1932

Abstract

Achieving net-zero greenhouse gas (GHG) emissions in dairy production will require >50% reduction in enteric methane (CH) emissions together with elimination of emissions from feed production, additional carbon sequestration, reduction in manure emissions, anaerobic digestion of manure, and decreased reliance on fossil fuel energy. Over past decades, improved production efficiency has reduced GHG intensity of milk production (i.e., emissions per unit of milk) in the United States, but this trend can continue only if cows are bred for increased efficiency. Genetic selection of low-CH-producing animals, diet reformulation, use of feed additives, and vaccination show tremendous potential for enteric CH mitigation; however, few mitigation strategies are currently available, and added cost without increased revenue is a major barrier to implementation. Complete elimination of CH emissions from dairying is likely not possible without negatively affecting milk production; thus, offsets and removals of other GHGs will be needed to achieve net-zero milk production.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-010324-113703
2025-02-18
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-010324-113703.html?itemId=/content/journals/10.1146/annurev-animal-010324-113703&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    FAO (Food Agric. Organ.). 2023.. Methane emissions in livestock and rice systems—sources, quantification, mitigation and metrics. Rep. , FAO, Rome:. https://doi.org/10.4060/cc7607en
    [Google Scholar]
  2. 2.
    EPA (US Environ. Prot. Agency). 2023.. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2021. Accessed March 3, 2024. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021
    [Google Scholar]
  3. 3.
    IPCC (Intergov. Panel Clim. Change). 2021.. Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  4. 4.
    Jackson RB, Saunois M, Bousque P, Canadell JG, Poulter B, et al. 2020.. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. . Environ. Res. Lett. 15::071002
    [Crossref] [Google Scholar]
  5. 5.
    Undeniably Dairy. 2022.. U.S. dairy net zero initiative. https://www.usdairy.com/sustainability/environmental-sustainability
    [Google Scholar]
  6. 6.
    Undeniably Dairy. 2024.. U.S. dairy net zero initiative. https://www.usdairy.com/sustainability/environmental-sustainability/net-zero-initiative
    [Google Scholar]
  7. 7.
    US Roundtable Sustain. Beef. 2022.. Our goal for air & greenhouse gas emissions. . Accessed Aug. 7, 2024. https://www.usrsb.org/our-work/our-goals/our-goal-for-air-greenhouse-gas-emissions
  8. 8.
    IPCC (Intergov. Panel Clim. Change). 2023.. Sections. . In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Core Writ. Team, H Lee, J Romero , pp. 35115. Geneva:: IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647
    [Google Scholar]
  9. 9.
    Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, et al. 2009.. Warming caused by cumulative carbon emissions towards the trillionth tonne. . Nature 458::116366
    [Crossref] [Google Scholar]
  10. 10.
    Allen MR, Friedlingstein P, Girardin CAJ, Jenkins S, Malhi Y, et al. 2022a.. Net zero: science, origins, and implications. . Annu. Rev. Environ. Resour. 47::84987
    [Crossref] [Google Scholar]
  11. 11.
    Szopa S, Naik V, Adhikary B, Artaxo P, Berntsen T, . 2021.. Short-lived climate forcers. . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, , et al. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  12. 12.
    Allen M, Tanaka K, Macey A, Cain M, Jenkins S, et al. 2021.. Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming. . Environ. Res. Lett. 16::074009
    [Crossref] [Google Scholar]
  13. 13.
    Fuglestvedt J, Rogelj J, Millar RJ, Allen M, Boucher O, et al. 2018.. Implications of possible interpretations of “greenhouse gas balance” in the Paris Agreement. . Philos. Trans. R. Soc. A 376:(2119):20160445
    [Crossref] [Google Scholar]
  14. 14.
    Tanaka K, O'Neill BC. 2018.. The Paris Agreement zero-emissions goal is not always consistent with the 1.5°C and 2°C temperature targets. . Nat. Clim. Change 8::31924
    [Crossref] [Google Scholar]
  15. 15.
    Lynch J, Cain M, Frame D, Pierrehumbert R. 2021.. Agriculture's contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. . Front. Sustain. Food Syst. 4::518039
    [Crossref] [Google Scholar]
  16. 16.
    Allen MR, Peters GP, Shine KP, Azar C, Balcombe P, et al. 2022b.. Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. . npj Clim. Atmos. Sci. 5::1821
    [Crossref] [Google Scholar]
  17. 17.
    Cain M, Jenkins S, Allen MR Lynch J, Frame DJ, et al. 2022.. Methane and the Paris Agreement temperature goals. . Philos. Trans. R. Soc. A 380::20200456
    [Crossref] [Google Scholar]
  18. 18.
    UNFCCC (UN Framew. Conv. Clim. Change). 2023.. New Zealand submission on emissions removals to the Supervisory Body of the Article 6.4 Mechanism. Resour., UNFCCC, New York:. https://unfccc.int/sites/default/files/resource/NewZealand.pdf
    [Google Scholar]
  19. 19.
    Forster P, Storelvmo T, Armour K, Collins W, Dufresne J-L, et al. 2021.. The Earth's energy budget, climate feedbacks, and climate sensitivity. . See Reference 3 , pp. 9231054
  20. 20.
    Thoma G, Popp J, Nutter D, Shonnard D, Ulrich R, et al. 2013.. Greenhouse gas emissions from milk production and consumption in the United States: a cradle-to-grave life cycle assessment circa 2008. . Int. Dairy J. 31:(Suppl. 1):S3S14
    [Crossref] [Google Scholar]
  21. 21.
    Thoma G, Popp J, Shonnard D, Nutter D, Matlock M, et al. 2013.. Regional analysis of greenhouse gas emissions from USA dairy farms: a cradle to farm-gate assessment of the American dairy industry circa 2008. . Int. Dairy J. 31:(Suppl. 1):S29S40
    [Crossref] [Google Scholar]
  22. 22.
    Rotz A, Stout R, Leytem A, Feyereisen G, Waldrip H, et al. 2021.. Environmental assessment of United States dairy farms. . J. Clean. Prod. 315::128153
    [Crossref] [Google Scholar]
  23. 23.
    Rotz CA, Thoma G. 2017.. Assessing carbon footprints of dairy production systems. . In Large Dairy Herd Management, ed. DK Beede , pp. 318. Champaign, IL:: Am. Dairy Sci. Assoc. , 3rd ed..
    [Google Scholar]
  24. 24.
    WWF (World Wildl. Fund). 2021.. An environmental and economic path toward net zero dairy farm emissions. Bus. Case, WWF, Gland, Switz:. https://www.worldwildlife.org/publications/an-environmental-and-economic-path-toward-net-zero-dairy-farm-emissions
    [Google Scholar]
  25. 25.
    Dairy Farmers Can. 2024.. Dairy farming forward to 2050: Dairy Farmers of Canada's net-zero strategy. Rep. , Dairy Farmers Can., Ottawa, Can:. https://dairyfarmersofcanada.ca/sites/default/files/2023-03/DFC_Net-Zero%20Strategy_FINAL_WEB.pdf
    [Google Scholar]
  26. 26.
    Veltman K, Rotz CA, Chase L, Cooper J, Forest CE, et al. 2021.. Assessing and reducing the environmental impact of dairy production systems in the northern US in a changing climate. . Agric. Syst. 192::103170
    [Crossref] [Google Scholar]
  27. 27.
    Feng X, Kebreab E. 2020.. Net reductions in greenhouse gas emissions from feed additive use in California dairy cattle. . PLOS ONE 15::e0234289
    [Crossref] [Google Scholar]
  28. 28.
    IPCC. 2021.. Summary for policymakers. . See Reference 3 , pp. 332
  29. 29.
    Janzen HH, van Groenigen KJ, Powlson DS, Schwinghamer T, van Groenigen JW. 2022.. Photosynthetic limits on carbon sequestration in croplands. . Geoderma 416::115810
    [Crossref] [Google Scholar]
  30. 30.
    PCE (Parliam. Comm. Environ.). 2022.. How much forestry would be needed to offset warming from agricultural methane? Note, PCE, Wellington, NZ:. https://pce.parliament.nz/media/03bpa3sn/how-much-forestry-would-be-needed-to-offset-warming-from-agricultural-methane.pdf
    [Google Scholar]
  31. 31.
    Cain M, Lynch J, Allen MR, Fuglestvedt JS, Frame DJ, et al. 2019.. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. . npj Clim. Atmos. Sci. 2::29
    [Crossref] [Google Scholar]
  32. 32.
    Naranjo A, Johnson A, Rossow H, Kebreab E. 2020.. Greenhouse gas, water, and land footprint per unit of production of the California dairy industry over 50 years. . J. Dairy Sci. 103:(4):376073
    [Crossref] [Google Scholar]
  33. 33.
    Montes F, Meinen R, Dell C, Rotz A, Hristov AN, et al. 2013.. Special Topics—Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. . J. Anim. Sci. 91::507094
    [Crossref] [Google Scholar]
  34. 34.
    Guenet B, Gabrielle B, Chenu C, Arrouays D, Balesdent J, et al. 2021.. Can N2O emissions offset the benefits from soil organic carbon storage?. Glob. Change Biol. 27::23756
    [Crossref] [Google Scholar]
  35. 35.
    Arndt C, Hristov AN, Price WJ, McClelland SC, Pelaez AM, et al. 2022.. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5°C target by 2030 but not 2050. . PNAS 119: (20):e2111294119
    [Crossref] [Google Scholar]
  36. 36.
    Beauchemin KA, Ungerfeld EM, Abdalla AL, Álvarez C, Arndt C, et al. 2022.. Invited review: current enteric methane mitigation options. . J. Dairy Sci. 105::9297326
    [Crossref] [Google Scholar]
  37. 37.
    Capper JL, Cady RA, Bauman DE. 2009.. The environmental impact of dairy production: 1944 compared with 2007. . J. Anim. Sci. 87::216067
    [Crossref] [Google Scholar]
  38. 38.
    Capper JL, Castañeda-Gutiérrez E, Cady RA, Bauman DE. 2008.. The environmental impact of recombinant bovine somatotropin (rbST) use in dairy production. . PNAS 105:(28):966873
    [Crossref] [Google Scholar]
  39. 39.
    Capper JL. 2011.. The environmental impact of beef production in the United States: 1977 compared with 2007. . J. Anim. Sci. 89::424961
    [Crossref] [Google Scholar]
  40. 40.
    FAO (Food Agric. Organ.). 2010.. Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment. Rome:: FAO
    [Google Scholar]
  41. 41.
    VandeHaar MJ, Armentano LE, Weigel K, Spurlock DM, Tempelman RJ, et al. 2016.. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency. . J. Dairy Sci. 99:(6):494154
    [Crossref] [Google Scholar]
  42. 42.
    Britt JH, Cushman RA, Dechow CD, Dobson H, Humblot P, et al. 2018.. Invited review: learning from the future—a vision for dairy farms and cows in 2067. . J. Dairy Sci. 101::372241
    [Crossref] [Google Scholar]
  43. 43.
    NASEM (Natl. Acad. Sci. Eng. Med.). 2021.. Nutrient Requirements of Dairy Cattle. Washington, DC:: Natl. Acad. Press. 8th rev. ed .
    [Google Scholar]
  44. 44.
    Guinan FL, Wiggans GR, Norman HD, Dürr JW, Cole JB, et al. 2023.. Changes in genetic trends in US dairy cattle since the implementation of genomic selection. J. Dairy Sci. 106::111029
    [Crossref] [Google Scholar]
  45. 45.
    Manzanilla-Pech CIV, Difford GF, Løvendahl P, Stephansen RB, Lassen J. 2022.. Genetic (co-)variation of methane emissions, efficiency, and production traits in Danish Holstein cattle along and across lactations. . J. Dairy Sci. 105::9799809
    [Crossref] [Google Scholar]
  46. 46.
    Van Breukelen AE, Aldridge MN, Veerkamp RF, Koning L, Sebek LB, et al. 2023.. Heritability and genetic correlations between enteric methane production and concentration recorded by GreenFeed and sniffers on dairy cows. . J. Dairy Sci. 106::412132
    [Crossref] [Google Scholar]
  47. 47.
    Rowe SJ, Hickey SM, Jonker A, Hess MK, Janssen P, et al. 2019.. Selection for divergent methane yield in New Zealand sheep—a ten-year perspective. . In Proceedings of the 23rd Conference of the Association for the Advancement of Animal Breeding and Genetics, pp. 3069. Armidale, Aust:.: Assoc. Adv. Anim. Breed. Genet.
    [Google Scholar]
  48. 48.
    Stepanchenko N, Stefenoni H, Hennessy M, Nagaraju I, Wasson DE, et al. 2023.. Microbial composition, rumen fermentation parameters, enteric methane emissions, and lactational performance of phenotypically high and low methane-emitting dairy cows. . J. Dairy Sci. 106::614670
    [Crossref] [Google Scholar]
  49. 49.
    Münger A, Kreuzer M. 2008.. Absence of persistent methane emission differences in three breeds of dairy cows. . Aust. J. Exp. Agric. 48:(2):7782
    [Crossref] [Google Scholar]
  50. 50.
    Patra AK. 2013.. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: a meta-analysis. . Livest. Sci. 155::24454
    [Crossref] [Google Scholar]
  51. 51.
    Grainger C, Beauchemin KA. 2011.. Can enteric methane emissions from ruminants be lowered without lowering their production?. Anim. Feed Sci. Technol. 166–167::30820
    [Crossref] [Google Scholar]
  52. 52.
    Moate PJ, Williams SRO, Grainger C, Hannah MC, Ponnampalam EN, et al. 2011.. Influence of cold-pressed canola, brewers grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows. . Anim. Feed Sci. Technol. 166–67::25464
    [Crossref] [Google Scholar]
  53. 53.
    Brask M, Lund P, Hellwing ALF, Poulsen M, Weisbjerg MR. 2013.. Enteric methane production, digestibility and rumen fermentation in dairy cows fed different forages with and without rapeseed fat supplementation. . Anim. Feed Sci. Technol. 184:(1–4):6779
    [Crossref] [Google Scholar]
  54. 54.
    Appuhamy JADRN, France J, Kebreab E. 2016.. Models for enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. . Glob. Change Biol. 22:(9):303956
    [Crossref] [Google Scholar]
  55. 55.
    Duin EC, Wagner T, Shima S, Prakash D, Cronin B, et al. 2016.. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. . PNAS 113::617277
    [Crossref] [Google Scholar]
  56. 56.
    Yu G, Beauchemin KA, Dong R. 2021.. A review of 3-nitrooxypropanol for enteric methane mitigation from ruminant livestock. . Animals 11::3540
    [Crossref] [Google Scholar]
  57. 57.
    Kebreab E, Bannink A, Pressman EM, Walker N, Karagiannis A, et al. 2023.. A meta-analysis of effects of 3-nitrooxypropanol on methane production, yield, and intensity in dairy cattle. . J. Dairy Sci. 106::92736
    [Crossref] [Google Scholar]
  58. 58.
    Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M, et al. 2018.. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. . Ital. J. Anim. Sci. 17::65056
    [Crossref] [Google Scholar]
  59. 59.
    Kim H, Lee H, Baek Y, Lee S, Seo J. 2020.. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: a meta-analysis. . J. Anim. Sci. Technol. 62::3142
    [Crossref] [Google Scholar]
  60. 60.
    van Gastelen S, Burgers EEA, Dijkstra J, de Mol R, Muizelaar W, et al. 2024.. Long-term effects of 3-nitrooxypropanol on methane emission and milk production characteristics in Holstein Friesian dairy cows. . J. Dairy Sci. 107::555673
    [Crossref] [Google Scholar]
  61. 61.
    FEEDAP, Bampidis V, Azimonti G, de Lourdes Bastos M, Christensen H, et al. 2021.. Safety and efficacy of a feed additive consisting of 3-nitrooxypropanol (Bovaer® 10) for ruminants for milk production and reproduction (DSM Nutritional Products Ltd). . EFSA J. 19:(11):e06905
    [Google Scholar]
  62. 62.
    Kinley RD, Martinez-Fernandez G, Matthews MK, de Nys R, Magnusson M, et al. 2020.. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. . J. Clean. Prod. 259::120836
    [Crossref] [Google Scholar]
  63. 63.
    Roque BM, Venegas M, Kinley RD, de Nys R, Duarte TL, et al. 2021.. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. . PLOS ONE 16::e0247820
    [Crossref] [Google Scholar]
  64. 64.
    Roque BM, Salwen JK, Kinley R, Kebreab E. 2019.. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. . J. Clean. Prod. 234::13238
    [Crossref] [Google Scholar]
  65. 65.
    Stefenoni HA, Räisänen SE, Cueva SF, Wasson DE, Lage CFA, et al. 2021.. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J. Dairy Sci. 104:(4):415773
    [Crossref] [Google Scholar]
  66. 66.
    Thorsteinsson M, Lund P, Weisbjerg MR, Noel SJ, Frydendahl Hellwing AL, et al. 2023.. Enteric methane emission of dairy cows supplemented with iodoform in a dose-response study. . Sci. Rep. 13::12797
    [Crossref] [Google Scholar]
  67. 67.
    Lee C, Beauchemin KA. 2014.. A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. . Can J. Anim. Sci. 94::55770
    [Crossref] [Google Scholar]
  68. 68.
    Rezaei Ahvanooei MR, Norouzian MA, Piray AH, Vahmani P, Ghaffari MH. 2024.. Effects of monensin supplementation on rumen fermentation, methane emissions, nitrogen balance, and metabolic responses of dairy cows: a systematic review and dose-response meta-analysis. . J. Dairy Sci. 107::60724
    [Crossref] [Google Scholar]
  69. 69.
    Cooke RF, Eloy LR, Bosco SC, Lasmar PVF, de Simas JMC, et al. 2024.. An updated meta-analysis of the anti-methanogenic effects of monensin in beef cattle. . Trans. Anim. Sci. 8::txae032
    [Crossref] [Google Scholar]
  70. 70.
    Baca-González V, Asensio-Calavia P, González-Acosta S, Pérez de la Lastra JM, Morales de la Nuez A. 2020.. Are vaccines the solution for methane emissions from ruminants? A systematic review. . Rev. Vaccines 8:(3):460
    [Crossref] [Google Scholar]
  71. 71.
    Wedlock DN, Pedersen G, Denis M, Dey D, Janssen PH, et al. 2010.. Development of a vaccine to mitigate greenhouse gas emissions in agriculture: vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro. . N.Z. Vet. J. 58::2936
    [Crossref] [Google Scholar]
  72. 72.
    Wedlock DN, Janssen PH, Leahy SC, Shu D, Buddle BM. 2013.. Progress in the development of vaccines against rumen methanogens. . Animal 7:(Suppl. 2):24452
    [Crossref] [Google Scholar]
  73. 73.
    Subharat S, Shu D, Zheng T, Buddle BM, Janssen PH, et al. 2015.. Vaccination of cattle with a methanogen protein produces specific antibodies in the saliva which are stable in the rumen. . Vet. Immunol. Immunopathol. 164::2017
    [Crossref] [Google Scholar]
  74. 74.
    Subharat S, Shu D, Zheng T, Buddle BM, Kaneko K, et al. 2016.. Vaccination of sheep with a methanogen protein provides insight into levels of antibody in saliva needed to target ruminal methanogens. . PLOS ONE 11:(7):e0159861
    [Crossref] [Google Scholar]
  75. 75.
    Khanum S, Roberts JM, Heathcott RW, Bagley S, Wilson T, et al. 2022.. Cross-reactivity of antibodies to different rumen methanogens demonstrated using immunomagnetic capture technology. . Front. Microbiol. 13::918111
    [Crossref] [Google Scholar]
  76. 76.
    Jayanegara A, Leiber F, Kreuzer M. 2012.. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. . J. Anim. Physiol. Anim. Nutr. 96::36575
    [Crossref] [Google Scholar]
  77. 77.
    Cobellis G, Trabalza-Marinucci M, Yu Z. 2016.. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: a review. . Sci. Total Environ. 545–546::55668
    [Crossref] [Google Scholar]
  78. 78.
    Zhang XM, Smith ML, Gruninger RJ, Kung L Jr., Vyas D, et al. 2021.. Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total tract digestibility in beef cattle. . J. Anim. Sci. 99::skab081
    [Crossref] [Google Scholar]
  79. 79.
    Maigaard M, Weisbjerg MR, Johansen M, Walker N, Ohlsson C, et al. 2024.. Effects of dietary fat, nitrate, and 3-nitrooxypropanol and their combinations on methane emission, feed intake, and milk production in dairy cows. . J. Dairy Sci. 107::22041
    [Crossref] [Google Scholar]
  80. 80.
    Ungerfeld EM. 2018.. Inhibition of rumen methanogenesis and ruminant productivity: a meta-analysis. . Front. Vet. Sci. 5::113
    [Crossref] [Google Scholar]
  81. 81.
    Ungerfeld EM, Beauchemin KA, Muñoz C. 2022.. Current perspectives on achieving pronounced enteric methane mitigation from ruminant production. . Front. Anim. Sci. 2::79520
    [Crossref] [Google Scholar]
  82. 82.
    McGinn SM, Flesch TK, Beauchemin KA, Kindermann M. 2019.. Micrometeorological methods for measuring methane emission reduction at beef cattle feedlots: Evaluation of 3-nitrooxypropanol feed additive. . J. Environ. Qual. 48:(5):145461
    [Crossref] [Google Scholar]
  83. 83.
    Frank S, Havlík P, Stehfest E, van Meijl H, Witzke P, et al. 2019.. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. . Nat. Clim. Change 9:(1):6672
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-010324-113703
Loading
/content/journals/10.1146/annurev-animal-010324-113703
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error