1932

Abstract

High-resolution mass spectrometry (MS) has advanced the study of metabolism in living systems by allowing many metabolites to be measured in a single experiment. Although improvements in mass detector sensitivity have facilitated the detection of greater numbers of analytes, compound identification strategies, feature reduction software, and data sharing have not kept up with the influx of MS data. Here, we discuss the ongoing challenges with MS-based metabolomics, including de novo metabolite identification from mass spectra, differentiation of metabolites from environmental contamination, chromatographic separation of isomers, and incomplete MS databases. Because of their popularity and sensitive detection of small molecules, this review focuses on the challenges of liquid chromatography-mass spectrometry–based methods. We then highlight important instrumentational, experimental, and computational tools that have been created to address these challenges and how they have enabled the advancement of metabolomics research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091620-015205
2021-07-27
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-091620-015205.html?itemId=/content/journals/10.1146/annurev-anchem-091620-015205&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Newgard CB. 2017. Metabolomics and metabolic diseases: Where do we stand?. Cell Metab 25:43–56
    [Google Scholar]
  2. 2. 
    Almontashiri NAM, Zha L, Young K, Law T, Kellogg MD et al. 2020. Clinical validation of targeted and untargeted metabolomics testing for genetic disorders: a 3 year comparative study. Sci. Rep. 10:9382
    [Google Scholar]
  3. 3. 
    Smolinska A, Blanchet L, Buydens LMC, Wijmenga SS. 2012. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal. Chim. Acta 750:82–97
    [Google Scholar]
  4. 4. 
    Wang X, Liu L, Zhang W, Zhang J, Du X et al. 2017. Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative/nitrosative stress in humans. Environ. Pollut. 229:168–76
    [Google Scholar]
  5. 5. 
    Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. 2014. Specialized metabolites from the microbiome in health and disease. Cell Metab 20:5719–30
    [Google Scholar]
  6. 6. 
    Ortmayr K, Dubuis S, Zampieri M. 2019. Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nat. Commun. 10:11841
    [Google Scholar]
  7. 7. 
    Zenobi R. 2013. Single-cell metabolomics: analytical and biological perspectives. Science 342:1243259
    [Google Scholar]
  8. 8. 
    Johnson CH, Ivanisevic J, Siuzdak G. 2016. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17:451–59
    [Google Scholar]
  9. 9. 
    Zampieri M, Zimmermann M, Claassen M, Sauer U. 2017. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Rep 19:61214–28
    [Google Scholar]
  10. 10. 
    Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:127–30
    [Google Scholar]
  11. 11. 
    Kind T, Liu K-H, Yup Lee D, DeFelice B, Meissen JK, Fiehn O 2013. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10:8755–58
    [Google Scholar]
  12. 12. 
    Blaženović I, Kind T, Ji J, Fiehn O 2018. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 8:231
    [Google Scholar]
  13. 13. 
    Psychogios N, Hau DD, Peng J, Guo AC, Mandal R et al. 2011. The human serum metabolome. PLOS ONE 6:2e16957
    [Google Scholar]
  14. 14. 
    Emwas AHM. 2015. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol. Biol. 1277:161–93
    [Google Scholar]
  15. 15. 
    Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R et al. 2017. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 43:34–40
    [Google Scholar]
  16. 16. 
    Gowda GAN, Gowda YN, Raftery D. 2015. Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Anal. Chem. 87:706–15
    [Google Scholar]
  17. 17. 
    Denisov E, Damoc E, Lange O, Makarov A. 2012. Orbitrap mass spectrometry with resolving powers above 1,000,000. Int. J. Mass Spectrom. 325–327:80–85
    [Google Scholar]
  18. 18. 
    Hendrickson CL, Quinn JP, Kaiser NK, Smith DF, Blakney GT et al. 2015. 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer: a national resource for ultrahigh resolution mass analysis. J. Am. Soc. Mass Spectrom. 26:91626–32
    [Google Scholar]
  19. 19. 
    Shaw JB, Lin T-Y, Leach FE, Tolmachev AV, Tolić N et al. 2016. 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer greatly expands mass spectrometry toolbox. J. Am. Soc. Mass Spectrom. 27:121929–36
    [Google Scholar]
  20. 20. 
    Buszewski B, Noga S. 2012. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal. Bioanal. Chem. 402:1231–47
    [Google Scholar]
  21. 21. 
    Kind T, Tolstikov V, Fiehn O, Weiss RH. 2007. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal. Biochem. 363:2185–95
    [Google Scholar]
  22. 22. 
    da Silva RR, Dorrestein PC, Quinn RA. 2015. Illuminating the dark matter in metabolomics. PNAS 112:4112549–50
    [Google Scholar]
  23. 23. 
    Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T et al. 2010. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45:7703–14
    [Google Scholar]
  24. 24. 
    Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B et al. 2018. METLIN: a technology platform for identifying knowns and unknowns. Anal. Chem. 90:53156–64
    [Google Scholar]
  25. 25. 
    Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N et al. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34:8828–37
    [Google Scholar]
  26. 26. 
    Wishart DS, Tzur D, Knox C, Eisner R, Guo AC et al. 2007. HMDB: the human metabolome database. Nucleic Acids Res 35:D521–26
    [Google Scholar]
  27. 27. 
    Cuthbertson DJ, Johnson SR, Piljac-Žegarac J, Kappel J, Schäfer S et al. 2013. Accurate mass–time tag library for LC/MS-based metabolite profiling of medicinal plants. Phytochemistry 91:187–97
    [Google Scholar]
  28. 28. 
    Sawada Y, Nakabayashi R, Yamada Y, Suzuki M, Sato M et al. 2012. RIKEN tandem mass spectral database (ReSpect) for phytochemicals: a plant-specific MS/MS-based data resource and database. Phytochemistry 82:38–45
    [Google Scholar]
  29. 29. 
    Tada I, Tsugawa H, Meister I, Zhang P, Shu R et al. 2019. Creating a reliable mass spectral-retention time library for all ion fragmentation-based metabolomics. Metabolites 9:11251
    [Google Scholar]
  30. 30. 
    Zhu Q-F, Zhang T-Y, Qin L-L, Li X-M, Zheng S-J, Feng Y-Q. 2019. Method to calculate the retention index in hydrophilic interaction liquid chromatography using normal fatty acid derivatives as calibrants. Anal. Chem. 91:96057–63
    [Google Scholar]
  31. 31. 
    Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B et al. 2015. MS-DIAL: data independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12:6523–26
    [Google Scholar]
  32. 32. 
    Tada I, Chaleckis R, Tsugawa H, Meister I, Zhang P et al. 2020. Correlation-based deconvolution (CorrDec) to generate high-quality MS2 spectra from data-independent acquisition in multisample studies. Anal. Chem. 92:1611310–17
    [Google Scholar]
  33. 33. 
    Junot C, Fenaille F, Colsch B, Bécher F. 2014. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom. Rev. 33:6471–500
    [Google Scholar]
  34. 34. 
    Little JL, Cleven CD, Brown SD. 2011. Identification of “known unknowns” utilizing accurate mass data and chemical abstracts service databases. J. Am. Soc. Mass Spectrom. 22:2348–59
    [Google Scholar]
  35. 35. 
    Vaniya A, Fiehn O. 2015. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Anal. Chem. 69:52–61
    [Google Scholar]
  36. 36. 
    Böcker S, Rasche F. 2008. Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24:16i49–55
    [Google Scholar]
  37. 37. 
    Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. 2016. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminformatics 8:3
    [Google Scholar]
  38. 38. 
    Wolf S, Schmidt S, Müller-Hannemann M, Neumann S. 2010. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 11:148
    [Google Scholar]
  39. 39. 
    Heinonen M, Rantanen A, Mielikäinen T, Kokkonen J, Kiuru J et al. 2008. FiD: a software for ab initio structural identification of product ions from tandem mass spectrometric data. Rapid Commun. Mass Spectrom. 22:193043–52
    [Google Scholar]
  40. 40. 
    Bartlett RJ, Musiał M. 2007. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79:1291–352
    [Google Scholar]
  41. 41. 
    Bauer CA, Grimme S. 2016. How to compute electron ionization mass spectra from first principles. J. Phys. Chem. A 120:213755–66
    [Google Scholar]
  42. 42. 
    Bauer CA, Grimme S. 2014. First principles calculation of electron ionization mass spectra for selected organic drug molecules. Org. Biomol. Chem. 12:438737–44
    [Google Scholar]
  43. 43. 
    Bauer CA, Grimme S. 2014. Elucidation of electron ionization induced fragmentations of adenine by semiempirical and density functional molecular dynamics. J. Phys. Chem. A 118:4911479–84
    [Google Scholar]
  44. 44. 
    Bauer CA, Grimme S. 2015. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases uracil, thymine, cytosine, and guanine. Eur. J. Mass Spectrom. 21:125–40
    [Google Scholar]
  45. 45. 
    Spezia R, Salpin J-Y, Gaigeot M-P, Hase WL, Song K. 2009. Protonated urea collision-induced dissociation. Comparison of experiments and chemical dynamics simulations. J. Phys. Chem. A 113:5013853–62
    [Google Scholar]
  46. 46. 
    Ortiz D, Salpin J-Y, Song K, Spezia R. 2014. Galactose-6-sulfate collision induced dissociation using QM+MM chemical dynamics simulations and ESI-MS/MS experiments. Int. J. Mass Spectrom. 358:25–35
    [Google Scholar]
  47. 47. 
    Lee G, Park E, Chung H, Jeanvoine Y, Song K, Spezia R. 2016. Gas phase fragmentation mechanisms of protonated testosterone as revealed by chemical dynamics simulations. Int. J. Mass Spectrom. 407:40–50
    [Google Scholar]
  48. 48. 
    Macaluso V, Scuderi D, Crestoni ME, Fornarini S, Corinti D et al. 2019. l-cysteine modified by S-sulfation: consequence on fragmentation processes elucidated by tandem mass spectrometry and chemical dynamics simulations. J. Phys. Chem. A 123:173685–96
    [Google Scholar]
  49. 49. 
    Molina ER, Salpin J-Y, Spezia R, Martínez-Núñez E. 2016. On the gas phase fragmentation of protonated uracil: a statistical perspective. Phys. Chem. Chem. Phys. 18:2214980–90
    [Google Scholar]
  50. 50. 
    Martin Somer A, Macaluso V, Barnes GL, Yang L, Pratihar S et al. 2020. Role of chemical dynamics simulations in mass spectrometry studies of collision-induced dissociation and collisions of biological ions with organic surfaces. J. Am. Soc. Mass Spectrom. 31:12–24
    [Google Scholar]
  51. 51. 
    Zhou J, Weber RJM, Allwood JW, Mistrik R, Zhu Z et al. 2014. HAMMER: automated operation of mass frontier to construct in silico mass spectral fragmentation libraries. Bioinformatics 30:4581–83
    [Google Scholar]
  52. 52. 
    Vaniya A, Samra SN, Palazoglu M, Tsugawa H, Fiehn O. 2017. Using MS-FINDER for identifying 19 natural products in the CASMI 2016 contest. Phytochem. Lett. 21:306–12
    [Google Scholar]
  53. 53. 
    Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W et al. 2016. Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal. Chem. 88:167946–58
    [Google Scholar]
  54. 54. 
    Nguyen DH, Nguyen CH, Mamitsuka H. 2019. Recent advances and prospects of computational methods for metabolite identification: a review with emphasis on machine learning approaches. Brief. Bioinform. 20:62028–43
    [Google Scholar]
  55. 55. 
    Allen F, Greiner R, Wishart D. 2015. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11:198–110
    [Google Scholar]
  56. 56. 
    Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. 2015. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. PNAS 112:4112580–85
    [Google Scholar]
  57. 57. 
    Ludwig M, Dührkop K, Böcker S. 2018. Bayesian networks for mass spectrometric metabolite identification via molecular fingerprints. Bioinformatics 34:13i333–40
    [Google Scholar]
  58. 58. 
    van der Hooft JJJ, Wandy J, Barrett MP, Burgess KEV, Rogers S. 2016. Topic modeling for untargeted substructure exploration in metabolomics. PNAS 113:4813738–43
    [Google Scholar]
  59. 59. 
    van der Hooft JJJ, Wandy J, Young F, Padmanabhan S, Gerasimidis K et al. 2017. Unsupervised discovery and comparison of structural families across multiple samples in untargeted metabolomics. Anal. Chem. 89:147569–77
    [Google Scholar]
  60. 60. 
    Simón-Manso Y, Marupaka R, Yan X, Liang Y, Telu KH et al. 2019. Mass spectrometry fingerprints of small-molecule metabolites in biofluids: building a spectral library of recurrent spectra for urine analysis. Anal. Chem. 91:1812021–29
    [Google Scholar]
  61. 61. 
    Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY et al. 2012. Mass spectral molecular networking of living microbial colonies. PNAS 109:26E1743–52
    [Google Scholar]
  62. 62. 
    Cho J-Y, Kang DW, Ma X, Ahn S-H, Krausz KW et al. 2009. Metabolomics reveals a novel vitamin E metabolite and attenuated vitamin E metabolism upon PXR activation. J. Lipid Res. 50:5924–37
    [Google Scholar]
  63. 63. 
    Wang M, Jarmusch AK, Vargas F, Aksenov AA, Gauglitz JM et al. 2020. Mass spectrometry searches using MASST. Nat. Biotechnol. 38:19–26
    [Google Scholar]
  64. 64. 
    Mahieu NG, Patti GJ. 2017. Systems-level annotation of a metabolomics data set reduces 25000 features to fewer than 1000 unique metabolites. Anal. Chem. 89:1910397–406
    [Google Scholar]
  65. 65. 
    DeFelice BC, Mehta SS, Samra S, Čajka T, Wancewicz B et al. 2017. Mass spectral feature list optimizer (MS-FLO): a tool to minimize false positive peak reports in untargeted liquid chromatography-mass spectroscopy (LC-MS) data processing. Anal. Chem. 89:63250–55
    [Google Scholar]
  66. 66. 
    Calderón-Santiago M, Fernández-Peralbo MA, Priego-Capote F, Luque de Castro MD. 2016. MSCombine: a tool for merging untargeted metabolomic data from high-resolution mass spectrometry in the positive and negative ionization modes. Metabolomics 12:343
    [Google Scholar]
  67. 67. 
    Mahieu NG, Spalding JL, Gelman SJ, Patti GJ. 2016. Defining and detecting complex peak relationships in mass spectral data: the mz.unity algorithm. Anal. Chem. 88:189037–46
    [Google Scholar]
  68. 68. 
    Tsugawa H, Nakabayashi R, Mori T, Yamada Y, Takahashi M et al. 2019. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 16:4295–98
    [Google Scholar]
  69. 69. 
    de Jong FA, Beecher C. 2012. Addressing the current bottlenecks of metabolomics: isotopic Ratio Outlier Analysis™, an isotopic-labeling technique for accurate biochemical profiling. Bioanalysis 4:182303–14
    [Google Scholar]
  70. 70. 
    Qiu Y, Moir R, Willis I, Beecher C, Tsai Y-H et al. 2016. Isotopic ratio outlier analysis of the S. cerevisiae metabolome using accurate mass gas chromatography/time-of-flight mass spectrometry: a new method for discovery. Anal. Chem. 88:52747–54
    [Google Scholar]
  71. 71. 
    Qiu Y, Moir RD, Willis IM, Seethapathy S, Biniakewitz RC, Kurland IJ. 2018. Enhanced isotopic ratio outlier analysis (IROA) peak detection and identification with ultra-high resolution GC-Orbitrap/MS: potential application for investigation of model organism metabolomes. Metabolites 8:19
    [Google Scholar]
  72. 72. 
    Wang L, Xing X, Chen L, Yang L, Su X et al. 2019. Peak annotation and verification engine for untargeted LC-MS metabolomics. Anal. Chem. 91:31838–46
    [Google Scholar]
  73. 73. 
    Sumner LW, Amberg A, Barrett D, Beale MH, Beger R et al. 2007. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:3211–21
    [Google Scholar]
  74. 74. 
    Fiehn O. 2016. Metabolomics by gas chromatography-mass spectrometry: the combination of targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 114:30.4.1–32
    [Google Scholar]
  75. 75. 
    Kováts E. 1958. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 41:71915–32
    [Google Scholar]
  76. 76. 
    Kováts E. 1965. Gas chromatographic characterization of organic substances in the retention index system. Adv. Chromatogr. 1:229–47
    [Google Scholar]
  77. 77. 
    Lee ML, Vassilaros DL, White CM. 1979. Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Anal. Chem. 51:6768–73
    [Google Scholar]
  78. 78. 
    Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M et al. 2009. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81:2410038–48
    [Google Scholar]
  79. 79. 
    Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL et al. 2007. Development of a database of gas chromatographic retention properties of organic compounds. J. Chromatogr. A 1157:1–2414–21
    [Google Scholar]
  80. 80. 
    Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B et al. 2005. [email protected]: the Golm Metabolome Database. Bioinformatics 21:81635–38
    [Google Scholar]
  81. 81. 
    Stein SE, Babushok VI, Brown RL, Linstrom PJ. 2007. Estimation of Kováts retention indices using group contributions. J. Chem. Inf. Model. 47:3975–80
    [Google Scholar]
  82. 82. 
    Abate-Pella D, Freund DM, Ma Y, Simón-Manso Y, Hollender J et al. 2015. Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods. J. Chromatogr. A 1412:43–51
    [Google Scholar]
  83. 83. 
    Boswell PG, Schellenberg JR, Carr PW, Cohen JD, Hegeman AD. 2011. A study on retention “projection” as a supplementary means for compound identification by liquid chromatography-mass spectrometry capable of predicting retention with different gradients, flow rates, and instruments. J. Chromatogr. A 1218:386732–41
    [Google Scholar]
  84. 84. 
    Boswell PG, Schellenberg JR, Carr PW, Cohen JD, Hegeman AD. 2011. Easy and accurate high-performance liquid chromatography retention prediction with different gradients, flow rates, and instruments by back-calculation of gradient and flow rate profiles. J. Chromatogr. A 1218:386742–49
    [Google Scholar]
  85. 85. 
    Creek DJ, Jankevics A, Breitling R, Watson DG, Barrett MP, Burgess KEV. 2011. Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction. Anal. Chem. 83:228703–10
    [Google Scholar]
  86. 86. 
    Aalizadeh R, Nika M-C, Thomaidis NS. 2019. Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants. J. Hazard. Mater. 363:277–85
    [Google Scholar]
  87. 87. 
    Aalizadeh R, Thomaidis NS, Bletsou AA, Gago-Ferrero P. 2016. Quantitative structure-retention relationship models to support nontarget high-resolution mass spectrometric screening of emerging contaminants in environmental samples. J. Chem. Inf. Model. 56:71384–98
    [Google Scholar]
  88. 88. 
    Falchi F, Bertozzi SM, Ottonello G, Ruda GF, Colombano G et al. 2016. Kernel-based, partial least squares quantitative structure-retention relationship model for UPLC retention time prediction: a useful tool for metabolite identification. Anal. Chem. 88:199510–17
    [Google Scholar]
  89. 89. 
    Baglai A, Blokland MH, Mol HGJ, Gargano AFG, van der Wal S, Schoenmakers PJ. 2018. Enhancing detectability of anabolic-steroid residues in bovine urine by actively modulated online comprehensive two-dimensional liquid chromatography–high-resolution mass spectrometry. Anal. Chim. Acta 1013:87–97
    [Google Scholar]
  90. 90. 
    Sun W-Y, Lu Q-W, Gao H, Tong L, Li D-X et al. 2017. Simultaneous determination of hydrophilic and lipophilic constituents in herbal medicines using directly-coupled reversed-phase and hydrophilic interaction liquid chromatography-tandem mass spectrometry. Sci. Rep. 7:17061
    [Google Scholar]
  91. 91. 
    Willmann L, Erbes T, Krieger S, Trafkowski J, Rodamer M, Kammerer B. 2015. Metabolome analysis via comprehensive two-dimensional liquid chromatography: identification of modified nucleosides from RNA metabolism. Anal. Bioanal. Chem. 407:133555–66
    [Google Scholar]
  92. 92. 
    Stoll DR, Shoykhet K, Petersson P, Buckenmaier S. 2017. Active solvent modulation: a valve-based approach to improve separation compatibility in two-dimensional liquid chromatography. Anal. Chem. 89:179260–67
    [Google Scholar]
  93. 93. 
    Baglai A, Gargano AFG, Jordens J, Mengerink Y, Honing M et al. 2017. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: two-dimensional liquid chromatography-mass spectrometry versus liquid chromatography-trapped-ion-mobility-mass spectrometry. J. Chromatogr. A 1530:90–103
    [Google Scholar]
  94. 94. 
    Stoll DR, Harmes DC, Staples GO, Potter OG, Dammann CT et al. 2018. Development of comprehensive online two-dimensional liquid chromatography/mass spectrometry using hydrophilic interaction and reversed-phase separations for rapid and deep profiling of therapeutic antibodies. Anal. Chem. 90:95923–29
    [Google Scholar]
  95. 95. 
    Wang S, Li J, Shi X, Qiao L, Lu X, Xu G. 2013. A novel stop-flow two-dimensional liquid chromatography-mass spectrometry method for lipid analysis. J. Chromatogr. A 1321:65–72
    [Google Scholar]
  96. 96. 
    SR Johnson, Lange BM. 2015. Open-access metabolomics databases for natural product research: present capabilities and future potential. Front. Bioeng. Biotechnol. 3:22
    [Google Scholar]
  97. 97. 
    Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z et al. 2018. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 37:4513–32
    [Google Scholar]
  98. 98. 
    Zierer J, Jackson MA, Kastenmüller G, Mangino M, Long T et al. 2018. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50:6790–95
    [Google Scholar]
  99. 99. 
    Noronha A, Modamio J, Jarosz Y, Guerard E, Sompairac N et al. 2019. The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Res 47:D1D614–24
    [Google Scholar]
  100. 100. 
    Shaffer M, Thurimella K, Quinn K, Doenges K, Zhang X et al. 2019. AMON: annotation of metabolite origins via networks to integrate microbiome and metabolome data. BMC Bioinform. 20:614
    [Google Scholar]
  101. 101. 
    Fiehn O, Robertson D, Griffin J, van der Werf M, Nikolau B et al. 2007. The metabolomics standards initiative (MSI). Metabolomics 3:3175–78
    [Google Scholar]
  102. 102. 
    Wallace WE, Ji W, Tchekhovskoi DV, Phinney KW, Stein SE. 2017. Mass spectral library quality assurance by inter-library comparison. J. Am. Soc. Mass Spectrom. 28:4733–38
    [Google Scholar]
  103. 103. 
    Heller S, McNaught A, Stein S, Tchekhovskoi D, Pletnev I. 2013. InChI—the worldwide chemical structure identifier standard. J. Cheminform. 5:17
    [Google Scholar]
  104. 104. 
    Kind T, Scholz M, Fiehn O. 2009. How large is the metabolome? A critical analysis of data exchange practices in chemistry. PLOS ONE 4:5e5440
    [Google Scholar]
  105. 105. 
    Sud M, Fahy E, Cotter D, Azam K, Vadivelu I et al. 2016. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44:D463–70
    [Google Scholar]
  106. 106. 
    Haug K, Salek RM, Conesa P, Hastings J, de Matos P et al. 2013. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res 41:D781–86
    [Google Scholar]
  107. 107. 
    Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J et al. 2020. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17:9905–8
    [Google Scholar]
  108. 108. 
    Demarque DP, Dusi RG, de Sousa FDM, Grossi SM, Silvério MRS et al. 2020. Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci. Rep. 10:1051
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091620-015205
Loading
/content/journals/10.1146/annurev-anchem-091620-015205
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error