1932

Abstract

Forensic analytical chemistry has evolved significantly, embracing myriad methodological and technological advancements to expand the frontiers of evidence analysis. Beyond technology, modern forensic scientists face challenges working within the criminal justice system where scientific operational and research choices are directed by law enforcement agencies. This review examines issues surrounding the accuracy of presumptive tests, the use of portable instrumentation, and sample contamination, as exemplified by field drug testing. Data management and preservation are discussed, including the integration of machine learning into forensic workflows and the critical need for transparency to stakeholders. Finally, the operational interpretation and translation of analytical results and the role of forensic laboratories as high-reliability organizations are explored. Addressing the disparities and ensuring the credibility of forensic methods are essential for promoting reliability and equity within the justice system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-072624-030546
2025-05-15
2025-06-12
Loading full text...

Full text loading...

/deliver/fulltext/anchem/18/1/annurev-anchem-072624-030546.html?itemId=/content/journals/10.1146/annurev-anchem-072624-030546&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Christian GD. 2020.. Evolution of analytical sciences in the United States: a historical account. . Annu. Rev. Anal. Chem. 13::47596
    [Crossref] [Google Scholar]
  2. 2.
    Bell S. 2009.. Forensic chemistry. . Annu. Rev. Anal. Chem. 2::297319
    [Crossref] [Google Scholar]
  3. 3.
    Singh R. 2022.. Narration and legacy of important chemical spot tests in forensic investigation. . Crit. Rev. Anal. Chem. 52:(1):3552
    [Crossref] [Google Scholar]
  4. 4.
    Arnaud CH. 2017.. Thirty years of DNA forensics: how DNA has revolutionized criminal investigations. . Chemical & Engineering News, Sep. 18. https://cen.acs.org/analytical-chemistry/Thirty-years-DNA-forensics-DNA/95/i37
    [Google Scholar]
  5. 5.
    Salomone A, Oliveri P, Zadora G. 2020.. Editorial: new approaches in forensic analytical chemistry. . Front. Chem. 8::638460
    [Crossref] [Google Scholar]
  6. 6.
    Bur. Justice Stat. 2023.. FY 2023 census of publicly funded forensic crime laboratories. . Bureau of Justice Statistics. https://bjs.ojp.gov/funding/awards/15pbjs-23-gk-00836-bjsb
    [Google Scholar]
  7. 7.
    Banks D, Hendrix J, Hickman M, Kyckelhahn T. 2016.. National sources of law enforcement employment data. Progr. Rep. NCJ 249681 , Bur. Justice Stat., US Dep. Justice, Washington, DC:. https://bjs.ojp.gov/content/pub/pdf/nsleed.pdf
    [Google Scholar]
  8. 8.
    ASTM Int. 2017.. Standard practice for identification of seized drugs. ASTM E2329–17, ASTM Int., West Conshocken, PA:, updated May 12, 2022. https://www.astm.org/e2329-17.html
    [Google Scholar]
  9. 9.
    SWGDRUG. 2022.. Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) Recommendations, Version 8.1. Rep. , US Dep. Justice Drug Enforc. Admin., Washington, DC:. https://www.swgdrug.org/Documents/SWGDRUG%20Recommendations%20Version%208.1_FINAL_ForPosting_Rev%201-23-23.pdf
    [Google Scholar]
  10. 10.
    Forensic Technol. Cent. Excell. 2018.. Landscape study of field portable devices for presumptive drug testing. Rep. , Natl. Inst. Justice, Off. Investig. Forensic Sci., US Dep. Justice, Washington, DC:. https://forensiccoe.org/landscape-study-of-field-portable-devices-for-presumptive-drug-testing/
    [Google Scholar]
  11. 11.
    Burks R, Winokur A. 2023.. Presumptive chemical tests. . In Encyclopedia of Forensic Sciences, ed. MM Houck , pp. 26377. Oxford, UK:: Elsevier. , 3rd ed..
    [Google Scholar]
  12. 12.
    Forbes TP, Burks R. 2023.. Field-deployable devices. . In Encyclopedia of Forensic Sciences, ed. MM Houck , pp. 41323. Oxford, UK:: Elsevier. , 3rd ed..
    [Google Scholar]
  13. 13.
    Morgan J. 2023.. Wrongful convictions and claims of false or misleading forensic evidence. . J. Forensic Sci. 68:(3):90861
    [Crossref] [Google Scholar]
  14. 14.
    Texas Forensic Sci. Comm. 2018.. Report in compliance with HB-34 (85th Legislature). Rep., Texas Forensic Sci. Comm., Huntsville, TX . https://www.dropbox.com/scl/fo/dz6cy434t2wuilqqlweh2/AESGrq8-oY0bkKWmV0t4pDw?rlkey=u7j3kw9hojx6irzvxb8crhu03&e=2&st=vjwnq6ql&dl=0
    [Google Scholar]
  15. 15.
    Triplett JS, Salyards J, Rodriguez-Cruz SE, Morris JA, Creel D, et al. 2024.. Evidence-based evaluation of the analytical schemes in ASTM E2329–17 Standard Practice for Identification of Seized Drugs for methamphetamine samples. . Forensic Chem. 38::100560
    [Crossref] [Google Scholar]
  16. 16.
    Philp M, Fu S. 2018.. A review of chemical “spot” tests: a presumptive illicit drug identification technique. . Drug Test. Anal. 10:(1):95108
    [Crossref] [Google Scholar]
  17. 17.
    Doménech-Carbó MT, Doménech-Carbó A. 2022.. Spot tests: past and present. . ChemTexts 8:(1):4
    [Crossref] [Google Scholar]
  18. 18.
    Johns SH, Wist AA, Najam AR. 1979.. Spot tests: a color chart reference for forensic chemists. . J. Forensic Sci. 24:(3):63149
    [Crossref] [Google Scholar]
  19. 19.
    Jungreis E. 2006.. Spot test analysis. . In Encyclopedia of Analytical Chemistry: Applications, Theory and Implementation, , 119. Chichester, UK:: John Wiley & Sons
    [Google Scholar]
  20. 20.
    Kammrath BW, Leary PE, Reffner JA. 2021.. Forensic applications of portable spectrometers. . In Portable Spectroscopy and Spectrometry II: Applications, ed. RA Crocombe, PE Leary, BW Kammrath , pp. 12547. Hoboken, NJ:: Wiley
    [Google Scholar]
  21. 21.
    Arrowhead Forensics. 2024.. NIK test kits. . Arrowhead Forensics. https://arrowheadforensics.com/products/narcotics-testing/nik-drug-test-kits.html
    [Google Scholar]
  22. 22.
    Sirchie. 2024.. NARK II presumptive narcotics test pouches. . Sirchie. https://www.sirchie.com/forensics/narcotics-investigation/nark-ii-presumptive-narcotics-test-pouches.html
    [Google Scholar]
  23. 23.
    Arrowhead Forensics. 2024.. SwabIt presumptive drug test kits. . Arrowhead Forensics. https://arrowheadforensics.com/products/narcotics-testing/swabit-presumptive-drug-test-swabs.html
    [Google Scholar]
  24. 24.
    NARTEC. 2024.. Nartec bundles. . NARTEC. https://nartec.com/nartec-bundles
    [Google Scholar]
  25. 25.
    United Nations Off. Drugs Crime. 1994.. Rapid testing methods of drugs of abuse. Rep. ST/NAR/13/REV.I , United Nations Off. Drugs Crime, Vienna:. https://www.unodc.org/unodc/en/scientists/rapid-testing-methods-of-drugs-of-abuse_new.html
    [Google Scholar]
  26. 26.
    NIJ (Natl. Inst. Justice). 2000.. Color test reagents/kits for preliminary identification of drugs of abuse, NIJ standard-0604.01. Rep. 183258 , Off. Justice Progr., US Dep. Justice, Washington, DC:. https://www.ojp.gov/ncjrs/virtual-library/abstracts/color-test-reagentskits-preliminary-identification-drugs-abuse-nij
    [Google Scholar]
  27. 27.
    United Nations Off. Drugs Crime. 2022.. Recommended methods for the identification and analysis of cannabis and cannabis products. Rep. ST/NAR/40/REV.1 , United Nations Off. Drugs Crime, Vienna:. https://www.unodc.org/unodc/en/scientists/recommended-methods-for-the-identification-and-analysis-of-cannabis-and-cannabis-products.html
    [Google Scholar]
  28. 28.
    Young JL. 1931.. The detection of cocaine in the presence of novocaine by means of cobalt thiocyanate. . Am. J. Pharm. 103:(12):70910
    [Google Scholar]
  29. 29.
    Schlesinger HL. 1985.. Topics in the chemistry of cocaine. . Bull. Narc. 37:(1):6378
    [Google Scholar]
  30. 30.
    Burks R, Öhrström L, Amombo Noa FM. 2023.. Clarifying the complex chemistry of cobalt(II) thiocyanate-based tests for cocaine using single-crystal X-ray diffraction and spectroscopic techniques. . J. Forensic Sci. 69:(1):291300
    [Crossref] [Google Scholar]
  31. 31.
    Tsumura Y, Mitome T, Kimoto S. 2005.. False positives and false negatives with a cocaine-specific field test and modification of test protocol to reduce false decision. . Forensic Sci. Int. 155:(2–3):15864
    [Crossref] [Google Scholar]
  32. 32.
    Gabrielson R, Sanders T. 2016.. Busted: examining chemical field tests. . ProPublica, July 7. https://www.propublica.org/series/busted
    [Google Scholar]
  33. 33.
    Garrett BL. 2020.. Wrongful convictions. . Annu. Rev. Criminol. 3::24559
    [Crossref] [Google Scholar]
  34. 34.
    Miller R, Heaton P, Sturges H. 2023.. Guilty until proven innocent: field drug tests and wrongful convictions. Rep. 26, Quattrone Cent. Fair Admin. Justice, Carey Law School, Univ. Penn., Philadelphia:. https://www.law.upenn.edu/live/files/12890-fdt-guilty-until-proven-innocent
    [Google Scholar]
  35. 35.
    Wilke C. 2023.. Portable chemical analysis for drug investigations promises more reliable and just results. . Chemical & Engineering News, April 21. https://cen.acs.org/analytical-chemistry/forensic-science/Drug-tests-portable-analytical-instruments/101/i13
    [Google Scholar]
  36. 36.
    LaPorte G. 2018.. Wrongful convictions and DNA exonerations: understanding the role of forensic science. . Natl. Inst. Justice J. 279::1025
    [Google Scholar]
  37. 37.
    Acker J, Backes B, Bonventre C, Martin E, Moore A, et al. 2023.. Wrongful convictions: the literature, the issues, and the unheard voices. Rep. 251446 , Natl. Inst. Justice, Off. Justice Progr., US Dep. Justice, Washington, DC:. https://www.ojp.gov/pdffiles1/nij/251446.pdf
    [Google Scholar]
  38. 38.
    White House. 2024.. Advancing equity and racial justice through the Federal Government. . The White House. https://bidenwhitehouse.archives.gov/equity/
    [Google Scholar]
  39. 39.
    Roux C, Willis S, Weyermann C. 2021.. Shifting forensic science focus from means to purpose: A path forward for the discipline?. Sci. Justice 61:(6):67886
    [Crossref] [Google Scholar]
  40. 40.
    Natl. Res. Counc. 2009.. Strengthening Forensic Science in the United States: A Path Forward. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  41. 41.
    United Nations Off. Drugs Crime. 2024.. Early warning advisory on new psychoactive substances. . United Nations Office on Drugs and Crime. https://www.unodc.org/LSS/Page/NPS
    [Google Scholar]
  42. 42.
    Bruni A, Rodrigues C, dos Santos C, de Castro J, Mariotto L, Sinhorini L. 2022.. Analytical challenges for identification of new psychoactive substances: a literature-based study for seized drugs. . Braz. J. Anal. Chem. 9:(34):5278
    [Google Scholar]
  43. 43.
    Cuypers E, Bonneure A-J, Tytgat J. 2016.. The use of presumptive color tests for new psychoactive substances. . Drug Test. Anal. 8:(1):13640
    [Crossref] [Google Scholar]
  44. 44.
    Ferrari Júnior E, Leite BHM, Gomes EB, Vieira TM, Sepulveda P, Caldas ED. 2022.. Fatal cases involving new psychoactive substances and trends in analytical techniques. . Front. Toxicol. 4::1033733
    [Crossref] [Google Scholar]
  45. 45.
    de Campos EG, Krotulski AJ, De Martinis BS, Costa JL. 2022.. Identification of synthetic cathinones in seized materials: a review of analytical strategies applied in forensic chemistry. . WIREs Forensic Sci. 4:(5):e1455
    [Crossref] [Google Scholar]
  46. 46.
    Bailey MJ, de Puit M, Romolo FS. 2022.. Surface analysis techniques in forensic science: successes, challenges, and opportunities for operational deployment. . Annu. Rev. Anal. Chem. 15::17396
    [Crossref] [Google Scholar]
  47. 47.
    Fernandes GM, Silva WR, Barreto DN, Lamarca RS, Lima Gomes PCF, et al. 2020.. Novel approaches for colorimetric measurements in analytical chemistry—a review. . Anal. Chim. Acta 1135::187203
    [Crossref] [Google Scholar]
  48. 48.
    Konica Minolta. 2017.. CR-410 Chroma Meter. . Konica Minolta. https://sensing.konicaminolta.us/us/products/cr-410-chroma-meter-colorimeter/
    [Google Scholar]
  49. 49.
    Hach. 2024.. DR1900 Portable Spectrophotometer. . Hach. https://bit.ly/30wL7OX
    [Google Scholar]
  50. 50.
    Choudhury AKR. 2014.. Colour measurement instruments. . In Principles of Colour and Appearance Measurement, ed. AKR Choudhury , pp. 22169. Sawston, UK:: Woodhead Publ.
    [Google Scholar]
  51. 51.
    Fang J, Xu H, Wang Z, Wu X. 2016.. Colorimetric characterization of digital cameras with unrestricted capture settings applicable for different illumination circumstances. . J. Mod. Opt. 63:(9):84760
    [Crossref] [Google Scholar]
  52. 52.
    Fan Y, Li J, Guo Y, Xie L, Zhang G. 2021.. Digital image colorimetry on smartphone for chemical analysis: a review. . Measurement 171::108829
    [Crossref] [Google Scholar]
  53. 53.
    Shin J, Choi S, Yang J-S, Song J, Choi J-S, Jung H-I. 2017.. Smart forensic phone: colorimetric analysis of a bloodstain for age estimation using a smartphone. . Sens. Actuators B Chem. 243::22125
    [Crossref] [Google Scholar]
  54. 54.
    Jain R, Jha RR, Kumari A, Khatri I. 2021.. Dispersive liquid-liquid microextraction combined with digital image colorimetry for paracetamol analysis. . Microchem. J. 162::105870
    [Crossref] [Google Scholar]
  55. 55.
    Tiuftiakov NY, Kalinichev AV, Pokhvishcheva NV, Peshkova MA. 2021.. Digital color analysis for colorimetric signal processing: towards an analytically justified choice of acquisition technique and color space. . Sens. Actuators B Chem. 344::130274
    [Crossref] [Google Scholar]
  56. 56.
    Merli D, Profumo A, Tinivella S, Protti S. 2019.. From smart drugs to smartphone: a colorimetric spot test for the analysis of the synthetic cannabinoid AB-001. . Forensic Chem. 14::100167
    [Crossref] [Google Scholar]
  57. 57.
    Krauss ST, Remcho TP, Lipes SM, Aranda R 4th, Maynard HP 3rd, et al. 2016.. Objective method for presumptive field-testing of illicit drug possession using centrifugal microdevices and smartphone analysis. . Anal. Chem. 88:(17):868997
    [Crossref] [Google Scholar]
  58. 58.
    de Oliveira LP, Rocha DP, de Araujo WR, Muñoz RAA, Paixão TRL, Salles MO. 2018.. Forensics in hand: new trends in forensic devices (2013–2017). . Anal. Methods 10:(43):513563
    [Crossref] [Google Scholar]
  59. 59.
    Böck FC, Helfer GA, Costa AB, Dessuy MB, Ferrão MF. 2020.. PhotoMetrix and colorimetric image analysis using smartphones. . J. Chemom. 34:(12):e3251
    [Crossref] [Google Scholar]
  60. 60.
    Soares S, Fernandes GM, Rocha FRP. 2023.. Smartphone-based digital images in analytical chemistry: why, when, and how to use. . Trends Anal. Chem. 168::117284
    [Crossref] [Google Scholar]
  61. 61.
    Hemmateenejad B, Bordbar MM, Shojaeifard Z. 2023.. Data acquisition and data analysis in colorimetric sensor arrays. . Chemom. Intellig. Lab. Syst. 241::104975
    [Crossref] [Google Scholar]
  62. 62.
    Ataide VN, Pradela Filho LA, Guinati BGS, Moreira NS, Gonçalves JD, et al. 2023.. Combining chemometrics and paper-based analytical devices for sensing: an overview. . Trends Anal. Chem. 164::117091
    [Crossref] [Google Scholar]
  63. 63.
    DetectaChem. 2019.. MobileDetect. . DetectaChem. https://www.detectachem.com/product-info/mobile-detect/
    [Google Scholar]
  64. 64.
    Balbach S, Jiang N, Moreddu R, Dong X, Kurz W, et al. 2021.. Smartphone-based colorimetric detection system for portable health tracking. . Anal. Methods 13:(38):436169
    [Crossref] [Google Scholar]
  65. 65.
    Geng Z, Miao Y, Zhang G, Liang X. 2023.. Colorimetric biosensor based on smartphone: state-of-art. . Sens. Actuators A Phys. 349::114056
    [Crossref] [Google Scholar]
  66. 66.
    Yadav P, Yadav L, Laddha H, Agarwal M, Gupta R. 2022.. Upsurgence of smartphone as an economical, portable, and consumer-friendly analytical device/interface platform for digital sensing of hazardous environmental ions. . Trends Environ. Anal. Chem. 36::e00177
    [Crossref] [Google Scholar]
  67. 67.
    Leary PE, Joshi M. 2021.. Applications of ion mobility spectrometry. . In Portable Spectroscopy and Spectrometry, ed. R. Crocombe, P. Leary, B. Kammrath , pp. 15978. Hoboken, NJ:: John Wiley & Sons
    [Google Scholar]
  68. 68.
    Alonzo M, Alder R, Clancy L, Fu S. 2022.. Portable testing techniques for the analysis of drug materials. . WIREs Forensic Sci. 4:(6):e1461
    [Crossref] [Google Scholar]
  69. 69.
    Smiths Detection. 2024.. LCD 4. . Smiths Detection. https://www.smithsdetection.com/products/lcd-4/
    [Google Scholar]
  70. 70.
    Verkouteren JR, Staymates JL. 2011.. Reliability of ion mobility spectrometry for qualitative analysis of complex, multicomponent illicit drug samples. . Forensic Sci. Int. 206:(1–3):19096
    [Crossref] [Google Scholar]
  71. 71.
    Lanzarotta A, Kern S, Batson J, Falconer TM, Fulcher M, et al. 2021.. Evaluation of “Toolkit” consisting of handheld and portable analytical devices for detecting active pharmaceutical ingredients in drug products collected during a simultaneous nation-wide mail blitz. . J. Pharm. Biomed. Anal. 203::114183
    [Crossref] [Google Scholar]
  72. 72.
    Hargreaves M. 2021.. Handheld Raman, SERS, and SORS. . In Portable Spectroscopy and Spectrometry, ed. R. Crocombe, P. Leary, B. Kammrath , pp. 34776. Hoboken, NJ:: John Wiley & Sons
    [Google Scholar]
  73. 73.
    Crocombe RA, Giuntini G, Schiering DW, Profeta LTM, Hargreaves MD, et al. 2023.. Field-portable detection of fentanyl and its analogs: a review. . J. Forensic Sci. 68:(5):1570600
    [Crossref] [Google Scholar]
  74. 74.
    Leary PE, Kizzire KL, Chao RC, Niedziejko M, Martineau N, Kammrath BW. 2023.. Evaluation of portable gas chromatography-mass spectrometry (GC-MS) for the analysis of fentanyl, fentanyl analogs, and other synthetic opioids. . J. Forensic Sci. 68:(5):160114
    [Crossref] [Google Scholar]
  75. 75.
    Fiorentin TR, Logan BK, Martin DM, Browne T, Rieders EF. 2020.. Assessment of a portable quadrupole-based gas chromatography mass spectrometry for seized drug analysis. . Forensic Sci. Int. 313::110342
    [Crossref] [Google Scholar]
  76. 76.
    Coppey F, Bécue A, Sacré P-Y, Ziemons EM, Hubert P, Esseiva P. 2020.. Providing illicit drugs results in five seconds using ultra-portable NIR technology: an opportunity for forensic laboratories to cope with the trend toward the decentralization of forensic capabilities. . Forensic Sci. Int. 317::110498
    [Crossref] [Google Scholar]
  77. 77.
    Wermelinger M, Coppey F, Gasté L, Esseiva P. 2023.. Exploring the added value of portable devices such as near infrared spectrometer in the field of illicit drugs analyses. . Forensic Sci. Int. 348::111605
    [Crossref] [Google Scholar]
  78. 78.
    NIRLAB. 2024.. Portable narcotics spectrometer for law enforcement. NIRLAB. https://www.nirlab.com/law-enforcement/
    [Google Scholar]
  79. 79.
    Swofford H. 2023.. Forensic science environmental scan. NIST Interagency Rep. 8515 , Natl. Inst. Stand. Technol., Gaithersburg, MD:. https://doi.org/10.6028/NIST.IR.8515
    [Google Scholar]
  80. 80.
    Gabrielson R, Sanders T. 2016.. Busted. . ProPublica, July 7, https://www.propublica.org/article/common-roadside-drug-test-routinely-produces-false-positives
    [Google Scholar]
  81. 81.
    Relating to measures to prevent wrongful convictions. , HB 34, Leg. Sess. 85(R) (Tex. 2017)
  82. 82.
    Commonw. Va. Dep. Forensic Sci. 2023.. Notice of DFS field test approval, March 16 . Commonw. Va. Dep. Forensic Sci., Richmond:. https://dfs.virginia.gov/wp-content/uploads/NOTICE.Presumptive-Mobile-Instrument.pdf
    [Google Scholar]
  83. 83.
    Colorimetric field drug tests, SB-912 , Calif. Senate, 2024.
    [Google Scholar]
  84. 84.
    Wiener S. 2024.. Senator Wiener introduces first-in-the-nation bill to limit use of inaccurate roadside drug tests, the leading known cause of wrongful convictions in the U.S. Press Release, Jan. 9. https://sd11.senate.ca.gov/news/senator-wiener-introduces-first-nation-bill-limit-use-inaccurate-roadside-drug-tests-leading
    [Google Scholar]
  85. 85.
    POWER Act, S. 954, 116th Cong. ( 2019.) ( introduced )
  86. 86.
    POWER Act, H.R. 2070, 116th Cong. ( 2019.) ( introduced )
  87. 87.
    Jurs PC, Kowalski BR, Isenhour TL. 1969.. Investigation of combined patterns from diverse analytical data using computerized learning machines. . Anal. Chem. 41:(14):194953
    [Crossref] [Google Scholar]
  88. 88.
    Silva CS, Braz A, Pimentel MF. 2019.. Vibrational spectroscopy and chemometrics in forensic chemistry: critical review, current trends and challenges. . J. Braz. Chem. Soc. 30:(11):225990
    [Google Scholar]
  89. 89.
    Popovic A, Morelato M, Roux C, Beavis A. 2019.. Review of the most common chemometric techniques in illicit drug profiling. . Forensic Sci. Int. 302::109911
    [Crossref] [Google Scholar]
  90. 90.
    Sigman ME, Williams MR. 2020.. Chemometric applications in fire debris analysis. . WIREs Forensic Sci. 2:(5):e1368
    [Crossref] [Google Scholar]
  91. 91.
    Sauzier G, van Bronswijk W, Lewis SW. 2021.. Chemometrics in forensic science: approaches and applications. . Analyst 146:(8):241548
    [Crossref] [Google Scholar]
  92. 92.
    Sharma V, Sauzier G, Lewis SW, eds. 2024.. Chemometric Methods in Forensic Science. Croydon, UK:: R. Soc. Chem.
    [Google Scholar]
  93. 93.
    Costa S, Barroso M, Castañera A, Dias M. 2010.. Design of experiments, a powerful tool for method development in forensic toxicology: application to the optimization of urinary morphine 3-glucuronide acid hydrolysis. . Anal. Bioanal. Chem. 396:(7):253342
    [Crossref] [Google Scholar]
  94. 94.
    Fernández P, Seoane S, Vázquez C, Bermejo A, Carro A, Lorenzo R. 2011.. A rapid analytical method based on microwave-assisted extraction for the determination of drugs of abuse in vitreous humor. . Anal. Bioanal. Chem. 401:(7):217786
    [Crossref] [Google Scholar]
  95. 95.
    Ho Y-H, Wang C-C, Hsiao Y-T, Ko W-K, Wu S-M. 2013.. Analysis of ten abused drugs in urine by large volume sample stacking-sweeping capillary electrophoresis with an experimental design strategy. . J. Chromatogr. A 1295::13641
    [Crossref] [Google Scholar]
  96. 96.
    Rainey CL, Bors DE, Goodpaster JV. 2014.. Design and optimization of a total vaporization technique coupled to solid phase microextraction (TV-SPME). . Anal. Chem. 86:(22):1131925
    [Crossref] [Google Scholar]
  97. 97.
    Mueller A, Jungen H, Iwersen-Bergmann S, Raduenz L, Lezius S, Andresen-Streichert H. 2017.. Determination of ethyl glucuronide in human hair samples: a multivariate analysis of the impact of extraction conditions on quantitative results. . Forensic Sci. Int. 271::4348
    [Crossref] [Google Scholar]
  98. 98.
    Lambert D, Muehlethaler C, Gueissaz L, Massonnet G. 2014.. Raman analysis of multilayer automotive paints in forensic science: measurement variability and depth profile. . J. Raman Spectrosc. 45:(11–12):128592
    [Crossref] [Google Scholar]
  99. 99.
    Sauzier G, Bors D, Ash J, Goodpaster JV, Lewis SW. 2016.. Optimisation of recovery protocols for double-base smokeless powder residues analysed by total vaporisation (TV) SPME/GC-MS. . Talanta 158::36874
    [Crossref] [Google Scholar]
  100. 100.
    Alamilla F, Calcerrada M, García-Ruiz C, Torre M. 2013.. Forensic discrimination of blue ballpoint pens on documents by laser ablation inductively coupled plasma mass spectrometry and multivariate analysis. . Forensic Sci. Int. 228:(1–3):17
    [Crossref] [Google Scholar]
  101. 101.
    da Silva VAG, Talhavini M, Zacca JJ, Trindadeb BR, Braga JWB. 2014.. Discrimination of black pen inks on writing documents using visible reflectance spectroscopy and PLS-DA. . J. Braz. Chem. Soc. 25:(9):155264
    [Google Scholar]
  102. 102.
    Sauzier G, McGinn J, Trubshoe T, Lewis SW. 2019.. In situ examination of handwritten blue ballpoint inks using video spectral comparison with chemometrics. . Forensic Sci. Int. Rep. 1::100021
    [Crossref] [Google Scholar]
  103. 103.
    Sauzier G, Reichard E, van Bronswijk W, Lewis SW, Goodpaster JV. 2016.. Improving the confidence of “questioned versus known” fiber comparisons using microspectrophotometry and chemometrics. . Forensic Chem. 2::1521
    [Crossref] [Google Scholar]
  104. 104.
    Waddell RJH, NicDaéid N, Littlejohn D. 2004.. Classification of ecstasy tablets using trace metal analysis with the application of chemometric procedures and artificial neural network algorithms. . Analyst 129:(3):23540
    [Crossref] [Google Scholar]
  105. 105.
    Gładysz M, Król M, Kościelniak P. 2017.. Differentiation of red lipsticks using the attenuated total reflection technique supported by two chemometric methods. . Forensic Sci. Int. 280:(Suppl. C):13038
    [Crossref] [Google Scholar]
  106. 106.
    de Caritat P, Woods B, Simpson T, Nichols C, Hoogenboom L, et al. 2022.. Forensic soil provenancing in an urban/suburban setting: a simultaneous multivariate approach. . J. Forensic Sci. 67:(3):92735
    [Crossref] [Google Scholar]
  107. 107.
    Coon AM, Beyramysoltan S, Musah RA. 2019.. A chemometric strategy for forensic analysis of condom residues: identification and marker profiling of condom brands from direct analysis in real time-high resolution mass spectrometric chemical signatures. . Talanta 194::56375
    [Crossref] [Google Scholar]
  108. 108.
    Bueno J, Sikirzhytski V, Lednev IK. 2012.. Raman spectroscopic analysis of gunshot residue offering great potential for caliber differentiation. . Anal. Chem. 84:(10):433439
    [Crossref] [Google Scholar]
  109. 109.
    Dujourdy L, Besacier F. 2008.. Headspace profiling of cocaine samples for intelligence purposes. . Forensic Sci. Int. 179:(2–3):11122
    [Crossref] [Google Scholar]
  110. 110.
    D'Uva JA, DeTata D, May CD, Lewis SW. 2020.. Investigations into the source attribution of party sparklers using trace elemental analysis and chemometrics. . Anal. Methods 12:(41):493948
    [Crossref] [Google Scholar]
  111. 111.
    Turner DA, Goodpaster JV. 2012.. Comparing the effects of weathering and microbial degradation on gasoline using principal components analysis. . J. Forensic Sci. 57:(1):6469
    [Crossref] [Google Scholar]
  112. 112.
    van der Pal KJ, Sauzier G, Maric M, van Bronswijk W, Pitts K, Lewis SW. 2016.. The effect of environmental degradation on the characterisation of automotive clear coats by infrared spectroscopy. . Talanta 148::71520
    [Crossref] [Google Scholar]
  113. 113.
    Sauzier G, McGann J, Lewis SW, van Bronswijk W. 2018.. A study into the ageing and dating of blue ball tip inks on paper using in situ visible spectroscopy with chemometrics. . Anal. Methods 10:(47):561321
    [Crossref] [Google Scholar]
  114. 114.
    Bovens M, Ahrens B, Alberink I, Nordgaard A, Salonen T, Huhtala S. 2019.. Chemometrics in forensic chemistry—Part I: implications to the forensic workflow. . Forensic Sci. Int. 301::8290
    [Crossref] [Google Scholar]
  115. 115.
    Eur. Netw. Forensic Sci. Inst. Drugs Work. Group. 2020.. Guideline for the use of chemometrics in forensic chemistry. Guidel. DWG-CFC-001 , Eur. Netw. Forensic Sci. Inst., Wiesbaden, Ger:. https://enfsi.eu/wp-content/uploads/2021/09/Guideline-for-the-use-of-Chemometrics-in-Forensic-Chemistry.pdf
    [Google Scholar]
  116. 116.
    Hackman L, Mack P, Ménard H. 2024.. Behind every good research there are data. What are they and their importance to forensic science. . Forensic Sci. Int. Synergy 8::100456
    [Crossref] [Google Scholar]
  117. 117.
    Albright TD, Scurich N. 2024.. A call for open science in forensics. . PNAS 121:(24):e2321809121
    [Crossref] [Google Scholar]
  118. 118.
    Chin JM, Ribeiro G, Rairden A. 2019.. Open forensic science. . Int. J. Biosci. Law 6:(1):25588
    [Crossref] [Google Scholar]
  119. 119.
    Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, et al. 2016.. The FAIR Guiding Principles for scientific data management and stewardship. . Sci. Data 3::160018
    [Crossref] [Google Scholar]
  120. 120.
    Eur. Sci. Found. 2024.. Plan S: making full and immediate Open Access a reality. Eur. Sci. Found., Strasbourg, Fr:. https://www.coalition-s.org/
  121. 121.
    Horsman G, Lyle JR. 2021.. Dataset construction challenges for digital forensics. . Forensic Sci. Int. Digit. Investig. 38::301264
    [Google Scholar]
  122. 122.
    Göbel T, Baier H, Breitinger F. 2023.. Data for digital forensics: why a discussion on “how realistic is synthetic data” is dispensable. . Digit. Threats. Res. Pract. 4:(3):38
    [Google Scholar]
  123. 123.
    Allen CI, Payne SH, Valentine JL. 2023.. Ethical data sharing in forensic research. . Forensic Sci. Int. Synergy 6::100322
    [Crossref] [Google Scholar]
  124. 124.
    Forensic Sci. Stand. Board. 2023.. Interpretation. . OSAC Lexicon, Natl. Inst. Stand. Technol., Gaithersburg, MD:. https://www.nist.gov/glossary-term/26116
    [Google Scholar]
  125. 125.
    Hackman L. 2021.. Communication, forensic science, and the law. . WIREs Forensic Sci. 3:(2):e1396
    [Crossref] [Google Scholar]
  126. 126.
    Bali AS, Edmond G, Ballantyne KN, Kemp RI, Martire KA. 2020.. Communicating forensic science opinion: an examination of expert reporting practices. . Sci. Justice 60:(3):21624
    [Crossref] [Google Scholar]
  127. 127.
    Eldridge H. 2019.. Juror comprehension of forensic expert testimony: a literature review and gap analysis. . Forensic Sci. Int. Synergy 1::2434
    [Crossref] [Google Scholar]
  128. 128.
    De Wolff TR, Aarts LHJ, van den Berge M, Boyko T, van Oorschot RAH, et al. 2021.. Prevalence of DNA of regular occupants in vehicles. . Forensic Sci. Int. 320::110713
    [Crossref] [Google Scholar]
  129. 129.
    Rendle DF. 2005.. Advances in chemistry applied to forensic science. . Chem. Soc. Rev. 34:(12):102130
    [Crossref] [Google Scholar]
  130. 130.
    King LA. 2022.. Analogue legislation. . In Forensic Chemistry of Substance Misuse: A Guide to Drug Control, ed. LA King , pp. 14652. Cambridge, UK:: R. Soc. Chem.
    [Google Scholar]
  131. 131.
    Houck MM. 2020.. Backlogs are a dynamic system, not a warehousing problem. . Forensic Sci. Int. Synergy 2::31724
    [Crossref] [Google Scholar]
  132. 132.
    Speaker PJ. 2019.. The jurisdictional return on investment from processing the backlog of untested sexual assault kits. . Forensic Sci. Int. Synergy 1::1823
    [Crossref] [Google Scholar]
  133. 133.
    Habib A, Bi L, Hong H, Wen L. 2020.. Challenges and strategies of chemical analysis of drugs of abuse and explosives by mass spectrometry. . Front. Chem. 8::598487
    [Crossref] [Google Scholar]
  134. 134.
    United Nations Off. Drugs Crime. 2024.. Current NPS threats, Vol. 7. Rep. , United Nations Off. Drugs Crime, Vienna:. https://www.unodc.org/documents/scientific/Current_NPS_threats_VII.pdf
    [Google Scholar]
  135. 135.
    Marohl M, Jensen G, Barkholtz H. 2023.. What is the preferred educational background of forensic scientists?. J. Anal. Toxicol. 47:(3):299304
    [Crossref] [Google Scholar]
  136. 136.
    Bridge C, Marić M. 2019.. Cognitive biases in forensic science training and education. . In Misinformation and Fake News in Education, ed. P Kendeou, DH Robinson, MT McCrudden , pp. 81102. Charlotte, NC:: Inf. Age Publ.
    [Google Scholar]
  137. 137.
    Natl. Acad. Sci. Eng. Med. 2022.. The Importance of Chemical Research to the U.S. Economy. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  138. 138.
    Cooper GS, Meterko V. 2019.. Cognitive bias research in forensic science: a systematic review. . Forensic Sci. Int. 297::3546
    [Crossref] [Google Scholar]
  139. 139.
    Kunkler KS, Roy T. 2023.. Reducing the impact of cognitive bias in decision making: practical actions for forensic science practitioners. . Forensic Sci. Int. Synergy 7::100341
    [Crossref] [Google Scholar]
  140. 140.
    Kassin SM, Dror IE, Kukucka J. 2013.. The forensic confirmation bias: problems, perspectives, and proposed solutions. . J. Appl. Res. Mem. Cogn. 2:(1):4252
    [Crossref] [Google Scholar]
  141. 141.
    Winburn AP, Clemmons CMJ. 2021.. Objectivity is a myth that harms the practice and diversity of forensic science. . Forensic Sci. Int. Synergy 3::100196
    [Crossref] [Google Scholar]
  142. 142.
    Kirk PL. 1953.. Crime Investigation: Physical Evidence and the Police Laboratory. New York:: Interscience
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-072624-030546
Loading
/content/journals/10.1146/annurev-anchem-072624-030546
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error