1932

Abstract

Bacteriophages, which are viral predators of bacteria, have evolved to efficiently recognize, bind, infect, and lyse their host, resulting in the release of tens to hundreds of propagated viruses. These abilities have attracted biosensor developers who have developed new methods to detect bacteria. Recently, several comprehensive reviews have covered many of the advances made regarding the performance of phage-based biosensors. Therefore, in this review, we first describe the landscape of phage-based biosensors and then cover advances in other aspects of phage biology and engineering that can be used to make high-impact contributions to biosensor development. Many of these advances are in fields adjacent to analytical chemistry such as synthetic biology, machine learning, and genetic engineering and will allow those looking to develop phage-based biosensors to start taking alternative approaches, such as a bottom-up design and synthesis of custom phages with the singular task of detecting their host.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071323-084224
2024-07-17
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-071323-084224.html?itemId=/content/journals/10.1146/annurev-anchem-071323-084224&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Cordero-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR. 2020.. Biosensors for the detection of bacterial and viral clinical pathogens. . Sensors 20::6926
    [Crossref] [Google Scholar]
  2. 2.
    Kotsiri Z, Vidic J, Vantarakis A. 2022.. Applications of biosensors for bacteria and virus detection in food and water—a systematic review. . J. Environ. Sci. 111::36779
    [Crossref] [Google Scholar]
  3. 3.
    Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. 2020.. Application of biosensors for detection of pathogenic food bacteria: a review. . Biosensors 10::58
    [Crossref] [Google Scholar]
  4. 4.
    Aliakbar Ahovan Z, Hashemi A, De Plano LM, Gholipourmalekabadi M, Seifalian A. 2020.. Bacteriophage based biosensors: trends, outcomes and challenges. . Nanomaterials 10::501
    [Crossref] [Google Scholar]
  5. 5.
    Singh A, Poshtiban S, Evoy S. 2013.. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. . Sensors 13::176386
    [Crossref] [Google Scholar]
  6. 6.
    Wang L, Lin H, Zhang J, Wang J. 2022.. Phage long tail fiber protein-immobilized magnetic nanoparticles for rapid and ultrasensitive detection of Salmonella. . Talanta 248::123627
    [Crossref] [Google Scholar]
  7. 7.
    Richter Ł, Bielec K, Leśniewski A, Łoś M, Paczesny J, Hołyst R. 2017.. Dense layer of bacteriophages ordered in alternating electric field and immobilized by surface chemical modification as sensing element for bacteria detection. . ACS Appl. Mater. Interfaces 9::1962229
    [Crossref] [Google Scholar]
  8. 8.
    Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S. 2011.. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. . Analyst 136::48692
    [Crossref] [Google Scholar]
  9. 9.
    Hosseinidoust Z, Van de Ven TGM, Tufenkji N. 2011.. Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces. . Langmuir 27::547280
    [Crossref] [Google Scholar]
  10. 10.
    Tolba M, Minikh O, Brovko LY, Evoy S, Griffiths MW. 2010.. Oriented immobilization of bacteriophages for biosensor applications. . Appl. Environ. Microbiol. 76::52835
    [Crossref] [Google Scholar]
  11. 11.
    Nanduri V, Sorokulova IB, Samoylov AM, Simonian AL, Petrenko VA, Vodyanoy V. 2007.. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. . Biosens. Bioelectron. 22::98692
    [Crossref] [Google Scholar]
  12. 12.
    Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM. 2016.. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. . Front. Microbiol. 7::1391
    [Crossref] [Google Scholar]
  13. 13.
    Zurier HS, Duong MM, Goddard JM, Nugen SR. 2020.. Engineering biorthogonal phage-based nanobots for ultrasensitive, in situ bacteria detection. . ACS Appl. Bio Mater. 3::582431
    [Crossref] [Google Scholar]
  14. 14.
    Zhang D, Coronel-Aguilera CP, Romero PL, Perry L, Minocha U, et al. 2016.. The use of a novel nanoLuc-based reporter phage for the detection of Escherichia coli O157:H7. . Sci. Rep. 6::33235
    [Crossref] [Google Scholar]
  15. 15.
    Lemire S, Yehl KM, Lu TK. 2018.. Phage-based applications in synthetic biology. . Annu. Rev. Virol. 5::45376
    [Crossref] [Google Scholar]
  16. 16.
    Huang F, Zhang Y, Lin J, Liu Y. 2021.. Biosensors coupled with signal amplification technology for the detection of pathogenic bacteria: a review. . Biosensors 11::190
    [Crossref] [Google Scholar]
  17. 17.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, et al. 2021.. Accurate prediction of protein structures and interactions using a three-track neural network. . Science 10::eabj8754
    [Google Scholar]
  18. 18.
    Callaway E. 2021.. DeepMind's AI for protein structure is coming to the masses. . Nature, July 15. https://doi.org/10.1038/d41586-021-01968-y
    [Google Scholar]
  19. 19.
    Zhang K, Li X, Wang Z, Li G, Ma B, et al. 2021.. Systemic expression, purification, and initial structural characterization of bacteriophage T4 proteins without known structure homologs. . Front. Microbiol. 12::674415
    [Crossref] [Google Scholar]
  20. 20.
    Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W. 2003.. Bacteriophage T4 genome. . Microbiol. Mol. Biol. Rev. 67::86156
    [Crossref] [Google Scholar]
  21. 21.
    Fitzgerald CB, Shkoporov AN, Upadrasta A, Khokhlova EV, Ross RP, Hill C. 2021.. Probing the “dark matter” of the human gut phageome: culture assisted metagenomics enables rapid discovery and host-linking for novel bacteriophages. . Front. Cell. Infect. Microbiol. 11::616918
    [Crossref] [Google Scholar]
  22. 22.
    Borges AL. 2021.. How to train your bacteriophage. . PNAS 118::e2109434118
    [Crossref] [Google Scholar]
  23. 23.
    Favor AH, Llanos CD, Youngblut MD, Bardales JA. 2020.. Optimizing bacteriophage engineering through an accelerated evolution platform. . Sci. Rep. 10::13981
    [Crossref] [Google Scholar]
  24. 24.
    Ando H, Lemire S, Pires DP, Lu TK. 2015.. Engineering modular viral scaffolds for targeted bacterial population editing. . Cell Syst. 1::18796
    [Crossref] [Google Scholar]
  25. 25.
    Dunne M, Prokhorov NS, Loessner MJ, Leiman PG. 2021.. Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. . Curr. Opin. Biotechnol. 68::27281
    [Crossref] [Google Scholar]
  26. 26.
    Huss P, Meger A, Leander M, Nishikawa K, Raman S. 2021.. Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning. . eLife 10::e63775
    [Crossref] [Google Scholar]
  27. 27.
    Paramasivam K, Shen Y, Yuan J, Waheed I, Mao C, Zhou X. 2022.. Advances in the development of phage-based probes for detection of bio-species. . Biosensors 12::30
    [Crossref] [Google Scholar]
  28. 28.
    Al-Hindi RR, Teklemariam AD, Alharbi MG, Alotibi I, Azhari SA, et al. 2022.. Bacteriophage-based biosensors: a platform for detection of foodborne bacterial pathogens from food and environment. . Biosensors 12::905
    [Crossref] [Google Scholar]
  29. 29.
    Singh S, Dhanjal DS, Thotapalli S, Kumar V, Datta S, et al. 2020.. An insight in bacteriophage based biosensors with focus on their detection methods and recent advancements. . Environ. Technol. Innov. 20::101081
    [Crossref] [Google Scholar]
  30. 30.
    Wang J, Kanach A, Han R, Applegate B. 2021.. Application of bacteriophage in rapid detection of Escherichia coli in foods. . Curr. Opin. Food Sci. 39::4350
    [Crossref] [Google Scholar]
  31. 31.
    Denyes JM, Dunne M, Steiner S, Mittelviefhaus M, Weiss A, et al. 2017.. Modified bacteriophage S16 long tail fiber proteins for rapid and specific immobilization and detection of Salmonella cells. . Appl. Environ. Microbiol. 83::e00277-17
    [Crossref] [Google Scholar]
  32. 32.
    Bai Y-L, Shahed-Al-Mahmud M, Selvaprakash K, Lin N-T, Chen Y-C. 2019.. Tail fiber protein-immobilized magnetic nanoparticle-based affinity approaches for detection of Acinetobacter baumannii. . Anal. Chem. 91::1033542
    [Crossref] [Google Scholar]
  33. 33.
    Carmody CM, Goddard JM, Nugen SR. 2021.. Bacteriophage capsid modification by genetic and chemical methods. . Bioconjug. Chem. 32::46681
    [Crossref] [Google Scholar]
  34. 34.
    O'Connell L, Marcoux PR, Roupioz Y. 2021.. Strategies for surface immobilization of whole bacteriophages: a review. . ACS Biomater. Sci. Eng. 7::19872014
    [Crossref] [Google Scholar]
  35. 35.
    Wang F, Horikawa S, Hu J, Wikle HC, Chen IH, et al. 2017.. Detection of Salmonella typhimurium on spinach using phage-based magnetoelastic biosensors. . Sensors 17::386
    [Crossref] [Google Scholar]
  36. 36.
    Lakshmanan RS, Guntupalli R, Hu J, Kim D-J, Petrenko VA, et al. 2007.. Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium. . J. Microbiol. Methods 71::5560
    [Crossref] [Google Scholar]
  37. 37.
    Olsson ALJ, Wargenau A, Tufenkji N. 2016.. Optimizing bacteriophage surface densities for bacterial capture and sensing in quartz crystal microbalance with dissipation monitoring. . ACS Appl. Mater. Interfaces 8::13698706
    [Crossref] [Google Scholar]
  38. 38.
    Guntupalli R, Sorokulova I, Olsen E, Globa L, Pustovyy O, et al. 2012.. Detection and identification of methicillin resistant and sensitive strains of Staphylococcus aureus using tandem measurements. . J. Microbiol. Methods 90::18291
    [Crossref] [Google Scholar]
  39. 39.
    Taheri R-A, Mahheidari N, Sajjadi S, Eskandari K. 2022.. Oriented T4 bacteriophage immobilization for E. coli bacteria as a potential bioterrorism agent detection based on surface plasmon resonance method. . J. Military Med. 23::875
    [Google Scholar]
  40. 40.
    Wang D, Hinkley T, Chen J, Talbert JN, Nugen SR. 2019.. Phage based electrochemical detection of Escherichia coli in drinking water using affinity reporter probes. . Analyst 144::134552
    [Crossref] [Google Scholar]
  41. 41.
    Zhou Y, Ramasamy RP. 2019.. Isolation and separation of Listeria monocytogenes using bacteriophage P100-modified magnetic particles. . Colloids Surf. B Biointerfaces 175::42127
    [Crossref] [Google Scholar]
  42. 42.
    Liana AE, Marquis CP, Gunawan C, Gooding JJ, Amal R. 2017.. T4 bacteriophage conjugated magnetic particles for E. coli capturing: influence of bacteriophage loading, temperature and tryptone. . Colloids Surf. B Biointerfaces 151::4757
    [Crossref] [Google Scholar]
  43. 43.
    Wang Z, Wang D, Kinchla AJ, Sela DA, Nugen SR. 2016.. Rapid screening of waterborne pathogens using phage-mediated separation coupled with real-time PCR detection. . Anal. Bioanal. Chem. 408::416978
    [Crossref] [Google Scholar]
  44. 44.
    Chen J, Duncan B, Wang L, Rotello VM, Nugen SR. 2015.. Rapid separation of bacteria using phage affinity and magnetic nanoparticles. . Nanoscale 7::1623036
    [Crossref] [Google Scholar]
  45. 45.
    Nabergoj D, Modic P, Podgornik A. 2018.. Effect of bacterial growth rate on bacteriophage population growth rate. . MicrobiologyOpen 7::e00558
    [Crossref] [Google Scholar]
  46. 46.
    Xu H, Bao X, Hong W, Wang A, Wang K, et al. 2021.. Biological characterization and evolution of bacteriophage T7-△holin during the serial passage process. . Front. Microbiol. 12::705310
    [Crossref] [Google Scholar]
  47. 47.
    Dressman HK, Drake JW. 1999.. Lysis and lysis inhibition in bacteriophage T4:rV mutations reside in the holin t gene. . J. Bacteriol. 181::439196
    [Crossref] [Google Scholar]
  48. 48.
    Abedon ST, Yin J. 2009.. Bacteriophage plaques: theory and analysis. . In Bacteriophages: Methods and Protocols, Vol. 1: Isolation, Characterization, and Interactions, ed. MRJ Clokie, AW Kropinski , pp. 16174. Berlin:: Springer Nature
    [Google Scholar]
  49. 49.
    Wang I-N, Dykhuizen DE, Slobodkin LB. 1996.. The evolution of phage lysis timing. . Evol. Ecol. 10::54558
    [Crossref] [Google Scholar]
  50. 50.
    Cox CR, Jensen KR, Mondesire RR, Voorhees KJ. 2015.. Rapid detection of Bacillus anthracis by γ phage amplification and lateral flow immunochromatography. . J. Microbiol. Methods 118::5156
    [Crossref] [Google Scholar]
  51. 51.
    Oliveira IC, Almeida RC, Hofer E, Almeida PF. 2012.. Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment. . Braz. J. Microbiol. 43::112836
    [Crossref] [Google Scholar]
  52. 52.
    Oda M, Morita M, Unno H, Tanji Y. 2004.. Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. . Appl. Environ. Microbiol. 70::52734
    [Crossref] [Google Scholar]
  53. 53.
    Smartt AE, Ripp S. 2011.. Bacteriophage reporter technology for sensing and detecting microbial targets. . Anal. Bioanal. Chem. 400::9911007
    [Crossref] [Google Scholar]
  54. 54.
    Alcaine SD, Law K, Ho S, Kinchla AJ, Sela DA, Nugen SR. 2016.. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria. . Biosens. Bioelectron. 82::1419
    [Crossref] [Google Scholar]
  55. 55.
    Hoang HA, Dien LT. 2015.. Rapid and simple colorimetric detection of Escherichia coli O157:H7 in apple juice using a novel recombinant bacteriophage-based method. . Biocontrol Sci. 20::99103
    [Crossref] [Google Scholar]
  56. 56.
    Xu J, Chau Y, Lee Y-k. 2019.. Phage-based electrochemical sensors: a review. . Micromachines 10::855
    [Crossref] [Google Scholar]
  57. 57.
    El-Moghazy AY, Wisuthiphaet N, Yang X, Sun G, Nitin N. 2022.. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. . Food Control 135::108811
    [Crossref] [Google Scholar]
  58. 58.
    Loessner MJ, Rees CED, Stewart GSAB, Scherer S. 1996.. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. . Appl. Environ. Microbiol. 62::113340
    [Crossref] [Google Scholar]
  59. 59.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, et al. 2012.. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. . ACS Chem. Biol. 7::184857
    [Crossref] [Google Scholar]
  60. 60.
    Wijeratne S, Bakshi A, Talbert J. 2022.. Comparative analysis of NanoLuc luciferase and alkaline phosphatase luminescence reporter systems for phage-based detection of bacteria. . Bioengineering 9::479
    [Crossref] [Google Scholar]
  61. 61.
    Hinkley TC, Singh S, Garing S, Le Ny A-LM, Nichols KP, et al. 2018.. A phage-based assay for the rapid, quantitative, and single CFU visualization of E. coli (ECOR #13) in drinking water. . Sci. Rep. 8::14630
    [Crossref] [Google Scholar]
  62. 62.
    Alonzo LF, Hinkley TC, Miller A, Calderon R, Garing S, et al. 2022.. A microfluidic device and instrument prototypes for the detection of Escherichia coli in water samples using a phage-based bioluminescence assay. . Lab Chip 22::215564
    [Crossref] [Google Scholar]
  63. 63.
    Gurdo N, Volke DC, McCloskey D, Nikel PI. 2023.. Automating the design-build-test-learn cycle towards next-generation bacterial cell factories. . New Biotechnol. 74::115
    [Crossref] [Google Scholar]
  64. 64.
    Johnston M. 2016.. Joshua Lederberg on bacterial recombination. . Genetics 203::61314
    [Crossref] [Google Scholar]
  65. 65.
    Mosberg JA, Lajoie MJ, Church GM. 2010.. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. . Genetics 186::79199
    [Crossref] [Google Scholar]
  66. 66.
    Thomason LC, Costantino N, Court DL. 2016.. Examining a DNA replication requirement for bacteriophage λ Red- and Rac prophage RecET-promoted recombination in Escherichia coli. . mBio 7::e01443-16
    [Crossref] [Google Scholar]
  67. 67.
    Marinelli LJ, Piuri M, Swigoňová Z, Balachandran A, Oldfield LM, et al. 2008.. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. . PLOS ONE 3::e3957
    [Crossref] [Google Scholar]
  68. 68.
    Duong MM, Carmody CM, Ma Q, Peters JE, Nugen SR. 2020.. Optimization of T4 phage engineering via CRISPR/Cas9. . Sci. Rep. 10::18229
    [Crossref] [Google Scholar]
  69. 69.
    Hoshiga F, Yoshizaki K, Takao N, Miyanaga K, Tanji Y. 2019.. Modification of T2 phage infectivity toward Escherichia coli O157:H7 via using CRISPR/Cas9. . FEMS Microbiol. Lett. 366::fnz041
    [Crossref] [Google Scholar]
  70. 70.
    Tao P, Wu X, Tang W-C, Zhu J, Rao V. 2017.. Engineering of bacteriophage T4 genome using CRISPR-Cas9. . ACS Synthetic Biol. 6195261
    [Google Scholar]
  71. 71.
    Martel B, Moineau S. 2014.. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. . Nucleic Acids Res. 42::950413
    [Crossref] [Google Scholar]
  72. 72.
    Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, et al. 2008.. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. . PNAS 105::204049
    [Crossref] [Google Scholar]
  73. 73.
    Chan V, Dreolini LF, Flintoff KA, Lloyd SJ, Mattenley AA. 2002.. The effect of increasing plasmid size on transformation efficiency in Escherichia coli. . J. Exp. Microbiol. Immunol. 2::20723
    [Google Scholar]
  74. 74.
    Donahue R, Bloom FR. 1998.. Transformation efficiency of E. coli electroporated with large plasmid DNA. . Focus 20::7778
    [Google Scholar]
  75. 75.
    Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. 2009.. Enzymatic assembly of DNA molecules up to several hundred kilobases. . Nat. Methods 6::34345
    [Crossref] [Google Scholar]
  76. 76.
    Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, et al. 2008.. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. . Science 319::121520
    [Crossref] [Google Scholar]
  77. 77.
    Pulkkinen EM, Hinkley TC, Nugen SR. 2019.. Utilizing in vitro DNA assembly to engineer a synthetic T7 Nanoluc reporter phage for Escherichia coli detection. . Integrative Biol. 11::6368
    [Crossref] [Google Scholar]
  78. 78.
    Padgett KA, Sorge JA. 1996.. Creating seamless junctions independent of restriction sites in PCR cloning. . Gene 168::3135
    [Crossref] [Google Scholar]
  79. 79.
    Lee JH, Skowron PM, Rutkowska SM, Hong SS, Kim SC. 1996.. Sequential amplification of cloned DNA as tandem multimers using class-IIS restriction enzymes. . Genet. Anal. 13::13945
    [Crossref] [Google Scholar]
  80. 80.
    Pryor JM, Potapov V, Bilotti K, Pokhrel N, Lohman GJS. 2022.. Rapid 40 kb genome construction from 52 parts through data-optimized assembly design. . ACS Synthetic Biol. 11::203642
    [Crossref] [Google Scholar]
  81. 81.
    Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R, et al. 2010.. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. . PNAS 107::2028792
    [Crossref] [Google Scholar]
  82. 82.
    de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. 2019.. Molecular and evolutionary determinants of bacteriophage host range. . Trends Microbiol. 27::5163
    [Crossref] [Google Scholar]
  83. 83.
    Dunne M, Denyes JM, Arndt H, Loessner MJ, Leiman PG, Klumpp J. 2018.. Salmonella phage S16 tail fiber adhesin features a rare polyglycine rich domain for host recognition. . Structure 26::157382.e4
    [Crossref] [Google Scholar]
  84. 84.
    Marti R, Zurfluh K, Hagens S, Pianezzi J, Klumpp J, Loessner MJ. 2013.. Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC. . Mol. Microbiol. 87::81834
    [Crossref] [Google Scholar]
  85. 85.
    Washizaki A, Yonesaki T, Otsuka Y. 2016.. Characterization of the interactions between Escherichia coli receptors, LPS and OmpC, and bacteriophage T4 long tail fibers. . MicrobiologyOpen 5::100315
    [Crossref] [Google Scholar]
  86. 86.
    Bartual SG, Garcia-Doval C, Alonso J, Schoehn G, van Raaij MJ. 2010.. Two-chaperone assisted soluble expression and purification of the bacteriophage T4 long tail fibre protein gp37. . Protein Expr. Purif. 70::11621
    [Crossref] [Google Scholar]
  87. 87.
    Trojet SN, Caumont-Sarcos A, Perrody E, Comeau AM, Krisch H. 2011.. The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phage's host specificity. . Genome Biol. Evol. 3::67486
    [Crossref] [Google Scholar]
  88. 88.
    North OI, Davidson AR. 2021.. Phage proteins required for tail fiber assembly also bind specifically to the surface of host bacterial strains. . J. Bacteriol. 203::e00406-20
    [Crossref] [Google Scholar]
  89. 89.
    Garcia-Doval C, van Raaij MJ. 2012.. Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers. . PNAS 109::939095
    [Crossref] [Google Scholar]
  90. 90.
    Qazi S, Miettinen HM, Wilkinson RA, McCoy K, Douglas T, Wiedenheft B. 2016.. Programmed self-assembly of an active P22-Cas9 nanocarrier system. . Mol. Pharm. 13::119196
    [Crossref] [Google Scholar]
  91. 91.
    Ramirez-Chamorro L, Boulanger P, Rossier O. 2021.. Strategies for bacteriophage T5 mutagenesis: expanding the toolbox for phage genome engineering. . Front. Microbiol. 12::667332
    [Crossref] [Google Scholar]
  92. 92.
    Rasmussen KK, Palencia A, Varming AK, El-Wali H, Erba EB, et al. 2020.. Revealing the mechanism of repressor inactivation during switching of a temperate bacteriophage. . PNAS 117::2057685
    [Crossref] [Google Scholar]
  93. 93.
    Peltomaa R, Benito-Peña E, Barderas R, Moreno-Bondi MC. 2019.. Phage display in the quest for new selective recognition elements for biosensors. . ACS Omega 4::1156980
    [Crossref] [Google Scholar]
  94. 94.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  95. 95.
    Drake JW. 1966.. Ultraviolet mutagenesis in bacteriophage T4. I. Irradiation of extracellular phage particles. . J. Bacteriol. 91::177580
    [Crossref] [Google Scholar]
  96. 96.
    Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y. 2009.. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. . FEMS Microbiol. Lett. 295::21117
    [Crossref] [Google Scholar]
  97. 97.
    Yosef I, Goren MG, Globus R, Molshanski-Mor S, Qimron U. 2017.. Extending the host range of bacteriophage particles for DNA transduction. . Mol. Cell 66::72128.e3
    [Crossref] [Google Scholar]
  98. 98.
    Mitsunaka S, Yamazaki K, Pramono AK, Ikeuchi M, Kitao T, et al. 2022.. Synthetic engineering and biological containment of bacteriophages. . PNAS 119::e2206739119
    [Crossref] [Google Scholar]
  99. 99.
    Vieira MF, Duarte J, Domingues R, Oliveira H, Dias O. 2023.. PhageDPO: phage depolymerase finder. . bioRxiv 2023.02.24.529883. https://doi.org/10.1101/2023.02.24.529883
  100. 100.
    Ringaci A, Shevchenko KG, Zelepukin IV, Popova AV, Nikitin MP. 2022.. Phage-mimicking nanoagents for rapid depolymerase specificity screening against multidrug resistant bacteria. . Biosens. Bioelectron. 213::114444
    [Crossref] [Google Scholar]
  101. 101.
    Beamud B, García-González N, Gómez-Ortega M, González-Candelas F, Domingo-Calap P, Sanjuan R. 2023.. Genetic determinants of host tropism in Klebsiella phages. . Cell Rep. 42::112048
    [Crossref] [Google Scholar]
  102. 102.
    Gouveia A, Pinto D, Veiga H, Antunes W, Pinho MG, São-José C. 2022.. Synthetic antimicrobial peptides as enhancers of the bacteriolytic action of staphylococcal phage endolysins. . Sci. Rep. 12::1245
    [Crossref] [Google Scholar]
  103. 103.
    Kim J, Kim J-C, Ahn J. 2022.. Assessment of bacteriophage-encoded endolysin as a potent antimicrobial agent against antibiotic-resistant Salmonella typhimurium. . Microb. Pathog. 168::105576
    [Crossref] [Google Scholar]
  104. 104.
    Gencay YE, Jasinskytė D, Robert C, Semsey S, Martínez V, et al. 2024.. Engineered phage with antibacterial CRISPR–Cas selectively reduce E. coli burden in mice. . Nat. Biotechnol. 42::26574
    [Crossref] [Google Scholar]
  105. 105.
    Talbert JN, Goddard JM. 2012.. Enzymes on material surfaces. . Colloids Surf. B Biointerfaces 93::819
    [Crossref] [Google Scholar]
  106. 106.
    Goddard JM, Hotchkiss JH. 2007.. Polymer surface modification for the attachment of bioactive compounds. . Prog. Polymer Sci. 32::698725
    [Crossref] [Google Scholar]
  107. 107.
    Li K, Chen Y, Li S, Nguyen HG, Niu Z, et al. 2010.. Chemical modification of M13 bacteriophage and its application in cancer cell imaging. . Bioconjug. Chem. 21::136977
    [Crossref] [Google Scholar]
  108. 108.
    Muzard J, Platt M, Lee GU. 2012.. M13 bacteriophage-activated superparamagnetic beads for affinity separation. . Small 8::240311
    [Crossref] [Google Scholar]
  109. 109.
    Kim KP, Cha JD, Jang EH, Klumpp J, Hagens S, et al. 2008.. PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response. . Microb. Biotechnol. 1::24757
    [Crossref] [Google Scholar]
  110. 110.
    Singh A, Glass N, Tolba M, Brovko L, Griffiths M, Evoy S. 2009.. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. . Biosens. Bioelectron. 24::364551
    [Crossref] [Google Scholar]
  111. 111.
    Zhu G, Zhao P, Deng N, Tao D, Sun L, et al. 2012.. Single chain variable fragment displaying m13 phage library functionalized magnetic microsphere-based protein equalizer for human serum protein analysis. . Anal. Chem. 84::763337
    [Crossref] [Google Scholar]
  112. 112.
    Barderas R, Benito-Peña E. 2019.. The 2018 Nobel Prize in Chemistry: phage display of peptides and antibodies. . Anal. Bioanal. Chem. 411::247579
    [Crossref] [Google Scholar]
  113. 113.
    Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, et al. 2006.. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. . PNAS 103::484145
    [Crossref] [Google Scholar]
  114. 114.
    Wang Z, Wang D, Chen J, Sela DA, Nugen SR. 2016.. Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli. . Analyst 141::100916
    [Crossref] [Google Scholar]
  115. 115.
    Chen J, Duncan B, Wang Z, Wang L-S, Rotello VM, Nugen SR. 2015.. Bacteriophage-based nanoprobes for rapid bacteria separation. . Nanoscale 7::1623036
    [Crossref] [Google Scholar]
  116. 116.
    Hufziger KA, Farquharson EL, Werner BG, Chen Q, Goddard JM, Nugen SR. 2022.. In vivo capsid engineering of bacteriophages for oriented surface conjugation. . ACS Appl. Bio Mater. 5::510412
    [Crossref] [Google Scholar]
  117. 117.
    Zhou X, Cao P, Zhu Y, Lu W, Gu N, Mao C. 2015.. Phage-mediated counting by the naked eye of miRNA molecules at attomolar concentrations in a Petri dish. . Nat. Mater. 14::105864
    [Crossref] [Google Scholar]
  118. 118.
    Stargardt P, Feuchtenhofer L, Cserjan-Puschmann M, Striedner G, Mairhofer J. 2020.. Bacteriophage inspired growth-decoupled recombinant protein production in Escherichia coli. . ACS Synth. Biol. 9::133648
    [Crossref] [Google Scholar]
  119. 119.
    Salis HM. 2011.. The ribosome binding site calculator. . In Synthetic Biology, Part B: Computer Aided Design and DNA Assembly, ed. C Voigt , pp. 1942. San Diego:: Elsevier
    [Google Scholar]
  120. 120.
    Saïda F, Uzan M, Bontems F. 2003.. The phage T4 restriction endoribonuclease RegB: a cyclizing enzyme that requires two histidines to be fully active. . Nucleic Acids Res. 31::275158
    [Crossref] [Google Scholar]
  121. 121.
    Chen L-X, Jaffe AL, Borges AL, Penev PI, Nelson TC, et al. 2022.. Phage-encoded ribosomal protein S21 expression is linked to late-stage phage replication. . ISME Commun. 2::31
    [Crossref] [Google Scholar]
  122. 122.
    Brondsted L, Pedersen M, Hammer K. 2001.. An activator of transcription regulates phage TP901-1 late gene expression. . Appl. Environ. Microbiol. 67::562633
    [Crossref] [Google Scholar]
  123. 123.
    Hinton DM. 2010.. Transcriptional control in the prereplicative phase of T4 development. . Virol. J. 7::289
    [Crossref] [Google Scholar]
  124. 124.
    Moller AG, Winston K, Ji S, Wang J, Hargita Davis MN, et al. 2021.. Genes influencing phage host range in Staphylococcus aureus on a species-wide scale. . mSphere 6::e01263-20
    [Crossref] [Google Scholar]
  125. 125.
    Cantu VA, Salamon P, Seguritan V, Redfield J, Salamon D, et al. 2020.. PhANNs, a fast and accurate tool and web server to classify phage structural proteins. . PLOS Comput. Biol. 16::e1007845
    [Crossref] [Google Scholar]
  126. 126.
    Fang Z, Feng T, Zhou H, Chen M. 2022.. DeePVP: identification and classification of phage virion proteins using deep learning. . GigaScience 11::giac076
    [Crossref] [Google Scholar]
  127. 127.
    Fremin BJ, Bhatt AS, Kyrpides NC, Sengupta A, Sczyrba A, et al. 2022.. Thousands of small, novel genes predicted in global phage genomes. . Cell Rep. 39::110984
    [Crossref] [Google Scholar]
  128. 128.
    Azam AH, Tanji Y. 2019.. Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. . Appl. Microbiol. Biotechnol. 103::212131
    [Crossref] [Google Scholar]
  129. 129.
    Samson JE, Magadan AH, Sabri M, Moineau S. 2013.. Revenge of the phages: defeating bacterial defences. . Nat. Rev. Microbiol. 11::67587
    [Crossref] [Google Scholar]
  130. 130.
    Zhang M, Yang L, Ren J, Ahlgren NA, Fuhrman JA, Sun F. 2017.. Prediction of virus-host infectious association by supervised learning methods. . BMC Bioinform. 18::60
    [Crossref] [Google Scholar]
  131. 131.
    Wang W, Ren J, Tang K, Dart E, Ignacio-Espinoza JC, et al. 2020.. A network-based integrated framework for predicting virus–prokaryote interactions. . NAR Genom. Bioinform. 2::lqaa044
    [Crossref] [Google Scholar]
  132. 132.
    Li M, Wang Y, Li F, Zhao Y, Liu M, et al. 2021.. A deep learning-based method for identification of bacteriophage-host interaction. . IEEE/ACM Trans. Comput. Biol. Bioinform. 18::180110
    [Crossref] [Google Scholar]
  133. 133.
    Carmody CM, Farquharson EL, Nugen SR. 2022.. Enterobacteria phage SV76 host range and genomic characterization. . Ther. Appl. Res. 3::5963
    [Google Scholar]
  134. 134.
    Farquharson EL, Nugen SR. 2022.. Enterobacteria phage Ac3’s genome annotation and host range analysis against the ECOR reference library. . Ther. Appl. Res. 3::16570
    [Google Scholar]
  135. 135.
    Kutter E. 2009.. Phage host range and efficiency of plating. . In Bacteriophages, ed. MRJ Clokie, A Kropinski , pp. 14150. New York, NY:: Humana Press
    [Google Scholar]
  136. 136.
    Goodridge L, Gallaccio A, Griffiths MW. 2003.. Morphological, host range, and genetic characterization of two coliphages. . Appl. Environ. Microbiol. 69::536471
    [Crossref] [Google Scholar]
  137. 137.
    Alonzo LF, Jain P, Hinkley T, Clute-Reinig N, Garing S, et al. 2022.. Rapid, sensitive, and low-cost detection of Escherichia coli bacteria in contaminated water samples using a phage-based assay. . Sci. Rep. 12::7741
    [Crossref] [Google Scholar]
  138. 138.
    Dougherty PE. 2021.. Host range expansion of phage cocktails: automation and study of Appelmans protocol. Master's Thesis , Nor. Univ. Sci. Technol., Trondheim:. https://hdl.handle.net/11250/2782621
    [Google Scholar]
  139. 139.
    Mirzaei MK, Nilsson AS. 2015.. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. . PLOS ONE 10::e0118557
    [Crossref] [Google Scholar]
  140. 140.
    Ataee S, Brochet X, Peña-Reyes CA. 2022.. Bacteriophage genetic edition using LSTM. . Front. Bioinform. 2::932319
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-071323-084224
Loading
/content/journals/10.1146/annurev-anchem-071323-084224
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error