1932

Abstract

As the core component of cell metabolism, central carbon metabolism, consisting of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle converts nutrients into metabolic precursors for biomass and energy to sustain the life of virtually all extant species. The metabolite levels or distributions in central carbon metabolism often change dynamically with cell fates, development, and disease progression. However, traditional biochemical methods require cell lysis, making it challenging to obtain spatiotemporal information about metabolites in living cells and in vivo. Genetically encoded fluorescent sensors allow the rapid, sensitive, specific, and real-time readout of metabolite dynamics in living organisms, thereby offering the potential to fill the gap in current techniques. In this review, we introduce recent progress made in the development of genetically encoded fluorescent sensors for central carbon metabolism and discuss their advantages, disadvantages, and applications. Moreover, several future directions of metabolite sensors are also proposed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091619-091306
2020-06-12
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-091619-091306.html?itemId=/content/journals/10.1146/annurev-anchem-091619-091306&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Shyh-Chang N, Daley GQ, Cantley LC 2013. Stem cell metabolism in tissue development and aging. Development 140:2535–47
    [Google Scholar]
  2. 2. 
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G 2013. The hallmarks of aging. Cell 153:1194–217
    [Google Scholar]
  3. 3. 
    Ghesquiere B, Wong BW, Kuchnio A, Carmeliet P 2014. Metabolism of stromal and immune cells in health and disease. Nature 511:167–76
    [Google Scholar]
  4. 4. 
    Buck MD, Sowell RT, Kaech SM, Pearce EL 2017. Metabolic instruction of immunity. Cell 169:570–86
    [Google Scholar]
  5. 5. 
    Mergenthaler P, Lindauer U, Dienel GA, Meisel A 2013. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–97
    [Google Scholar]
  6. 6. 
    Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW 2004. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103
    [Google Scholar]
  7. 7. 
    Shapses SA, Sukumar D. 2012. Bone metabolism in obesity and weight loss. Annu. Rev. Nutr. 32:287–309
    [Google Scholar]
  8. 8. 
    Am. Diabetes Assoc 2002. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 25:202–12
    [Google Scholar]
  9. 9. 
    Yuan HX, Xiong Y, Guan KL 2013. Nutrient sensing, metabolism, and cell growth control. Mol. Cell 49:379–87
    [Google Scholar]
  10. 10. 
    Boroughs LK, DeBerardinis RJ. 2015. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17:351–59
    [Google Scholar]
  11. 11. 
    Harris JJ, Jolivet R, Attwell D 2012. Synaptic energy use and supply. Neuron 75:762–77
    [Google Scholar]
  12. 12. 
    Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D et al. 2011. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–50
    [Google Scholar]
  13. 13. 
    Patra KC, Hay N. 2014. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39:347–54
    [Google Scholar]
  14. 14. 
    Suganuma T, Workman JL. 2018. Chromatin and metabolism. Annu. Rev. Biochem. 87:27–49
    [Google Scholar]
  15. 15. 
    Mills E, O'Neill LA. 2014. Succinate: a metabolic signal in inflammation. Trends Cell Biol 24:313–20
    [Google Scholar]
  16. 16. 
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–44
    [Google Scholar]
  17. 17. 
    Toro JR, Nickerson ML, Wei MH, Warren MB, Glenn GM et al. 2003. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am. J. Hum. Genet. 73:95–106
    [Google Scholar]
  18. 18. 
    Altman BJ, Stine ZE, Dang CV 2016. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16:619–34
    [Google Scholar]
  19. 19. 
    Schild T, Low V, Blenis J, Gomes AP 2018. Unique metabolic adaptations dictate distal organ-specific metastatic colonization. Cancer Cell 33:347–54
    [Google Scholar]
  20. 20. 
    Hao X, Gu H, Chen C, Huang D, Zhao Y et al. 2019. Metabolic imaging reveals a unique preference of symmetric cell division and homing of leukemia-initiating cells in an endosteal niche. Cell Metab 29:950–65.e6
    [Google Scholar]
  21. 21. 
    Zenobi R. 2013. Single-cell metabolomics: analytical and biological perspectives. Science 342:1243259
    [Google Scholar]
  22. 22. 
    Lowry OH, Passonneau JV, Schulz DW, Rock MK 1961. The measurement of pyridine nucleotides by enzymatic cycling. J. Biol. Chem. 236:2746–55
    [Google Scholar]
  23. 23. 
    Zhao X, Jiang J, Yang G, Huang J, Yang G et al. 2017. Profiling and preparation of metabolites from pyragrel in human urine by online solid-phase extraction coupled with high performance liquid chromatography tandem mass spectrometry followed by a macroporous resin-based purification approach. Molecules 22:494
    [Google Scholar]
  24. 24. 
    Paglia G, Astarita G. 2017. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat. Protoc. 12:797–813
    [Google Scholar]
  25. 25. 
    Cai K, Haris M, Singh A, Kogan F, Greenberg JH et al. 2012. Magnetic resonance imaging of glutamate. Nat. Med. 18:302–6
    [Google Scholar]
  26. 26. 
    Li J, Vosegaard T, Guo Z 2017. Applications of nuclear magnetic resonance in lipid analyses: an emerging powerful tool for lipidomics studies. Prog. Lipid Res. 68:37–56
    [Google Scholar]
  27. 27. 
    Otieno AC, Mwongela SM. 2008. Capillary electrophoresis-based methods for the determination of lipids—a review. Anal. Chim. Acta 624:163–74
    [Google Scholar]
  28. 28. 
    Britz-McKibbin P, Terabe S. 2003. On-line preconcentration strategies for trace analysis of metabolites by capillary electrophoresis. J. Chromatogr. A 1000:917–34
    [Google Scholar]
  29. 29. 
    Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS et al. 2011. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7:523
    [Google Scholar]
  30. 30. 
    Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L et al. 2009. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–60
    [Google Scholar]
  31. 31. 
    Yang H, Yang T, Baur JA, Perez E, Matsui T et al. 2007. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130:1095–107
    [Google Scholar]
  32. 32. 
    Hiller K, Metallo CM. 2013. Profiling metabolic networks to study cancer metabolism. Curr. Opin. Biotechnol. 24:60–68
    [Google Scholar]
  33. 33. 
    Sun F, Dai C, Xie J, Hu X 2012. Biochemical issues in estimation of cytosolic free NAD/NADH ratio. PLOS ONE 7:e34525
    [Google Scholar]
  34. 34. 
    Maddocks OD, Labuschagne CF, Vousden KH 2014. Localization of NADPH production: a wheel within a wheel. Mol. Cell 55:158–60
    [Google Scholar]
  35. 35. 
    Zou Y, Wang A, Shi M, Chen X, Liu R et al. 2018. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat. Protoc. 13:2362–86
    [Google Scholar]
  36. 36. 
    Mayevsky A, Rogatsky GG. 2007. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am. J. Physiol. Cell Physiol. 292:C615–40
    [Google Scholar]
  37. 37. 
    Chance B, Cohen P, Jobsis F, Schoener B 1962. Intracellular oxidation-reduction states in vivo. Science 137:499–508
    [Google Scholar]
  38. 38. 
    Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T et al. 1999. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283:981–85
    [Google Scholar]
  39. 39. 
    Mayevsky A, Barbiro-Michaely E. 2009. Use of NADH fluorescence to determine mitochondrial function in vivo. Int. J. Biochem. Cell Biol. 41:1977–88
    [Google Scholar]
  40. 40. 
    Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ et al. 2014. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat. Commun. 5:3936
    [Google Scholar]
  41. 41. 
    Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW et al. 2007. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. PNAS 104:19494–99
    [Google Scholar]
  42. 42. 
    Huang S, Heikal AA, Webb WW 2002. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82:2811–25
    [Google Scholar]
  43. 43. 
    Bartolome F, Abramov AY. 2015. Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Methods Mol. Biol. 1264:263–70
    [Google Scholar]
  44. 44. 
    Ghukasyan VV, Heikal AA 2014. Natural Biomarkers for Cellular Metabolism: Biology, Techniques, and Applications Boca Raton, FL: CRC Press
    [Google Scholar]
  45. 45. 
    Shaner NC, Steinbach PA, Tsien RY 2005. A guide to choosing fluorescent proteins. Nat. Methods 2:905–9
    [Google Scholar]
  46. 46. 
    Gross S, Piwnica-Worms D. 2005. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7:5–15
    [Google Scholar]
  47. 47. 
    Frommer WB, Davidson MW, Campbell RE 2009. Genetically encoded biosensors based on engineered fluorescent proteins. Chem. Soc. Rev. 38:2833–41
    [Google Scholar]
  48. 48. 
    Knopfel T, Diez-Garcia J, Akemann W 2006. Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors. Trends Neurosci 29:160–66
    [Google Scholar]
  49. 49. 
    De Michele R, Carimi F, Frommer WB 2014. Mitochondrial biosensors. Int. J. Biochem. Cell Biol. 48:39–44
    [Google Scholar]
  50. 50. 
    Zhao Y, Yang Y. 2015. Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Curr. Opin. Biotechnol. 31C:86–92
    [Google Scholar]
  51. 51. 
    Okumoto S. 2010. Imaging approach for monitoring cellular metabolites and ions using genetically encoded biosensors. Curr. Opin. Biotechnol. 21:45–54
    [Google Scholar]
  52. 52. 
    Topell S, Hennecke J, Glockshuber R 1999. Circularly permuted variants of the green fluorescent protein. FEBS Lett 457:283–99
    [Google Scholar]
  53. 53. 
    Nagai T, Sawano A, Park ES, Miyawaki A 2001. Circularly permuted green fluorescent proteins engineered to sense Ca2+. PNAS 98:3197–202
    [Google Scholar]
  54. 54. 
    Baird GS, Zacharias DA, Tsien RY 1999. Circular permutation and receptor insertion within green fluorescent proteins. PNAS 96:11241–46
    [Google Scholar]
  55. 55. 
    Takanaga H, Chaudhuri B, Frommer WB 2008. GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim. Biophys. Acta 1778:1091–99
    [Google Scholar]
  56. 56. 
    Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, Frommer WB 2005. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–14
    [Google Scholar]
  57. 57. 
    Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB 2011. Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat. Protoc. 6:1806–17
    [Google Scholar]
  58. 58. 
    Hou BH, Takanaga H, Grossmann G, Chen LQ, Qu XQ et al. 2011. Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat. Protoc. 6:1818–33
    [Google Scholar]
  59. 59. 
    Hu HY, Wei YF, Wang DC, Su N, Chen XJ et al. 2018. Glucose monitoring in living cells with single fluorescent protein-based sensors. RSC Adv 8:2485–89
    [Google Scholar]
  60. 60. 
    Fehr M, Frommer WB, Lalonde S 2002. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. PNAS 99:9846–51
    [Google Scholar]
  61. 61. 
    Marvin JS, Schreiter ER, Echevarria IM, Looger LL 2011. A genetically encoded, high-signal-to-noise maltose sensor. Proteins 79:3025–36
    [Google Scholar]
  62. 62. 
    San Martín A, Ceballo S, Baeza-Lehnert F, Lerchundi R, Valdebenito R et al. 2014. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PLOS ONE 9:e85780
    [Google Scholar]
  63. 63. 
    San Martín A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF 2013. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLOS ONE 8:e57712
    [Google Scholar]
  64. 64. 
    Ewald JC, Reich S, Baumann S, Frommer WB, Zamboni N 2011. Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations. PLOS ONE 6:e28245
    [Google Scholar]
  65. 65. 
    Zhang C, Wei ZH, Ye BC 2013. Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor. Appl. Microbiol. Biotechnol. 97:8307–16
    [Google Scholar]
  66. 66. 
    Zhang C, Ye BC. 2014. A single fluorescent protein-based sensor for in vivo 2-oxogluatarate detection in cell. Biosens. Bioelectron 54:15–19
    [Google Scholar]
  67. 67. 
    Lüddecke J, Francois L, Spät P, Watzer B, Chilczuk T et al. 2017. PII protein-derived FRET sensors for quantification and live-cell imaging of 2-oxoglutarate. Sci. Rep. 7:1437
    [Google Scholar]
  68. 68. 
    Yang H, Bogner M, Stierhof YD, Ludewig U 2010. H-independent glutamine transport in plant root tips. PLOS ONE 5:e8917
    [Google Scholar]
  69. 69. 
    Gruenwald K, Holland JT, Stromberg V, Ahmad A, Watcharakichkorn D, Okumoto S 2012. Visualization of glutamine transporter activities in living cells using genetically encoded glutamine sensors. PLOS ONE 7:e38591
    [Google Scholar]
  70. 70. 
    Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB 2005. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. PNAS 102:8740–45
    [Google Scholar]
  71. 71. 
    Hires SA, Zhu Y, Tsien RY 2008. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. PNAS 105:4411–16
    [Google Scholar]
  72. 72. 
    Tsien RY. 2005. Building and breeding molecules to spy on cells and tumors. FEBS Lett 579:927–32
    [Google Scholar]
  73. 73. 
    Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT et al. 2013. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10:162–70
    [Google Scholar]
  74. 74. 
    Helassa N, Durst CD, Coates C, Kerruth S, Arif U et al. 2018. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. PNAS 115:5594–99
    [Google Scholar]
  75. 75. 
    Wu J, Abdelfattah AS, Zhou H, Ruangkittisakul A, Qian Y et al. 2018. Genetically encoded glutamate indicators with altered color and topology. ACS Chem. Biol. 13:1832–37
    [Google Scholar]
  76. 76. 
    Zhao Y, Jin J, Hu Q, Zhou HM, Yi J et al. 2011. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14:555–66
    [Google Scholar]
  77. 77. 
    Zhao Y, Yang Y. 2016. Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD+/NADH sensors. Free Radic. Biol. Med. 100:43–52
    [Google Scholar]
  78. 78. 
    Zhao Y, Wang A, Zou Y, Su N, Loscalzo J, Yang Y 2016. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD+/NADH redox state. Nat. Protoc. 11:1345–59
    [Google Scholar]
  79. 79. 
    Cambronne XA, Stewart ML, Kim D, Jones-Brunette AM, Morgan RK et al. 2016. Biosensor reveals multiple sources for mitochondrial NAD+. Science 352:1474–77
    [Google Scholar]
  80. 80. 
    Hung YP, Albeck JG, Tantama M, Yellen G 2011. Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–54
    [Google Scholar]
  81. 81. 
    Zhao Y, Hu Q, Cheng F, Su N, Wang A et al. 2015. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metab 21:777–89
    [Google Scholar]
  82. 82. 
    Bilan DS, Matlashov ME, Gorokhovatsky AY, Schultz C, Enikolopov G, Belousov VV 2014. Genetically encoded fluorescent indicator for imaging NAD+/NADH ratio changes in different cellular compartments. Biochim. Biophys. Acta 1840:951–57
    [Google Scholar]
  83. 83. 
    Titov DV, Cracan V, Goodman RP, Peng J, Grabarek Z, Mootha VK 2016. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 352:231–35
    [Google Scholar]
  84. 84. 
    Oldham WM, Clish CB, Yang Y, Loscalzo J 2015. Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab 22:291–303
    [Google Scholar]
  85. 85. 
    Kim W, Deik A, Gonzalez C, Gonzalez ME, Fu F et al. 2019. Polyunsaturated fatty acid desaturation is a mechanism for glycolytic NAD+ recycling. Cell Metab 29:856–70
    [Google Scholar]
  86. 86. 
    Tao R, Zhao Y, Chu H, Wang A, Zhu J et al. 2017. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat. Methods 14:720–28
    [Google Scholar]
  87. 87. 
    Cameron WD, Bui CV, Hutchinson A, Loppnau P, Graslund S, Rocheleau JV 2016. Apollo-NADP+: a spectrally tunable family of genetically encoded sensors for NADP+. Nat. Methods 13:352–58
    [Google Scholar]
  88. 88. 
    Zhao FL, Zhang C, Tang Y, Ye BC 2016. A genetically encoded biosensor for in vitro and in vivo detection of NADP+. Biosens. Bioelectron. 77:901–6
    [Google Scholar]
  89. 89. 
    Imamura H, Nhat KP, Togawa H, Saito K, Iino R et al. 2009. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. PNAS 106:15651–56
    [Google Scholar]
  90. 90. 
    Tsuyama T, Kishikawa J, Han YW, Harada Y, Tsubouchi A et al. 2013. In vivo fluorescent adenosine 5′-triphosphate (ATP) imaging of Drosophila melanogaster and Caenorhabditis elegans by using a genetically encoded fluorescent ATP biosensor optimized for low temperatures. Anal. Chem. 85:7889–96
    [Google Scholar]
  91. 91. 
    Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM et al. 2013. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell 23:811–25
    [Google Scholar]
  92. 92. 
    Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y et al. 2012. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl. Med. 4:143ra99
    [Google Scholar]
  93. 93. 
    Lobas MA, Tao R, Nagai J, Kronschläger MT, Borden PM et al. 2019. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 10:711
    [Google Scholar]
  94. 94. 
    Trull KJ, Miller P, Tat K, Varney SA, Conley JM, Tantama M 2019. Detection of osmotic shock-induced extracellular nucleotide release with a genetically encoded fluorescent sensor of ADP and ATP. Sensors 19:3253
    [Google Scholar]
  95. 95. 
    Berg J, Hung YP, Yellen G 2009. A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat. Methods 6:161–66
    [Google Scholar]
  96. 96. 
    Tantama M, Martinez-Francois JR, Mongeon R, Yellen G 2013. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat. Commun. 4:2550
    [Google Scholar]
  97. 97. 
    Zhou B, Yu P, Lin MY, Sun T, Chen Y, Sheng ZH 2016. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J. Cell Biol. 214:103–19
    [Google Scholar]
  98. 98. 
    Bianchi-Smiraglia A, Rana MS, Foley CE, Paul LM, Lipchick BC et al. 2017. Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution. Nat. Methods 14:1003–9
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091619-091306
Loading
/content/journals/10.1146/annurev-anchem-091619-091306
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error