1932

Abstract

Tandem mass spectrometry (MS/MS) is crucial for small-molecule analysis; however, traditional computational methods are limited by incomplete reference libraries and complex data processing. Machine learning (ML) is transforming small-molecule mass spectrometry in three key directions: () predicting MS/MS spectra and related physicochemical properties to expand reference libraries, () improving spectral matching through automated pattern extraction, and () predicting molecular structures of compounds directly from their MS/MS spectra. We review ML approaches for molecular representations [descriptors, simplified molecular-input line-entry (SMILE) strings, and graphs] and MS/MS spectra representations (using binned vectors and peak lists) along with recent advances in spectra prediction, retention time, collision cross sections, and spectral matching. Finally, we discuss ML-integrated workflows for chemical formula identification. By addressing the limitations of current methods for compound identification, these ML approaches can greatly enhance the understanding of biological processes and the development of diagnostic and therapeutic tools.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071224-082157
2025-05-15
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/anchem/18/1/annurev-anchem-071224-082157.html?itemId=/content/journals/10.1146/annurev-anchem-071224-082157&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Prasad B, Garg A, Takwani H, Singh S. 2011.. Metabolite identification by liquid chromatography-mass spectrometry. . Trends Anal. Chem. 30:(2):36087
    [Crossref] [Google Scholar]
  2. 2.
    Theodoridis GA, Gika HG, Want EJ, Wilson ID. 2012.. Liquid chromatography–mass spectrometry based global metabolite profiling: a review. . Anal. Chim. Acta 711::716
    [Crossref] [Google Scholar]
  3. 3.
    Mastrangelo A, Ferrarini A, Rey-Stolle F, Garcia A, Barbas C. 2015.. From sample treatment to biomarker discovery: a tutorial for untargeted metabolomics based on GC-(EI)-Q-MS. . Anal. Chim. Acta 900::2135
    [Crossref] [Google Scholar]
  4. 4.
    Zhang A, Sun H, Wang X. 2018.. Mass spectrometry-driven drug discovery for development of herbal medicine. . Mass Spectrom. Rev. 37:(3):30720
    [Crossref] [Google Scholar]
  5. 5.
    Meissner F, Geddes-McAlister J, Mann M, Bantscheff M. 2022.. The emerging role of mass spectrometry-based proteomics in drug discovery. . Nat. Rev. Drug Discov. 21:(9):63754
    [Crossref] [Google Scholar]
  6. 6.
    McLafferty FW. 2011.. A century of progress in molecular mass spectrometry. . Annu. Rev. Anal. Chem. 4::122
    [Crossref] [Google Scholar]
  7. 7.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 1989.. Electrospray ionization for mass spectrometry of large biomolecules. . Science 246:(4926):6471
    [Crossref] [Google Scholar]
  8. 8.
    Stein SE. 1999.. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. . J. Am. Soc. Mass Spectrom. 10:(8):77081
    [Crossref] [Google Scholar]
  9. 9.
    Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, et al. 2016.. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. . Nat. Biotechnol. 34:(8):82837
    [Crossref] [Google Scholar]
  10. 10.
    Natl. Inst. Standards Technol. (NIST). 2023.. NIST23: updates to the NIST tandem and electron ionization spectral libraries. NIST Tandem Mass Spectral Library. NIST, Palmer, MA:, updated Aug. 11, accessed July 11, 2024. https://www.nist.gov/programs-projects/nist23-updates-nist-tandem-and-electron-ionization-spectral-libraries
    [Google Scholar]
  11. 11.
    Fiehn O. 2024.. MassBank of North America (MoNA). UCDavis Fiehn Lab., Davis, CA:, updated Sep. 12, accessed July 11. https://mona.fiehnlab.ucdavis.edu/
    [Google Scholar]
  12. 12.
    Kind T, Fiehn O. 2010.. Advances in structure elucidation of small molecules using mass spectrometry. . Bioanal. Rev. 2::2360
    [Crossref] [Google Scholar]
  13. 13.
    Aksenov AA, da Silva R, Knight R, Lopes NP, Dorrestein PC. 2017.. Global chemical analysis of biology by mass spectrometry. . Nat. Rev. Chem. 1:(7):0054
    [Crossref] [Google Scholar]
  14. 14.
    Liebal UW, Phan ANT, Sudhakar M, Raman K, Blank LM. 2020.. Machine learning applications for mass spectrometry-based metabolomics. . Metabolites 10:(6):243
    [Crossref] [Google Scholar]
  15. 15.
    Sen P, Lamichhane S, Mathema VB, McGlinchey A, Dickens AM, et al. 2021.. Deep learning meets metabolomics: a methodological perspective. . Brief. Bioinform. 22:(2):153142
    [Crossref] [Google Scholar]
  16. 16.
    Wang F, Pasin D, Skinnider MA, Liigand J, Kleis JN, et al. 2023.. Deep learning-enabled MS/MS spectrum prediction facilitates automated identification of novel psychoactive substances. . Anal. Chem. 95:(50):1832634
    [Crossref] [Google Scholar]
  17. 17.
    Young A, Röst H, Wang B. 2024.. Tandem mass spectrum prediction for small molecules using graph transformers. . Nat. Mach. Intell. 6::40416
    [Crossref] [Google Scholar]
  18. 18.
    Goldman S, Bradshaw J, Xin J, Coley C. 2023.. Prefix-tree decoding for predicting mass spectra from molecules. . Adv. Neural Inf. Process. Syst. 36::4854872
    [Google Scholar]
  19. 19.
    Hong Y, Li S, Welch CJ, Tichy S, Ye Y, et al. 2023.. 3DMolMS: prediction of tandem mass spectra from 3D molecular conformations. . Bioinformatics 39:(6):btad354
    [Crossref] [Google Scholar]
  20. 20.
    Wang F, Liigand J, Tian S, Arndt D, Greiner R, et al. 2021.. CFM-ID 4.0: more accurate ESI-MS/MS spectral prediction and compound identification. . Anal. Chem. 93:(34):11692700
    [Crossref] [Google Scholar]
  21. 21.
    Wei JN, Belanger D, Adams RP, Sculley D. 2019.. Rapid prediction of electron–ionization mass spectrometry using neural networks. . ACS Cent. Sci. 5:(4):7008
    [Crossref] [Google Scholar]
  22. 22.
    Guo H, Xue K, Sun H, Jiang W, Pu S. 2023.. Contrastive learning-based embedder for the representation of tandem mass spectra. . Anal. Chem. 95:(20):788896
    [Crossref] [Google Scholar]
  23. 23.
    Yang Q, Ji H, Xu Z, Li Y, Wang P, et al. 2023.. Ultra-fast and accurate electron ionization mass spectrum matching for compound identification with million-scale in-silico library. . Nat. Commun. 14:(1):3722
    [Crossref] [Google Scholar]
  24. 24.
    Huber F, Ridder L, Verhoeven S, Spaaks JH, Diblen F, et al. 2021.. Spec2Vec: improved mass spectral similarity scoring through learning of structural relationships. . PLOS Comput. Biol. 17:(2):e1008724
    [Crossref] [Google Scholar]
  25. 25.
    Huber F, van der Burg S, van der Hooft JJJ, Ridder L. 2021.. MS2DeepScore: a novel deep learning similarity measure to compare tandem mass spectra. . J. Cheminform. 13::84
    [Crossref] [Google Scholar]
  26. 26.
    Ji H, Xu Y, Lu H, Zhang Z. 2019.. Deep MS/MS-aided structural-similarity scoring for unknown metabolite identification. . Anal. Chem. 91:(9):562937
    [Crossref] [Google Scholar]
  27. 27.
    Goldman S, Wohlwend J, Strazar M, Haroush G, Xavier RJ, et al. 2023.. Annotating metabolite mass spectra with domain-inspired chemical formula transformers. . Nat. Mach. Intell. 5:(9):96579
    [Crossref] [Google Scholar]
  28. 28.
    Xing S, Shen S, Xu B, Li X, Huan T. 2023.. BUDDY: molecular formula discovery via bottom-up MS/MS interrogation. . Nat. Methods 20:(6):88190
    [Crossref] [Google Scholar]
  29. 29.
    Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, et al. 2019.. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. . Nat. Methods 16:(4):299302
    [Crossref] [Google Scholar]
  30. 30.
    Bengio Y, Courville A, Vincent P. 2013.. Representation learning: a review and new perspectives. . IEEE Trans. Pattern Anal. Mach. Intell. 35:(8):1798828
    [Crossref] [Google Scholar]
  31. 31.
    Shahlaei M. 2013.. Descriptor selection methods in quantitative structure–activity relationship studies: a review study. . Chem. Rev. 113:(10):8093103
    [Crossref] [Google Scholar]
  32. 32.
    Krenn M, Ai Q, Barthel S, Carson N, Frei A, et al. 2022.. SELFIES and the future of molecular string representations. . Patterns 3:(10):100588
    [Crossref] [Google Scholar]
  33. 33.
    Arús-Pous J, Johansson SV, Prykhodko O, Bjerrum EJ, Tyrchan C, et al. 2019.. Randomized SMILES strings improve the quality of molecular generative models. . J. Cheminform. 11::71
    [Crossref] [Google Scholar]
  34. 34.
    Ross J, Belgodere B, Chenthamarakshan V, Padhi I, Mroueh Y, et al. 2022.. Large-scale chemical language representations capture molecular structure and properties. . Nat. Mach. Intell. 4:(12):125664
    [Crossref] [Google Scholar]
  35. 35.
    Jablonka KM, Schwaller P, Ortega-Guerrero A, Smit B. 2024.. Leveraging large language models for predictive chemistry. . Nat. Mach. Intell. 6::16169
    [Crossref] [Google Scholar]
  36. 36.
    Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, et al. 2015.. Convolutional networks on graphs for learning molecular fingerprints. . Adv. Neural Inf. Process. Syst. 28::222432
    [Google Scholar]
  37. 37.
    Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. 2017.. Neural message passing for quantum chemistry. . Proc. Mach. Learn. Res. 70::126372
    [Google Scholar]
  38. 38.
    Schütt K, Kindermans PJ, Sauceda Felix HE, Chmiela S, Tkatchenko A et al. 2017.. SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. . Adv. Neural Inf. Process. Syst. 30::9921002
    [Google Scholar]
  39. 39.
    Gasteiger J, Giri S, Margraf JT, Günnemann S. 2020.. Fast and uncertainty-aware directional message passing for non-equilibrium molecules. . arXiv:2011.14115 [cs.LG]
  40. 40.
    Wang L, Liu Y, Lin Y, Liu H, Ji S. 2022.. ComENet: towards complete and efficient message passing for 3D molecular graphs. . Adv. Neural Inf. Process. Syst. 35::65064
    [Google Scholar]
  41. 41.
    Liu K, Ye Y, Li S, Tang H. 2023.. Accurate de novo peptide sequencing using fully convolutional neural networks. . Nat. Commun. 14:(1):7974
    [Crossref] [Google Scholar]
  42. 42.
    Altenburg T, Giese SH, Wang S, Muth T, Renard BY. 2022.. Ad hoc learning of peptide fragmentation from mass spectra enables an interpretable detection of phosphorylated and cross-linked peptides. . Nat. Mach. Intell. 4:(4):37888
    [Crossref] [Google Scholar]
  43. 43.
    Sun FY, Hoffmann J, Verma V, Tang J. 2020.. Infograph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization. Paper presented at International Conference on Learning Representations, Addis Ababa, Ethiopia:, Apr. 30–May 1. https://openreview.net/forum?id=r1lfF2NYvH
    [Google Scholar]
  44. 44.
    Zhang Z, Liu Q, Wang H, Lu C, Lee CK. 2021.. Motif-based graph self-supervised learning for molecular property prediction. . Adv. Neural Inf. Process. Syst. 34::1587082
    [Google Scholar]
  45. 45.
    Liu S, Guo H, Tang J. 2023.. Molecular geometry pretraining with SE(3)-invariant denoising distance matching. Paper presented at International Conference on Learning Representations, Kigali, Rwanda:, May 1–5. https://openreview.net/forum?id=CjTHVo1dvR
    [Google Scholar]
  46. 46.
    Zaidi S, Schaarschmidt M, Martens J, Kim H, Teh YW, et al. 2023.. Pre-training via denoising for molecular property prediction. Paper presented at International Conference on Learning Representations, Kigali, Rwanda:, May 1–5. https://openreview.net/forum?id=tYIMtogyee
    [Google Scholar]
  47. 47.
    Moon C, Kim D. 2022.. Prediction of drug–target interactions through multi-task learning. . Sci. Rep. 12:(1):18323
    [Crossref] [Google Scholar]
  48. 48.
    Allenspach S, Hiss JA, Schneider G. 2024.. Neural multi-task learning in drug design. . Nat. Mach. Intell. 6:(2):12437
    [Crossref] [Google Scholar]
  49. 49.
    Ju R, Liu X, Zheng F, Lu X, Xu G, et al. 2021.. Deep neural network pretrained by weighted autoencoders and transfer learning for retention time prediction of small molecules. . Anal. Chem. 93:(47):1565158
    [Crossref] [Google Scholar]
  50. 50.
    Li H, Zhao X, Li S, Wan F, Zhao D, et al. 2022.. Improving molecular property prediction through a task similarity enhanced transfer learning strategy. . iScience 25:(10):105231
    [Crossref] [Google Scholar]
  51. 51.
    Goldman S, Li J, Coley CW. 2024.. Generating molecular fragmentation graphs with autoregressive neural networks. . Anal. Chem. 96:(8):341928
    [Crossref] [Google Scholar]
  52. 52.
    Domingo-Almenara X, Guijas C, Billings E, Montenegro-Burke JR, Uritboonthai W, et al. 2019.. The METLIN small molecule dataset for machine learning-based retention time prediction. . Nat. Commun. 10:(1):5811
    [Crossref] [Google Scholar]
  53. 53.
    Bonini P, Kind T, Tsugawa H, Barupal DK, Fiehn O. 2020.. Retip: retention time prediction for compound annotation in untargeted metabolomics. . Anal. Chem. 92:(11):751522
    [Crossref] [Google Scholar]
  54. 54.
    Yang Q, Ji H, Lu H, Zhang Z. 2021.. Prediction of liquid chromatographic retention time with graph neural networks to assist in small molecule identification. . Anal. Chem. 93:(4):22006
    [Crossref] [Google Scholar]
  55. 55.
    Kang Q, Fang P, Zhang S, Qiu H, Lan Z. 2023.. Deep graph convolutional network for small-molecule retention time prediction. . J. Chromatogr. A 1711::464439
    [Crossref] [Google Scholar]
  56. 56.
    Xue J, Wang B, Ji H, Li W. 2024.. RT-transformer: retention time prediction for metabolite annotation to assist in metabolite identification. . Bioinformatics 40:(3):btae084
    [Crossref] [Google Scholar]
  57. 57.
    Zhou Z, Shen X, Tu J, Zhu ZJ. 2016.. Large-scale prediction of collision cross-section values for metabolites in ion mobility-mass spectrometry. . Anal. Chem. 88:(22):1108491
    [Crossref] [Google Scholar]
  58. 58.
    Plante PL, Francovic-Fontaine É, May JC, McLean JA, Baker ES, et al. 2019.. Predicting ion mobility collision cross-sections using a deep neural network: DeepCCS. . Anal. Chem. 91:(8):519199
    [Crossref] [Google Scholar]
  59. 59.
    Zhou Z, Luo M, Chen X, Yin Y, Xiong X, et al. 2020.. Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics. . Nat. Commun. 11:(1):4334
    [Crossref] [Google Scholar]
  60. 60.
    Ross DH, Cho JH, Xu L. 2020.. Breaking down structural diversity for comprehensive prediction of ion-neutral collision cross sections. . Anal. Chem. 92:(6):454857
    [Crossref] [Google Scholar]
  61. 61.
    Rainey MA, Watson CA, Asef CK, Foster MR, Baker ES, et al. 2022.. CCS Predictor 2.0: an open-source Jupyter Notebook tool for filtering out false positives in metabolomics. . Anal. Chem. 94:(50):1745666
    [Crossref] [Google Scholar]
  62. 62.
    Zhang H, Luo M, Wang H, Ren F, Yin Y, et al. 2023.. AllCCS2: curation of ion mobility collision cross-section atlas for small molecules using comprehensive molecular representations. . Anal. Chem. 95:(37):1391321
    [Crossref] [Google Scholar]
  63. 63.
    Böcker S, Letzel MC, Lipták Z, Pervukhin A. 2009.. SIRIUS: decomposing isotope patterns for metabolite identification. . Bioinformatics 25:(2):21824
    [Crossref] [Google Scholar]
  64. 64.
    Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. 2016.. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. . J. Cheminform. 8::3
    [Crossref] [Google Scholar]
  65. 65.
    Shahneh MRZ, Strobel M, Vitale GA, Geibel C, Abiead YE, et al. 2024.. ModiFinder: tandem mass spectral alignment enables structural modification site localization. . J. Am. Soc. Mass Spectrom. 35:(11):256478
    [Crossref] [Google Scholar]
  66. 66.
    Durant JL, Leland BA, Henry DR, Nourse JG. 2002.. Reoptimization of MDL keys for use in drug discovery. . J. Chem. Inf. Comput. Sci. 42:(6):127380
    [Crossref] [Google Scholar]
  67. 67.
    Daylight Chem. Info. Syst. Inc. 1998.. Daylight fingerprints. Introduction to Daylight, accessed Sep. 11, 2024. https://www.daylight.com/meetings/summerschool98/course/basics/fp.html
    [Google Scholar]
  68. 68.
    Morgan HL. 1965.. The generation of a unique machine description for chemical structures—a technique developed at Chemical Abstracts Service. . J. Chem. Doc. 5:(2):10713
    [Crossref] [Google Scholar]
  69. 69.
    Rogers D, Hahn M. 2010.. Extended-connectivity fingerprints. . J. Chem. Inf. Model. 50:(5):74254
    [Crossref] [Google Scholar]
  70. 70.
    Wang S, Guo Y, Wang Y, Sun H, Huang J. 2019.. SMILES-BERT: large scale unsupervised pre-training for molecular property prediction. . In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 429–36 . Niagara Falls, NY:, Sep. 7–10. https://dl.acm.org/doi/10.1145/3307339.3342186
    [Google Scholar]
  71. 71.
    Schütt K, Unke O, Gastegger M. 2021.. Equivariant message passing for the prediction of tensorial properties and molecular spectra. . Proc. Mach. Learn. Res. 139::937788
    [Google Scholar]
  72. 72.
    Liu K, Sun X, Jia L, Ma J, Xing H, et al. 2019.. Chemi-Net: a molecular graph convolutional network for accurate drug property prediction. . Int. J. Mol. Sci. 20:(14):3389
    [Crossref] [Google Scholar]
  73. 73.
    Chithrananda S, Grand G, Ramsundar B. 2020.. ChemBERTa: large-scale self-supervised pretraining for molecular property prediction. . arXiv:2010.09885 [cs.LG]
  74. 74.
    Sadeghi S, Bui A, Forooghi A, Lu J, Ngom A. 2024.. Can large language models understand molecules?. BMC Bioinformat. 25:(1):225
    [Crossref] [Google Scholar]
  75. 75.
    Wang Y, Wang J, Cao Z, Barati Farimani A. 2022.. Molecular contrastive learning of representations via graph neural networks. . Nat. Mach. Intell. 4:(3):27987
    [Crossref] [Google Scholar]
  76. 76.
    Zhou G, Gao Z, Ding Q, Zheng H, Xu H, et al. 2023.. Uni-Mol: a universal 3D molecular representation learning framework. Paper presented at International Conference on Learning Representations, Kigali, Rwanda:, May 1–5. https://openreview.net/forum?id=6K2RM6wVqKu
    [Google Scholar]
  77. 77.
    Hoang C, Uritboonthai W, Hoang L, Billings EM, Aisporna A, et al. 2024.. Tandem mass spectrometry across platforms. . Anal. Chem. 96:(14):547888
    [Crossref] [Google Scholar]
  78. 78.
    Ying C, Cai T, Luo S, Zheng S, Ke G, et al. 2021.. Do transformers really perform badly for graph representation?. Adv. Neural Inf. Process. Syst. 34::2887788
    [Google Scholar]
  79. 79.
    Cai Y, Concha MC, Murray JS, Cole RB. 2002.. Evaluation of the role of multiple hydrogen bonding in offering stability to negative ion adducts in electrospray mass spectrometry. . J. Am. Soc. Mass Spectrom. 13:(12):136069
    [Crossref] [Google Scholar]
  80. 80.
    Hong Y, Welch CJ, Piras P, Tang H. 2024.. Enhanced structure-based prediction of chiral stationary phases for chromatographic enantioseparation from 3D molecular conformations. . Anal. Chem. 96:(6):235159
    [Crossref] [Google Scholar]
  81. 81.
    Allen F, Greiner R, Wishart D. 2015.. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. . Metabolomics 11::98110
    [Crossref] [Google Scholar]
  82. 82.
    Lee J, Lee Y, Kim J, Kosiorek A, Choi S, et al. 2019.. Set transformer: a framework for attention-based permutation-invariant neural networks. . Proc. Mach. Learn. Res. 97::374453
    [Google Scholar]
  83. 83.
    Ridder L, van der Hooft JJ, Verhoeven S. 2014.. Automatic compound annotation from mass spectrometry data using MAGMa. . Mass Spectrom. 3::S0033
    [Crossref] [Google Scholar]
  84. 84.
    Weisfeiler B, Leman A. 1968.. The reduction of a graph to canonical form and the algebra which appears therein. . NTI Ser. 2:(9):1216
    [Google Scholar]
  85. 85.
    Bach E, Rogers S, Williamson J, Rousu J. 2021.. Probabilistic framework for integration of mass spectrum and retention time information in small molecule identification. . Bioinformatics 37:(12):172431
    [Crossref] [Google Scholar]
  86. 86.
    Celma A, Bade R, Sancho JV, Hernandez F, Humphries M, et al. 2022.. Prediction of retention time and collision cross section (CCSH+, CCSH−, and CCSNa+) of emerging contaminants using multiple adaptive regression splines. . J. Chem. Inf. Model. 62:(22):542534
    [Crossref] [Google Scholar]
  87. 87.
    Osipenko S, Botashev K, Nikolaev E, Kostyukevich Y. 2021.. Transfer learning for small molecule retention predictions. . J. Chromatogr. A 1644::462119
    [Crossref] [Google Scholar]
  88. 88.
    de Cripan SM, Arora T, Olomí A, Canela N, Siuzdak G, et al. 2024.. Predicting the predicted: a comparison of machine learning-based collision cross-section prediction models for small molecules. . Anal. Chem. 96:(22):908896
    [Crossref] [Google Scholar]
  89. 89.
    Guo R, Zhang Y, Liao Y, Yang Q, Xie T, et al. 2023.. Highly accurate and large-scale collision cross sections prediction with graph neural networks. . Commun. Chem. 6:(1):139
    [Crossref] [Google Scholar]
  90. 90.
    Kwon Y, Kwon H, Han J, Kang M, Kim JY, et al. 2023.. Retention time prediction through learning from a small training data set with a pretrained graph neural network. . Anal. Chem. 95:(47):1727383
    [Crossref] [Google Scholar]
  91. 91.
    Asef CK, Rainey MA, Garcia BM, Gouveia GJ, Shaver AO, et al. 2023.. Unknown metabolite identification using machine learning collision cross-section prediction and tandem mass spectrometry. . Anal. Chem. 95:(2):104756
    [Google Scholar]
  92. 92.
    Kretschmer F, Harrieder EM, Hoffmann MA, Böcker S, Witting M. 2024.. RepoRT: a comprehensive repository for small molecule retention times. . Nat. Methods 21::15355
    [Crossref] [Google Scholar]
  93. 93.
    Baker ES, Hoang C, Uritboonthai W, Heyman HM, Pratt B, et al. 2023.. METLIN-CCS: an ion mobility spectrometry collision cross section database. . Nat. Methods 20:(12):183637
    [Crossref] [Google Scholar]
  94. 94.
    Kind T, Fiehn O. 2007.. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. . BMC Bioinformatics 8::105
    [Crossref] [Google Scholar]
  95. 95.
    Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. 2015.. Searching molecular structure databases with tandem mass spectra using CSI: FingerID. . PNAS 112:(41):1258085
    [Crossref] [Google Scholar]
  96. 96.
    Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC. 2022.. Mass spectrometry-based metabolomics in microbiome investigations. . Nat. Rev. Microbiol. 20:(3):14360
    [Crossref] [Google Scholar]
  97. 97.
    Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, et al. 2020.. Feature-based molecular networking in the GNPS analysis environment. . Nat. Methods 17:(9):9058
    [Crossref] [Google Scholar]
  98. 98.
    Ruan T, Li P, Wang H, Li T, Jiang G. 2023.. Identification and prioritization of environmental organic pollutants: from an analytical and toxicological perspective. . Chem. Rev. 123:(17):10584640
    [Crossref] [Google Scholar]
  99. 99.
    Smola AJ, ed. 2000.. Advances in Large Margin Classifiers. Cambridge, MA:: MIT Press
    [Google Scholar]
  100. 100.
    Pang Z, Lu Y, Zhou G, Hui F, Xu L, et al. 2024.. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. . Nucleic Acids Res. 52::W398406
    [Crossref] [Google Scholar]
  101. 101.
    Vermeulen R, Schymanski EL, Barabási AL, Miller GW. 2020.. The exposome and health: where chemistry meets biology. . Science 367:(6476):39296
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-071224-082157
Loading
/content/journals/10.1146/annurev-anchem-071224-082157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error