Zhao Y, Sun L, Zhu G, Dovichi NJ. 2016.. Coupling capillary zone electrophoresis to a Q exactive HF mass spectrometer for top-down proteomics: 580 proteoform identifications from yeast. . J. Proteome Res. 15:(10):367985
    [Crossref] [Google Scholar]
  71. 71.
    Füssl F, Trappe A, Carillo S, Jakes C, Bones J. 2020.. Comparative elucidation of cetuximab heterogeneity on the intact protein level by cation exchange chromatography and capillary electrophoresis coupled to mass spectrometry. . Anal. Chem. 92:(7):543138
    [Crossref] [Google Scholar]
  72. 72.
    Choi SB, Zamarbide M, Manzini MC, Nemes P. 2017.. Tapered-tip capillary electrophoresis nano-electrospray ionization mass spectrometry for ultrasensitive proteomics: the mouse cortex. . J. Am. Soc. Mass. Spectrom. 28:(4):597607
    [Crossref] [Google Scholar]
  73. 73.
    Höcker O, Knierman M, Meixner J, Neusüß C. 2021.. Two capillary approach for a multifunctional nanoflow sheath liquid interface for capillary electrophoresis-mass spectrometry. . Electrophoresis 42:(4):36973
    [Crossref] [Google Scholar]
  74. 74.
    Guo X, Fillmore TL, Gao Y, Tang K. 2016.. Capillary electrophoresis-nanoelectrospray ionization-selected reaction monitoring mass spectrometry via a true sheathless metal-coated emitter interface for robust and high-sensitivity sample quantification. . Anal. Chem. 88:(8):441825
    [Crossref] [Google Scholar]
  75. 75.
    Huang L, Wang Z, Cupp-Sutton KA, Smith K, Wu S. 2020.. Spray-capillary: an electrospray-assisted device for quantitative ultralow-volume sample handling. . Anal. Chem. 92:(1):64046
    [Crossref] [Google Scholar]
  76. 76.
    Huang L, Fang M, Cupp-Sutton KA, Wang Z, Smith K, Wu S. 2021.. Spray-capillary-based capillary electrophoresis mass spectrometry for metabolite analysis in single cells. . Anal. Chem. 93:(10):447987
    [Crossref] [Google Scholar]
  77. 77.
    Elshamy YS, Strein TG, Holland LA, Li C, DeBastiani A, et al. 2022.. Nanoflow sheath voltage-free interfacing of capillary electrophoresis and mass spectrometry for the detection of small molecules. . Anal. Chem. 94:(32):1132936
    [Crossref] [Google Scholar]
  78. 78.
    Witzel MT, Veltri LM, Kostelic M, Elshamy YS, Lucas JA, et al. 2024.. Protein analysis using capillary electrophoresis coupled to mass spectrometry through vibrating sharp-edge spray ionization. . Electrophoresis 45::15971605
    [Crossref] [Google Scholar]
  79. 79.
    Yang Z, Shen X, Chen D, Sun L. 2020.. Toward a universal sample preparation method for denaturing top-down proteomics of complex proteomes. . J. Proteome Res. 19:(8):331525
    [Crossref] [Google Scholar]
  80. 80.
    McCool EN, Chen D, Li W, Liu Y, Sun L. 2019.. Capillary zone electrophoresis-tandem mass spectrometry using ultraviolet photodissociation (213 nm) for large-scale top-down proteomics. . Anal. Methods 11:(22):285561
    [Crossref] [Google Scholar]
  81. 81.
    Lubeckyj RA, Sun L. 2022.. Laser capture microdissection-capillary zone electrophoresis-tandem mass spectrometry (LCM-CZE-MS/MS) for spatially resolved top-down proteomics: a pilot study of zebrafish brain. . Mol. Omics 18:(2):11222
    [Crossref] [Google Scholar]
  82. 82.
    Sadeghi SA, Ashkarran AA, Wang Q, Zhu G, Mahmoudi M, Sun L. 2024.. Mass spectrometry-based top-down proteomics in nanomedicine: proteoform-specific measurement of protein corona. . ACS Nano 18:(38):2602436
    [Google Scholar]
  83. 83.
    McCool EN, Lubeckyj R, Shen X, Kou Q, Liu X, Sun L. 2018.. Large-scale top-down proteomics using capillary zone electrophoresis tandem mass spectrometry. . J. Vis. Exp. 140::58644
    [Google Scholar]
  84. 84.
    Figeys D, Ducret A, Yates JR, Aebersold R. 1996.. Protein identification by solid phase microextraction-capillary zone electrophoresis-microelectrospray-tandem mass spectrometry. . Nat. Biotechnol. 14:(11):157983
    [Crossref] [Google Scholar]
  85. 85.
    Tong W, Link A, Eng JK, Yates JR. 1999.. Identification of proteins in complexes by solid-phase microextraction/multistep elution/capillary electrophoresis/tandem mass spectrometry. . Anal. Chem. 71:(13):227078
    [Crossref] [Google Scholar]
  86. 86.
    Zhang Z, Qu Y, Dovichi NJ. 2018.. Capillary zone electrophoresis-mass spectrometry for bottom-up proteomics. . Trends Anal. Chem. 108::2337
    [Crossref] [Google Scholar]
  87. 87.
    Colón Rosado JA, Sun L. 2024.. Solid-phase microextraction-aided capillary zone electrophoresis-mass spectrometry: toward bottom-up proteomics of single human cells. . J. Am. Soc. Mass. Spectrom. 35:(6):112027
    [Crossref] [Google Scholar]
  88. 88.
    Xu T, Wang Q, Wang Q, Sun L. 2023.. Coupling high-field asymmetric waveform ion mobility spectrometry with capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics. . Anal. Chem. 95:(25):9497504
    [Crossref] [Google Scholar]
  89. 89.
    Zhao Y, Sun L, Champion MM, Knierman MD, Dovichi NJ. 2014.. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for top-down characterization of the Mycobacterium marinum secretome. . Anal. Chem. 86:(10):487378
    [Crossref] [Google Scholar]
  90. 90.
    Sun L, Knierman MD, Zhu G, Dovichi NJ. 2013.. Fast top-down intact protein characterization with capillary zone electrophoresis-electrospray ionization tandem mass spectrometry. . Anal. Chem. 85:(12):598995
    [Crossref] [Google Scholar]
  91. 91.
    Zhu G, Sun L, Dovichi NJ. 2017.. Simplified capillary isoelectric focusing with chemical mobilization for intact protein analysis. . J. Sep. Sci. 40:(4):94853
    [Crossref] [Google Scholar]
  92. 92.
    Metzke M, Guan Z. 2008.. Structure-property studies on carbohydrate-derived polymers for use as protein-resistant biomaterials. . Biomacromolecules 9:(1):20815
    [Crossref] [Google Scholar]
  93. 93.
    Shen X, Liang Z, Xu T, Yang Z, Wang Q, et al. 2021.. Investigating native capillary zone electrophoresis-mass spectrometry on a high-end quadrupole-time-of-flight mass spectrometer for the characterization of monoclonal antibodies. . Int. J. Mass Spectrom. 462::116541
    [Crossref] [Google Scholar]
  94. 94.
    Bush DR, Zang L, Belov AM, Ivanov AR, Karger BL. 2016.. High resolution CZE-MS quantitative characterization of intact biopharmaceutical proteins: proteoforms of interferon-β1. . Anal. Chem. 88:(2):113846
    [Crossref] [Google Scholar]
  95. 95.
    Haselberg R, Ratnayake CK, de Jong GJ, Somsen GW. 2010.. Performance of a sheathless porous tip sprayer for capillary electrophoresis-electrospray ionization-mass spectrometry of intact proteins. . J. Chromatogr. A 1217:(48):760511
    [Crossref] [Google Scholar]
  96. 96.
    Li Y, Compton PD, Tran JC, Ntai I, Kelleher NL. 2014.. Optimizing capillary electrophoresis for top-down proteomics of 30–80 kDa proteins. . Proteomics 14:(10):115864
    [Crossref] [Google Scholar]
  97. 97.
    Kelly RT. 2020.. Single-cell proteomics: progress and prospects. . Mol. Cell. Proteom. 19:(11):173948
    [Crossref] [Google Scholar]
  98. 98.
    Zhou M, Uwugiaren N, Williams SM, Moore RJ, Zhao R, et al. 2020.. Sensitive top-down proteomics analysis of a low number of mammalian cells using a nanodroplet sample processing platform. . Anal. Chem. 92:(10):708795
    [Crossref] [Google Scholar]
  99. 99.
    Melby JA, Brown KA, Gregorich ZR, Roberts DS, Chapman EA, et al. 2023.. High sensitivity top-down proteomics captures single muscle cell heterogeneity in large proteoforms. . PNAS 120:(19):e2222081120
    [Crossref] [Google Scholar]
  100. 100.
    Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, et al. 2018.. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. . Nat. Commun. 9::882
    [Crossref] [Google Scholar]
  101. 101.
    Keithley RB, Weaver EM, Rosado AM, Metzinger MP, Hummon AB, Dovichi NJ. 2013.. Single cell metabolic profiling of tumor mimics. . Anal. Chem. 85:(19):891018
    [Crossref] [Google Scholar]
  102. 102.
    Skinner OS, Haverland NA, Fornelli L, Melani RD, Do Vale LHF, et al. 2018.. Top-down characterization of endogenous protein complexes with native proteomics. . Nat. Chem. Biol. 14::3641
    [Crossref] [Google Scholar]
  103. 103.
    Jooß K, McGee JP, Kelleher NL. 2022.. Native mass spectrometry at the convergence of structural biology and compositional proteomics. . Acc. Chem. Res. 55:(14):192837
    [Crossref] [Google Scholar]
  104. 104.
    Fischer MS, Rogers HT, Chapman EA, Chan H-J, Krichel B, et al. 2024.. Online mixed-bed ion exchange chromatography for native top-down proteomics of complex mixtures. . J. Proteome Res. 23:(7):231522
    [Crossref] [Google Scholar]
  105. 105.
    Jones J, Pack L, Hunter JH, Valliere-Douglass JF. 2020.. Native size-exclusion chromatography-mass spectrometry: suitability for antibody-drug conjugate drug-to-antibody ratio quantitation across a range of chemotypes and drug-loading levels. . MAbs 12:(1):1682895
    [Crossref] [Google Scholar]
  106. 106.
    Nguyen A, Moini M. 2008.. Analysis of major protein-protein and protein-metal complexes of erythrocytes directly from cell lysate utilizing capillary electrophoresis mass spectrometry. . Anal. Chem. 80:(18):716973
    [Crossref] [Google Scholar]
  107. 107.
    Belov AM, Viner R, Santos MR, Horn DM, Bern M, et al. 2017.. Analysis of proteins, protein complexes, and organellar proteomes using sheathless capillary zone electrophoresis-native mass spectrometry. . J. Am. Soc. Mass Spectrom. 28:(12):261434
    [Crossref] [Google Scholar]
  108. 108.
    Mehaffey MR, Xia Q, Brodbelt JS. 2020.. Uniting native capillary electrophoresis and multistage ultraviolet photodissociation mass spectrometry for online separation and characterization of Escherichia coli ribosomal proteins and protein complexes. . Anal. Chem. 92:(22):1520211
    [Crossref] [Google Scholar]
  109. 109.
    Fonslow BR, Kang SA, Gestaut DR, Graczyk B, Davis TN, et al. 2010.. Native capillary isoelectric focusing for the separation of protein complex isoforms and subcomplexes. . Anal. Chem. 82:(15):664351
    [Crossref] [Google Scholar]
  110. 110.
    Przybylski C, Mokaddem M, Prull-Janssen M, Saesen E, Lortat-Jacob H, et al. 2015.. On-line capillary isoelectric focusing hyphenated to native electrospray ionization mass spectrometry for the characterization of interferon-γ and variants. . Analyst 140:(2):54350
    [Crossref] [Google Scholar]
  111. 111.
    Zinn S, Vazquez-Lombardi R, Zimmermann C, Sapra P, Jermutus L, Christ D. 2023.. Advances in antibody-based therapy in oncology. . Nat. Cancer 4:(2):16580
    [Crossref] [Google Scholar]
  112. 112.
    Wu G, Yu C, Wang W, Du J, Fu Z, et al. 2023.. Mass spectrometry-based charge heterogeneity characterization of therapeutic mAbs with imaged capillary isoelectric focusing and ion-exchange chromatography as separation techniques. . Anal. Chem. 95:(4):254860
    [Crossref] [Google Scholar]
  113. 113.
    Schlecht J, Moritz B, Kiessig S, Neusüß C. 2023.. Characterization of therapeutic mAb charge heterogeneity by iCIEF coupled to mass spectrometry (iCIEF-MS). . Electrophoresis 44:(5–6):54048
    [Crossref] [Google Scholar]
  114. 114.
    Xu T, Zhang F, Chen D, Sun L, Tomazela D, Fayadat-Dilman L. 2023.. Interrogating heterogeneity of cysteine-engineered antibody-drug conjugates and antibody-oligonucleotide conjugates by capillary zone electrophoresis-mass spectrometry. . MAbs 15:(1):2229102
    [Crossref] [Google Scholar]
  115. 115.
    Cao L, Fabry D, Lan K. 2021.. Rapid and comprehensive monoclonal antibody characterization using microfluidic CE-MS. . J. Pharm. Biomed. Anal. 204::114251
    [Crossref] [Google Scholar]
  116. 116.
    Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. 2009.. Nanomedicine—challenge and perspectives. . Angew. Chem. Int. Ed. 48:(5):87297
    [Crossref] [Google Scholar]
  117. 117.
    Bhatia SN, Chen X, Dobrovolskaia MA, Lammers T. 2022.. Cancer nanomedicine. . Nat. Rev. Cancer 22:(10):55056
    [Crossref] [Google Scholar]
  118. 118.
    Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, et al. 2017.. Diverse applications of nanomedicine. . ACS Nano 11:(3):231381
    [Crossref] [Google Scholar]
  119. 119.
    Mahmoudi M, Landry MP, Moore A, Coreas R. 2023.. The protein corona from nanomedicine to environmental science. . Nat. Rev. Mater. 8::42238
    [Crossref] [Google Scholar]
  120. 120.
    Trinh DN, Gardner RA, Franciosi AN, McCarthy C, Keane MP, et al. 2022.. Nanoparticle biomolecular corona-based enrichment of plasma glycoproteins for N-glycan profiling and application in biomarker discovery. . ACS Nano 16:(4):546375
    [Crossref] [Google Scholar]
  121. 121.
    Blume JE, Manning WC, Troiano G, Hornburg D, Figa M, et al. 2020.. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. . Nat. Commun. 11::3662
    [Crossref] [Google Scholar]
  122. 122.
    Ashkarran AA, Gharibi H, Voke E, Landry MP, Saei AA, Mahmoudi M. 2022.. Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities. . Nat. Commun. 13::6610
    [Crossref] [Google Scholar]
  123. 123.
    Zhu G, Sadeghi SA, Mahmoudi M, Sun L. 2024.. Deciphering nanoparticle protein coronas by capillary isoelectric focusing-mass spectrometry-based top-down proteomics. . Chem. Commun. 60::11528
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-071124-092242
Loading
/content/journals/10.1146/annurev-anchem-071124-092242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error