
Full text loading...
Surface chemistry affects the physiochemical properties of nanoparticles in a variety of ways. Therefore, there is great interest in understanding how nanoparticle surfaces evolve under different environmental conditions of pH and temperature. Here, we discuss the use of vibrational spectroscopy as a tool that allows for in situ observations of oxide nanoparticle surfaces and their evolution due to different surface processes. We highlight oxide nanoparticle surface chemistry, either engineered anthropogenic or naturally occurring geochemical nanoparticles, in complex media, with a focus on the impact of (a) pH on adsorption, intermolecular interactions, and conformational changes; (b) surface coatings and coadsorbates on protein adsorption kinetics and protein conformation; (c) surface adsorption on the temperature dependence of protein structure phase changes; and (d) the use of two-dimensional correlation spectroscopy to analyze spectroscopic results for complex systems. An outlook of the field and remaining challenges is also presented.
Article metrics loading...
Full text loading...
Literature Cited
Data & Media loading...