1932

Abstract

The detailed molecular characterization of petroleum-related samples by mass spectrometry, often referred to as petroleomics, continues to present significant analytical challenges. As a result, petroleomics continues to be a driving force for the development of new ultrahigh resolution instrumentation, experimental methods, and data analysis procedures. Recent advances in ionization, resolving power, mass accuracy, and the use of separation methods, have allowed for record levels of compositional detail to be obtained for petroleum-related samples. To address the growing size and complexity of the data generated, vital software tools for data processing, analysis, and visualization continue to be developed. The insights gained impact upon the fields of energy and environmental science and the petrochemical industry, among others. In addition to advancing the understanding of one of nature's most complex mixtures, advances in petroleomics methodologies are being adapted for the study of other sample types, resulting in direct benefits to other fields.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091619-091824
2020-06-12
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-091619-091824.html?itemId=/content/journals/10.1146/annurev-anchem-091619-091824&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Palit S. 2017. Petroleum engineering, petrochemicals, environmental and energy sustainability: a vision for the future. Engineering Technology and Industrial Chemistry with Applications RK Haghi, F Torrens 3–24 New York: Taylor & Francis. , 1st ed..
    [Google Scholar]
  2. 2. 
    Marshall AG, Hendrickson CL. 2008. High-resolution mass spectrometers. Annu. Rev. Anal. Chem. 1:579–99
    [Google Scholar]
  3. 3. 
    Hsu CS, Hendrickson CL, Rodgers RP, McKenna AM, Marshall AG 2011. Petroleomics: advanced molecular probe for petroleum heavy ends. J. Mass Spectrom. 46:4337–43
    [Google Scholar]
  4. 4. 
    Marshall AG, Rodgers RP. 2008. Petroleomics: chemistry of the underworld. PNAS 105:18090–95
    [Google Scholar]
  5. 5. 
    Marshall AG, Rodgers RP. 2004. Petroleomics: the next grand challenge for chemical analysis. Acc. Chem. Res. 37:53–59
    [Google Scholar]
  6. 6. 
    Marshall AG, Hendrickson CL, Jackson GS 1998. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17:11–35
    [Google Scholar]
  7. 7. 
    Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG 2005. The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40:4430–43
    [Google Scholar]
  8. 8. 
    Qi Y, O'Connor PB. 2014. Data processing in Fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom. Rev. 33:5333–52
    [Google Scholar]
  9. 9. 
    Fenn JB. 2002. John B. Fenn Nobel Lecture. Nobel Media AB Stockholm: https://www.nobelprize.org/prizes/chemistry/2002/fenn/lecture/
    [Google Scholar]
  10. 10. 
    Hardman M, Makarov AA. 2003. Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal. Chem. 75:71699–1705
    [Google Scholar]
  11. 11. 
    Denisov E, Damoc E, Lange O, Makarov A 2012. Orbitrap mass spectrometry with resolving powers above 1,000,000. Int. J. Mass Spectrom. 325–327:80–85
    [Google Scholar]
  12. 12. 
    Hertkorn N, Frommberger M, Witt M, Koch BP, Schmitt-Kopplin P, Perdue EM 2008. Natural organic matter and the event horizon of mass spectrometry. Anal. Chem. 80:238908–19
    [Google Scholar]
  13. 13. 
    Palacio Lozano DC, Gavard R, Arenas-Diaz JP, Thomas MJ, Stranz DD et al. 2019. Pushing the analytical limits: new insights into complex mixtures using mass spectra segments of constant ultrahigh resolving power. Chem. Sci. 10:296966–78
    [Google Scholar]
  14. 14. 
    McKenna AM, Williams JT, Putman JC, Aeppli C, Reddy CM et al. 2014. Unprecedented ultrahigh resolution FT-ICR mass spectrometry and parts-per-billion mass accuracy enable direct characterization of nickel and vanadyl porphyrins in petroleum from natural seeps. Energy Fuels 28:42454–64
    [Google Scholar]
  15. 15. 
    Kim S, Rodgers RP, Marshall AG 2006. Truly “exact” mass: elemental composition can be determined uniquely from molecular mass measurement at ∼0.1 mDa accuracy for molecules up to ∼500 Da. Int. J. Mass Spectrom. 251:2–3260–65
    [Google Scholar]
  16. 16. 
    Kendrick E. 1963. A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal. Chem. 35:132146–54
    [Google Scholar]
  17. 17. 
    Rodgers RP, Marshall AG. 2007. Petroleomics: advanced characterization of petroleum-derived materials by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Asphaltenes, Heavy Oils, and Petroleomics OC Mullins, EY Sheu, A Hammami, AG Marshall 63–93 New York: Springer
    [Google Scholar]
  18. 18. 
    Hughey CA, Hendrickson CL, Rodgers RP, Marshall AG, Qian K 2001. Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 73:194676–81
    [Google Scholar]
  19. 19. 
    Sato H, Nakamura S, Teramoto K, Sato T 2014. Structural characterization of polymers by MALDI spiral-TOF mass spectrometry combined with Kendrick mass defect analysis. J. Am. Soc. Mass Spectrom. 25:81346–55
    [Google Scholar]
  20. 20. 
    Fouquet T, Sato H. 2017. Improving the resolution of Kendrick mass defect analysis for polymer ions with fractional base units. Mass Spectrom 6:1A0055
    [Google Scholar]
  21. 21. 
    Zheng Q, Morimoto M, Sato H, Fouquet T 2019. Resolution-enhanced Kendrick mass defect plots for the data processing of mass spectra from wood and coal hydrothermal extracts. Fuel 235:944–53
    [Google Scholar]
  22. 22. 
    Smirnov KS, Forcisi S, Moritz F, Lucio M, Schmitt-Kopplin P 2019. Mass difference maps and their application for the recalibration of mass spectrometric data in nontargeted metabolomics. Anal. Chem. 91:53350–58
    [Google Scholar]
  23. 23. 
    Nagy T, Kuki Á, Nagy M, Zsuga M, Kéki S 2019. Mass-Remainder Analysis (MARA): an improved method for elemental composition assignment in petroleomics. Anal. Chem. 91:6479–86
    [Google Scholar]
  24. 24. 
    Van Krevelen DW. 1950. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29:269–84
    [Google Scholar]
  25. 25. 
    Van Krevelen DW. 1984. Organic geochemistry—old and new. Org. Geochem. 6:1–10
    [Google Scholar]
  26. 26. 
    Kim S, Kramer RW, Hatcher PG 2003. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Anal. Chem. 75:205336–44
    [Google Scholar]
  27. 27. 
    Wu Z, Rodgers RP, Marshall AG 2004. Two- and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance. Anal. Chem. 76:92511–16
    [Google Scholar]
  28. 28. 
    Leyva D, Tose LV, Porter J, Wolff J, Jaffé R, Fernandez-Lima F 2019. Understanding the structural complexity of dissolved organic matter: isomeric diversity. Faraday Discuss 218:431–40
    [Google Scholar]
  29. 29. 
    Niu XZ, Harir M, Schmitt-Kopplin P, Croué JP 2018. Characterisation of dissolved organic matter using Fourier-transform ion cyclotron resonance mass spectrometry: type-specific unique signatures and implications for reactivity. Sci. Total Environ. 644:68–76
    [Google Scholar]
  30. 30. 
    Zito P, Podgorski DC, Johnson J, Chen H, Rodgers RP et al. 2019. Molecular-level composition and acute toxicity of photosolubilized petrogenic carbon. Environ. Sci. Technol. 53:148235–43
    [Google Scholar]
  31. 31. 
    Ziegler G, Gonsior M, Fisher DJ, Schmitt-Kopplin P, Tamburri MN 2019. Formation of brominated organic compounds and molecular transformations in dissolved organic matter (DOM) after ballast water treatment with sodium dichloroisocyanurate dihydrate (DICD). Environ. Sci. Technol. 53:8006–16
    [Google Scholar]
  32. 32. 
    Staš M, Chudoba J, Kubicka D, Blazek J, Pospíšil M 2017. Petroleomic characterization of pyrolysis bio-oils: a review. Energy Fuels 31:1010283–99
    [Google Scholar]
  33. 33. 
    Cole DP, Smith EA, Lee YJ 2012. High-resolution mass spectrometric characterization of molecules on biochar from pyrolysis and gasification of switchgrass. Energy Fuels 26:63803–9
    [Google Scholar]
  34. 34. 
    Leshuk T, Peru KM, de Oliveira Livera D, Tripp A, Bardo P et al. 2018. Petroleomic analysis of the treatment of naphthenic organics in oil sands process-affected water with buoyant photocatalysts. Water Res 141:297–306
    [Google Scholar]
  35. 35. 
    Kostyukevich Y, Solovyov S, Kononikhin A, Popov I, Nikolaev E 2016. The investigation of the bitumen from ancient Greek amphora using FT ICR MS, H/D exchange and novel spectrum reduction approach. J. Mass Spectrom. 51:430–36
    [Google Scholar]
  36. 36. 
    Smith DF, Rahimi P, Teclemariam A, Rodgers RP, Marshall AG 2008. Characterization of Athabasca bitumen heavy vacuum gas oil distillation cuts by negative/positive electrospray ionization and automated liquid injection field desorption ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 22:113118–25
    [Google Scholar]
  37. 37. 
    Qi Y, Hempelmann R, Volmer DA 2016. Shedding light on the structures of lignin compounds: photo-oxidation under artificial UV light and characterization by high resolution mass spectrometry. Anal. Bioanal. Chem. 408:288203–10
    [Google Scholar]
  38. 38. 
    Echavarri-Bravo V, Tinzl M, Kew W, Cruickshank F, Logan Mackay C et al. 2019. High resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the characterisation of enzymatic processing of commercial lignin. N. Biotechnol. 52:1–8
    [Google Scholar]
  39. 39. 
    Jewell DM, Weber JH, Bunger JW, Plancher H, Latham DR 1972. Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates. Anal. Chem. 44:81391–95
    [Google Scholar]
  40. 40. 
    Peru KM, Thomas MJ, Palacio Lozano DC, McMartin DW, Headley JV, Barrow MP 2019. Characterization of oil sands naphthenic acids by negative-ion electrospray ionization mass spectrometry: influence of acidic versus basic transfer solvent. Chemosphere 222:1017–24
    [Google Scholar]
  41. 41. 
    Behrenbruch P, Dedigama T. 2007. Classification and characterisation of crude oils based on distillation properties. J. Pet. Sci. Eng. 57:1–2166–80
    [Google Scholar]
  42. 42. 
    Abdelnur PV, Vaz BG, Rocha JD, de Almeida MBB, Teixeira MAG, Pereira RCL 2013. Characterization of bio-oils from different pyrolysis process steps and biomass using high-resolution mass spectrometry. Energy Fuels 27:116646–54
    [Google Scholar]
  43. 43. 
    Nebbioso A, Piccolo A. 2013. Molecular characterization of dissolved organic matter (DOM): a critical review. Anal. Bioanal. Chem. 405:1109–24
    [Google Scholar]
  44. 44. 
    Reemtsma T. 2009. Determination of molecular formulas of natural organic matter molecules by (ultra-) high-resolution mass spectrometry. Status and needs. J. Chromatogr. A 1216:183687–701
    [Google Scholar]
  45. 45. 
    Total 2004. Extra-heavy oils and bitumen: reserves for the future Rep. INIS-FR–6377, Total S.A., Courbevoie, France. https://inis.iaea.org/search/search.aspx?orig_q=RN:38074249
    [Google Scholar]
  46. 46. 
    Barrow MP, Witt M, Headley JV, Peru KM 2010. Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 82:93727–35
    [Google Scholar]
  47. 47. 
    Barrow MP, Peru KM, McMartin DW, Headley JV 2016. Effects of extraction pH on the Fourier transform ion cyclotron resonance mass spectrometry profiles of Athabasca oil sands process water. Energy Fuels 30:53615–21
    [Google Scholar]
  48. 48. 
    Brown LD, Ulrich AC. 2015. Oil sands naphthenic acids: a review of properties, measurement, and treatment. Chemosphere 127:276–90
    [Google Scholar]
  49. 49. 
    Huba AK, Huba K, Gardinali PR 2016. Understanding the atmospheric pressure ionization of petroleum components: the effects of size, structure, and presence of heteroatoms. Sci. Total Environ. 568:1018–25
    [Google Scholar]
  50. 50. 
    Hertzog J, Carré V, Le Brech Y, Mackay CL, Dufour A et al. 2017. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures—application to the petroleomic analysis. Anal. Chim. Acta 969:26–34
    [Google Scholar]
  51. 51. 
    Constapel M, Schellenträger M, Schmitz OJ, Gäb S, Brockmann KJ et al. 2005. Atmospheric-pressure laser ionization: a novel ionization method for liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 19:3326–36
    [Google Scholar]
  52. 52. 
    Panda SK, Brockmann K-J, Benter T, Schrader W 2011. Atmospheric pressure laser ionization (APLI) coupled with Fourier transform ion cyclotron resonance mass spectrometry applied to petroleum samples analysis: comparison with electrospray ionization and atmospheric pressure photoionization methods. Rapid Commun. Mass Spectrom. 25:162317–26
    [Google Scholar]
  53. 53. 
    Benigni P, Debord JD, Thompson CJ, Gardinali P, Fernandez-Lima F 2016. Increasing polyaromatic hydrocarbon (PAH) molecular coverage during fossil oil analysis by combining gas chromatography and atmospheric-pressure laser ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Energy Fuels 30:1196–203
    [Google Scholar]
  54. 54. 
    Barrow MP, Peru KM, Headley JV 2014. An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the Athabasca oil sands. Anal. Chem. 86:8281–88
    [Google Scholar]
  55. 55. 
    Thomas MJ, Collinge E, Witt M, Palacio Lozano DC, Vane CH et al. 2019. Petroleomic depth profiling of Staten Island salt marsh soil: 2ω detection FTICR MS offers a new solution for the analysis of environmental contaminants. Sci. Total Environ. 662:852–62
    [Google Scholar]
  56. 56. 
    Palacio Lozano DC, Orrego-Ruiz JA, Barrow MP, Cabanzo Hernandez R, Mejía-Ospino E 2016. Analysis of the molecular weight distribution of vacuum residues and their molecular distillation fractions by laser desorption ionization mass spectrometry. Fuel 171:247–52
    [Google Scholar]
  57. 57. 
    Pereira TMC, Vanini G, Tose LV, Cardoso FMR, Fleming FP et al. 2014. FT-ICR MS analysis of asphaltenes: asphaltenes go in, fullerenes come out. Fuel 131:49–58
    [Google Scholar]
  58. 58. 
    Pinkston DS, Duan P, Gallardo VA, Habicht SC, Tan X et al. 2009. Analysis of asphaltenes and asphaltene model compounds by laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 23:115564–70
    [Google Scholar]
  59. 59. 
    Wu C, Qian K, Walters CC, Mennito A 2015. Application of atmospheric pressure ionization techniques and tandem mass spectrometry for the characterization of petroleum components. Int. J. Mass Spectrom. 377:1728–35
    [Google Scholar]
  60. 60. 
    Tose LV, Murgu M, Vaz BG, Romão W 2017. Application of atmospheric solids analysis probe mass spectrometry (ASAP-MS) in petroleomics: analysis of condensed aromatics standards, crude oil, and paraffinic fraction. J. Am. Soc. Mass Spectrom. 28:112401–7
    [Google Scholar]
  61. 61. 
    Rodgers RP, Mapolelo MM, Robbins WK, Chacón-Patiño ML, Putman JC et al. 2019. Combating selective ionization in the high resolution mass spectral characterization of complex mixtures. Faraday Discuss 218:29–51
    [Google Scholar]
  62. 62. 
    Headley JV, Peru KM, Barrow MP, Derrick PJ 2007. Characterization of naphthenic acids from Athabasca oil sands using electrospray ionization: the significant influence of solvents. Anal. Chem. 79:166222–29
    [Google Scholar]
  63. 63. 
    Smith DF, Podgorski DC, Rodgers RP, Blakney GT, Hendrickson CL 2018. 21 Tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures. Anal. Chem. 90:32041–47
    [Google Scholar]
  64. 64. 
    Shaw JB, Lin T-Y, Leach FE, Tolmachev AV, Tolić N et al. 2016. 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer greatly expands mass spectrometry toolbox. J. Am. Soc. Mass Spectrom. 27:121929–36
    [Google Scholar]
  65. 65. 
    Kostyukevich YI, Vladimirov GN, Nikolaev EN 2012. Dynamically harmonized FT-ICR cell with specially shaped electrodes for compensation of inhomogeneity of the magnetic field. Computer simulations of the electric field and ion motion dynamics. J. Am. Soc. Mass Spectrom. 23:122198–207
    [Google Scholar]
  66. 66. 
    Lioznov A, Baykut G, Nikolaev E 2019. Analytical solution for the electric field inside dynamically harmonized FT-ICR cell. J. Am. Soc. Mass Spectrom. 30:5778–86
    [Google Scholar]
  67. 67. 
    Cho E, Witt M, Hur M, Jung M-J, Kim S 2017. Application of FT-ICR MS equipped with quadrupole detection for analysis of crude oil. Anal. Chem. 89:2212101–7
    [Google Scholar]
  68. 68. 
    Kim D, Kim S, Son S, Jung M-J, Kim S 2019. Application of online liquid chromatography 7 T FT-ICR mass spectrometer equipped with quadrupolar detection for analysis of natural organic matter. Anal. Chem. 91:127690–97
    [Google Scholar]
  69. 69. 
    Schmidt EM, Pudenzi MA, Santos JM, Angolini CFF, Pereira RCL et al. 2018. Petroleomics via Orbitrap mass spectrometry with resolving power above 1 000 000 at m/z 200. RSC Adv 8:116183–91
    [Google Scholar]
  70. 70. 
    Gaspar A, Schrader W. 2012. Expanding the data depth for the analysis of complex crude oil samples by Fourier transform ion cyclotron resonance mass spectrometry using the spectral stitching method. Rapid Commun. Mass Spectrom. 26:91047–52
    [Google Scholar]
  71. 71. 
    Vetere A, Schrader W. 2017. Mass spectrometric coverage of complex mixtures: exploring the carbon space of crude oil. ChemistrySelect 2:3849–53
    [Google Scholar]
  72. 72. 
    Krajewski LC, Rodgers RP, Marshall AG 2017. 126 264 Assigned chemical formulas from an atmospheric pressure photoionization 9.4 T Fourier transform positive ion cyclotron resonance mass spectrum. Anal. Chem. 89:2111318–24
    [Google Scholar]
  73. 73. 
    Cho E, Park M, Hur M, Kang G, Kim YH, Kim S 2019. Molecular-level investigation of soils contaminated by oil spilled during the Gulf War. J. Hazard. Mater. 373:271–77
    [Google Scholar]
  74. 74. 
    Afonso C, Chaux C, Davies AN, Delsuc M-A, Fernandez Lima F et al. 2019. Future challenges and new approaches: general discussion. Faraday Discuss 218:505–23
    [Google Scholar]
  75. 75. 
    Ledford EB, White RL, Ghaderi S, Wilkins CL, Gross ML 1980. Coupling of capillary gas chromatograph and Fourier transform mass spectrometer. Anal. Chem. 52:142450–51
    [Google Scholar]
  76. 76. 
    Szulejko JE, Solouki T. 2002. Potential analytical applications of interfacing a GC to an FT-ICR MS: fingerprinting complex sample matrixes. Anal. Chem. 74:143434–42
    [Google Scholar]
  77. 77. 
    Rüger CP, Schwemer T, Sklorz M, O'Connor PB, Barrow MP, Zimmermann R 2017. Comprehensive chemical comparison of fuel composition and aerosol particles emitted from a ship diesel engine by gas chromatography atmospheric pressure chemical ionisation ultra-high resolution mass spectrometry with improved data processing routines. Eur. J. Mass Spectrom. 23:128–39
    [Google Scholar]
  78. 78. 
    Schwemer T, Rüger CP, Sklorz M, Zimmermann R 2015. Gas chromatography coupled to atmospheric pressure chemical ionization FT-ICR mass spectrometry for improvement of data reliability. Anal. Chem. 87:2411957–61
    [Google Scholar]
  79. 79. 
    Kondyli A, Schrader W. 2019. High-resolution GC/MS studies of a light crude oil fraction. J. Mass Spectrom. 54:147–54
    [Google Scholar]
  80. 80. 
    Hawkes JA, Sjöberg PJR, Bergquist J, Tranvik LJ 2019. Complexity of dissolved organic matter in the molecular size dimension: insights from coupled size exclusion chromatography electrospray ionisation mass spectrometry. Faraday Discuss 218:52–71
    [Google Scholar]
  81. 81. 
    Pereira AS, Martin JW. 2015. Exploring the complexity of oil sands process-affected water by high efficiency supercritical fluid chromatography/Orbitrap mass spectrometry. Rapid Commun. Mass Spectrom. 29:8735–44
    [Google Scholar]
  82. 82. 
    Silveira JA, Michelmann K, Ridgeway ME, Park MA 2016. Fundamentals of trapped ion mobility spectrometry part II: fluid dynamics. J. Am. Soc. Mass Spectrom. 27:4585–95
    [Google Scholar]
  83. 83. 
    Santos JM, Galaverna RS, Pudenzi MA, Schmidt EM, Sanders NL et al. 2015. Petroleomics by ion mobility mass spectrometry: resolution and characterization of contaminants and additives in crude oils and petrofuels. Anal. Methods 7:114450–63
    [Google Scholar]
  84. 84. 
    Lalli PM, Klitzke F, Corilo YE, Pudenzi MA, Pereira RCL et al. 2013. Petroleomics by traveling wave ion mobility–mass spectrometry using CO2 as a drift gas. Energy Fuels 27:127277–86
    [Google Scholar]
  85. 85. 
    Benigni P, Fernandez-Lima F. 2016. Oversampling selective accumulation trapped ion mobility spectrometry coupled to FT-ICR MS: fundamentals and applications. Anal. Chem. 88:147404–12
    [Google Scholar]
  86. 86. 
    Tose LV, Benigni P, Leyva D, Sundberg A, Ramírez CE et al. 2018. Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 32:151287–95
    [Google Scholar]
  87. 87. 
    Benigni P, Sandoval K, Thompson CJ, Ridgeway ME, Park MA et al. 2017. Analysis of photoirradiated water accommodated fractions of crude oils using tandem TIMS and FT-ICR MS. Environ. Sci. Technol. 51:115978–88
    [Google Scholar]
  88. 88. 
    Rüger CP, Maillard J, Le Maître J, Ridgeway M, Thompson CJ et al. 2019. Structural study of analogues of Titan's haze by trapped ion mobility coupled with a Fourier transform ion cyclotron mass spectrometer. J. Am. Soc. Mass Spectrom. 30:71169–73
    [Google Scholar]
  89. 89. 
    Zahraei A, Arisz PWF, van Bavel AP, Heeren RMA 2018. Evaluation of thin-layer chromatography-laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometric imaging for visualization of crude oil interactions. Energy Fuels 32:77347–57
    [Google Scholar]
  90. 90. 
    Koch BP, Dittmar T. 2006. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 20:5926–32
    [Google Scholar]
  91. 91. 
    Koch BP, Dittmar T. 2016. Erratum. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 30:1250
    [Google Scholar]
  92. 92. 
    Zhu Y, Vieth-Hillebrand A, Noah M, Poetz S 2019. Molecular characterization of extracted dissolved organic matter from New Zealand coals identified by ultrahigh resolution mass spectrometry. Int. J. Coal Geol. 203:74–86
    [Google Scholar]
  93. 93. 
    Stubbins A, Spencer RGM, Chen H, Hatcher PG, Mopper K et al. 2010. Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol. Oceanogr. 55:41467–77
    [Google Scholar]
  94. 94. 
    Zhurov KO, Kozhinov AN, Tsybin YO 2013. Hexagonal class representation for fingerprinting and facile comparison of petroleomic samples. Anal. Chem. 85:115311–15
    [Google Scholar]
  95. 95. 
    Gatto L, Breckels LM, Naake T, Gibb S 2015. Visualization of proteomics data using R and bioconductor. Proteomics 15:81375–89
    [Google Scholar]
  96. 96. 
    Kew W, Blackburn JWT, Clarke DJ, Uhrín D 2017. Interactive van Krevelen diagrams—advanced visualisation of mass spectrometry data of complex mixtures. Rapid Commun. Mass Spectrom. 31:7658–62
    [Google Scholar]
  97. 97. 
    Leefmann T, Frickenhaus S, Koch BP 2018. UltraMassExplorer: a browser-based application for the evaluation of high-resolution mass spectrometric data. Rapid Commun. Mass Spectrom. 33:193–202
    [Google Scholar]
  98. 98. 
    Kind T, Fiehn O. 2007. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinform 8:1105
    [Google Scholar]
  99. 99. 
    Afonso C, Barrow MP, Davies AN, Delsuc M-A, Ebbels T et al. 2019. Data mining and visualisation: general discussion. Faraday Discuss 218:354–71
    [Google Scholar]
  100. 100. 
    Barrow MP, Headley JV, Derrick PJ 2009. Data visualization for the characterization of naphthenic acids within petroleum samples data visualization for the characterization of naphthenic acids within petroleum samples. Energy Fuels 23:122592–99
    [Google Scholar]
  101. 101. 
    Palacio Lozano DC, Orrego-Ruiz JA, Cabanzo Hernández R, Guerrero JE, Mejía-Ospino E 2017. APPI(+)-FTICR mass spectrometry coupled to partial least squares with genetic algorithm variable selection for prediction of API gravity and CCR of crude oil and vacuum residues. Fuel 193:39–44
    [Google Scholar]
  102. 102. 
    Hur M, Ware RL, Park J, McKenna AM, Rodgers RP et al. 2018. Statistically significant differences in composition of petroleum crude oils revealed by volcano plots generated from ultrahigh resolution Fourier transform ion cyclotron resonance mass spectra. Energy Fuels 32:21206–12
    [Google Scholar]
  103. 103. 
    Gavard R, Rossell D, Spencer SEF, Barrow MP 2017. Themis: batch preprocessing for ultrahigh-resolution mass spectra of complex mixtures. Anal. Chem. 89:2111383–90
    [Google Scholar]
  104. 104. 
    Cho Y, Ahmed A, Islam A, Kim S 2015. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. Mass Spectrom. Rev. 34:248–63
    [Google Scholar]
  105. 105. 
    Silva SL, Silva AMS, Ribeiro JC, Martins FG, Da Silva FA, Silva CM 2011. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: a review. Anal. Chim. Acta 707:1–218–37
    [Google Scholar]
  106. 106. 
    Speight JG. 2006. The Chemistry and Technology of Petroleum Boca Raton, FL: CRC Press. , 4th ed..
    [Google Scholar]
  107. 107. 
    Shaw JM, Satyro MA, Yarranton HW 2017. Phase behavior and properties of heavy oils. Springer Handbook of Petroleum Technology CS Hsu, PR Robinson 273–318 Cham, Switz.: Springer
    [Google Scholar]
  108. 108. 
    Gaspar A, Zellermann E, Lababidi S, Reece J, Schrader W 2012. Characterization of saturates, aromatic, resins, and asphaltenes heavy crude oil fractions by atmospheric pressure laser ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 26:3481–87
    [Google Scholar]
  109. 109. 
    Cho Y, Na J, Nho N, Kim S, Kim S 2012. Application of saturates, aromatics, resins, and asphaltenes crude oil fractionation for detailed chemical characterization of heavy crude oils by Fourier transform ion cyclotron resonance mass spectrometry equipped with atmospheric pressure photoionization. Energy Fuels 26:52558–65
    [Google Scholar]
  110. 110. 
    Hur M, Yeo I, Kim E, No M, Koh J et al. 2010. Correlation of FT-ICR mass spectra with the chemical and physical properties of associated crude oils. Energy Fuels 24:105524–32
    [Google Scholar]
  111. 111. 
    Hsu CS, Dechert GJ, Robbins WK, Fukuda EK 2000. Naphthenic acids in crude oils characterized by mass spectrometry. Energy Fuels 14:1217–23
    [Google Scholar]
  112. 112. 
    Mapolelo MM, Rodgers RP, Blakney GT, Yen AT, Asomaning S, Marshall AG 2011. Characterization of naphthenic acids in crude oils and naphthenates by electrospray ionization FT-ICR mass spectrometry. Int. J. Mass Spectrom. 300:2–3149–57
    [Google Scholar]
  113. 113. 
    Ren L, Wu J, Qian Q, Liu X, Meng X et al. 2019. Separation and characterization of sulfoxides in crude oils. Energy Fuels 33:2796–804
    [Google Scholar]
  114. 114. 
    Liu L, Song C, Tian S, Zhang Q, Cai X et al. 2019. Structural characterization of sulfur-containing aromatic compounds in heavy oils by FT-ICR mass spectrometry with a narrow isolation window. Fuel 240:40–48
    [Google Scholar]
  115. 115. 
    Panda SK, Alawani NA, Lajami AR, Al-Qunaysi TA, Muller H 2019. Characterization of aromatic hydrocarbons and sulfur heterocycles in Saudi Arabian heavy crude oil by gel permeation chromatography and ultrahigh resolution mass spectrometry. Fuel 235:1420–26
    [Google Scholar]
  116. 116. 
    Fink J. 2016. Processes. Guide to the Practical Use of Chemicals in Refineries and Pipelines J Fink 185–223 Boston: Gulf Prof.
    [Google Scholar]
  117. 117. 
    Gutiérrez Sama S, Barrère-Mangote C, Bouyssière B, Giusti P, Lobinski R 2018. Recent trends in element speciation analysis of crude oils and heavy petroleum fractions. Trends Anal. Chem. 104:69–76
    [Google Scholar]
  118. 118. 
    Javadli R, de Klerk A 2012. Desulfurization of heavy oil. Appl. Petrochem. Res. 1:13–19
    [Google Scholar]
  119. 119. 
    Panda SK, Schrader W, Al-Hajji A, Andersson JT 2007. Distribution of polycyclic aromatic sulfur heterocycles in three Saudi Arabian crude oils as determined by Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 21:21071–77
    [Google Scholar]
  120. 120. 
    Akbarzadeh K, Zhang D, Creek J, Jamaluddin AJ, Marshall AG et al. 2007. Asphaltenes—problematic but rich in potential. Oilf. Rev. 19:222–43
    [Google Scholar]
  121. 121. 
    Buckley JS, Wang J, Creek JL 2007. Solubility of the least-soluble asphaltenes. Asphaltenes, Heavy Oils, and Petroleomics OC Mullins, EY Sheu, A Hammami, AG Marshall 401–37 New York: Springer
    [Google Scholar]
  122. 122. 
    Wiehe IA, Kennedy RJ. 2000. Oil compatibility model and crude oil incompatibility. Energy Fuels 14:156–59
    [Google Scholar]
  123. 123. 
    Dickie JP, Yen TF. 1967. Macrostructures of the asphaltic fractions by various instrumental methods. Anal. Chem. 39:141847–52
    [Google Scholar]
  124. 124. 
    Mullins OC. 2011. The asphaltenes. Annu. Rev. Anal. Chem. 4:393–418
    [Google Scholar]
  125. 125. 
    Mullins OC, Sabbah H, Pomerantz AE, Barre L, Andrews AB et al. 2012. Advances in asphaltene science and the Yen–Mullins model. Energy Fuels 26:3986–4003
    [Google Scholar]
  126. 126. 
    Tang W, Hurt MR, Sheng H, Riedeman JS, Borton DJ et al. 2015. Structural comparison of asphaltenes of different origins using multi-stage tandem mass spectrometry. Energy Fuels 29:31309–14
    [Google Scholar]
  127. 127. 
    Nyadong L, Lai J, Thompsen C, Lafrancois CJ, Cai X et al. 2018. High-field Orbitrap mass spectrometry and tandem mass spectrometry for molecular characterization of asphaltenes. Energy Fuels 32:1294–305
    [Google Scholar]
  128. 128. 
    Chacón-Patiño ML, Rowland SM, Rodgers RP 2018. Advances in asphaltene petroleomics. Part 3. Dominance of island or archipelago structural motif is sample dependent. Energy Fuels 32:99106–20
    [Google Scholar]
  129. 129. 
    Yim UH, Kim M, Ha SY, Kim S, Shim WJ 2012. Oil spill environmental forensics: the Hebei spirit oil spill case. Environ. Sci. Technol. 46:126431–37
    [Google Scholar]
  130. 130. 
    Barron M. 2019. Long term ecological impacts of oil spills: comparison of Exxon Valdez, Hebei Spirit and Deepwater Horizon Presented at the Alaska Marine Science Symposium, Pensacola Beach, FL, Jan. 28–Feb. 1. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHEERL&dirEntryId=344266
    [Google Scholar]
  131. 131. 
    Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM et al. 2012. Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ. Sci. Technol. 46:168799–807
    [Google Scholar]
  132. 132. 
    Ray PZ, Chen H, Podgorski DC, McKenna AM, Tarr MA 2014. Sunlight creates oxygenated species in water-soluble fractions of Deepwater Horizon oil. J. Hazard. Mater. 280:636–43
    [Google Scholar]
  133. 133. 
    Griffiths MT, Da Campo R, O'Connor PB, Barrow MP 2014. Throwing light on petroleum: simulated exposure of crude oil to sunlight and characterization using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86:1527–34
    [Google Scholar]
  134. 134. 
    Chen H, Hou A, Corilo YE, Lin Q, Lu J et al. 2016. 4 Years after the deepwater horizon spill: molecular transformation of Macondo well oil in Louisiana salt marsh sediments revealed by FT-ICR mass spectrometry. Environ. Sci. Technol. 50:179061–69
    [Google Scholar]
  135. 135. 
    Sørensen L, McCormack P, Altin D, Robson WJ, Booth AM et al. 2019. Establishing a link between composition and toxicity of offshore produced waters using comprehensive analysis techniques—A way forward for discharge monitoring. ? Sci. Total Environ. 694:133682
    [Google Scholar]
  136. 136. 
    Headley JV, Peru KM, Barrow MP 2016. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review. Mass Spectrom. Rev. 35:311–28
    [Google Scholar]
  137. 137. 
    Yi Y, Han J, Jean Birks S, Borchers CH, Gibson JJ 2017. Profiling of dissolved organic compounds in the oil sands region using complimentary liquid-liquid extraction and ultrahigh resolution Fourier transform mass spectrometry. Environ. Earth Sci. 76:24828
    [Google Scholar]
  138. 138. 
    Barrow MP, Peru KM, Headley JV 2014. An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the Athabasca oil sands. Anal. Chem. 86:168281–88
    [Google Scholar]
  139. 139. 
    Bauer AE, Hewitt LM, Parrott JL, Bartlett AJ, Gillis PL et al. 2019. The toxicity of organic fractions from aged oil sands process-affected water to aquatic species. Sci. Total Environ. 669:702–10
    [Google Scholar]
  140. 140. 
    Marentette JR, Frank RA, Bartlett AJ, Gillis PL, Hewitt LM et al. 2015. Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos. Aquat. Toxicol. 164:108–17
    [Google Scholar]
  141. 141. 
    Smith EA, Lee YJ. 2010. Petroleomic analysis of bio-oils from the fast pyrolysis of biomass: laser desorption ionization-linear ion trap-orbitrap mass spectrometry approach. Energy Fuels 24:95190–98
    [Google Scholar]
  142. 142. 
    Miettinen I, Mäkinen M, Vilppo T, Jänis J 2015. Compositional characterization of phase-separated pine wood slow pyrolysis oil by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 29:31758–65
    [Google Scholar]
  143. 143. 
    Rivas-Ubach A, Liu Y, Bianchi TS, Tolić N, Jansson C, Paša-Tolić L 2018. Moving beyond the van Krevelen diagram: a new stoichiometric approach for compound classification in organisms. Anal. Chem. 90:106152–60
    [Google Scholar]
  144. 144. 
    Podgorski DC, Hamdan R, McKenna AM, Nyadong L, Rodgers RP et al. 2012. Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 84:31281–87
    [Google Scholar]
  145. 145. 
    Kostyukevich Y, Kononikhin A, Popov I, Kharybin O, Perminova I et al. 2013. Enumeration of labile hydrogens in natural organic matter by use of hydrogen/deuterium exchange Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 85:2211007–13
    [Google Scholar]
  146. 146. 
    Zito P, Podgorski DC, Johnson J, Chen H, Rodgers RP et al. 2019. Molecular-level composition and acute toxicity of photosolubilized petrogenic carbon. Environ. Sci. Technol. 53:148235–43
    [Google Scholar]
  147. 147. 
    Hawkes JA, Patriarca C, Sjöberg PJR, Tranvik LJ, Bergquist J 2018. Extreme isomeric complexity of dissolved organic matter found across aquatic environments. Limnol. Oceanogr. Lett. 3:221–30
    [Google Scholar]
  148. 148. 
    Gutiérrez Sama S, Farenc M, Barrère-Mangote C, Lobinski R, Afonso C et al. 2018. Molecular fingerprints and speciation of crude oils and heavy fractions revealed by molecular and elemental mass spectrometry: keystone between petroleomics, metallopetroleomics, and petrointeractomics. Energy Fuels 32:44593–605
    [Google Scholar]
  149. 149. 
    Niyonsaba E, Manheim JM, Yerabolu R, Kenttämaa HI 2019. Recent advances in petroleum analysis by mass spectrometry. Anal. Chem. 91:1156–77
    [Google Scholar]
  150. 150. 
    Vetere A, Alachraf MW, Panda SK, Andersson JT, Schrader W 2018. Studying the fragmentation mechanism of selected components present in crude oil by collision-induced dissociation mass spectrometry. Rapid Commun. Mass Spectrom. 32:242141–51
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091619-091824
Loading
/content/journals/10.1146/annurev-anchem-091619-091824
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error