1932

Abstract

Of all the big cats, or perhaps of all the endangered wildlife, the tiger may be both the most charismatic and most well-recognized flagship species in the world. The rapidly changing field of molecular genetics, particularly advances in genome sequencing technologies, has provided new tools to reconstruct what characterizes a tiger. Here we review how applications of molecular genomic tools have been used to depict the tiger's ancestral roots, phylogenetic hierarchy, demographic history, morphological diversity, and genetic patterns of diversification on both temporal and geographical scales. Tiger conservation, stabilization, and management are important areas that benefit from use of these genome resources for developing survival strategies for this charismatic megafauna both in situ and ex situ.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-020518-115106
2019-02-15
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/animal/7/1/annurev-animal-020518-115106.html?itemId=/content/journals/10.1146/annurev-animal-020518-115106&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Blake W 1984 (1794). Songs of Experience: Facsimile Reproduction with 26 Plates in Full Color New York: Dover
    [Google Scholar]
  2. 2. 
    Nowell K, Jackson P, eds. 1996. Wild Cats: Status Survey and Conservation Action Plan Gland, Switz.: Int. Union Conserv. Nat.
    [Google Scholar]
  3. 3. 
    Mazák V 1981. Panthera tigris. Mamm. Species 152:1–8
    [Google Scholar]
  4. 4. 
    Hemmer H 1987. The phylogeny of the tiger (Panthera tigris). Tigers of the World: The Biology, Biopolitics, Management, and Conservation of an Endangered Species RL Tilson, US Seal 28–35 Norwich, NY: Noyes. , 1st ed..
    [Google Scholar]
  5. 5. 
    Herrington SJ 1987. Subspecies and the conservation of Panthera tigris: preserving genetic heterogeneity. Tigers of the World: The Biology, Biopolitics, Management, and Conservation of an Endangered Species RL Tilson, US Seal 51–61 Norwich, NY: Noyes. , 1st ed..
    [Google Scholar]
  6. 6. 
    Walston J, Karanth U, Stokes E 2010. Avoiding the Unthinkable: What Will It Cost to Prevent Tigers Becoming Extinct in the Wild? New York: Wildl. Conserv. Soc.
    [Google Scholar]
  7. 7. 
    Goodrich JM, Lynam A, Miquelle DG, Wibisono HT, Kawanishi K et al. 2015. Panthera tigris. The IUCN Red List of Threatened Species 2015 Gland, Switz: Int. Union Conserv. Nat http://www.iucnredlist.org/details/15955/0
    [Google Scholar]
  8. 8. 
    Sanderson WEW, Forrest J, Loucks C, Ginsberg J, Dinerstein E et al. 2010. Setting priorities for tiger conservation: 2005–2015. See Reference 45 143–61
  9. 9. 
    Walston J, Robinson JG, Bennett EL, Breitenmoser U, da Fonseca GAB et al. 2010. Bringing the tiger back from the brink: the six percent solution. PLOS Biol 8:9e1000485
    [Google Scholar]
  10. 10. 
    Tilson R, Hu D, Muntifering J, Nyhus PJ 2004. Dramatic decline of wild South China tigers Panthera tigris amoyensis: field survey of priority tiger reserves. Oryx 38:140–47
    [Google Scholar]
  11. 11. 
    Dinerstein E, Loucks C, Wikramanayake E, Ginsberg J, Sanderson E et al. 2007. The fate of wild tigers. Bioscience 57:6508–14
    [Google Scholar]
  12. 12. 
    Kitchener AC, Dugmore AJ 2000. Biogeographical change in the tiger. Panthera tigris. Anim. Conserv. 3:2113–24
    [Google Scholar]
  13. 13. 
    Thornton IWB, Yeung KK, Sankhala KS 1967. The genetics of the white tigers of Rewa. J. Zool. 152:1127–35
    [Google Scholar]
  14. 14. 
    Luo SJ, Johnson WE, Martenson J, Antunes A, Martelli P et al. 2008. Subspecies genetic assignments of worldwide captive tigers increase conservation value of captive populations. Curr. Biol. 18:8592–96
    [Google Scholar]
  15. 15. 
    Nyhus PJ, Tilson R, Hutchins M 2010. Thirteen thousand and counting: how growing captive tiger populations threaten wild tigers. See Reference 45 223–38
  16. 16. 
    Christie S 2010. Why keep tigers in zoos?. See Reference 45 205–14
  17. 17. 
    Tilson RL, Foose TJ, Princee F, Traylor-Holzer K 1993. Tiger Global Animal Survival Plan Apple Valley, MN: Int. Union Conserv. Nat./Species Surviv. Comm./Conserv. Breed. Spec. Group
    [Google Scholar]
  18. 18. 
    Glob. Tiger Initiat. 2010. Global tiger recovery program (20102022) Work. Pap., Glob. Tiger Initiat Washington, DC:
    [Google Scholar]
  19. 19. 
    Traylor-Holzer K, Tilson RL 1998. AZA Tiger Species Survival Plan Master Plan Apple Valley: Minn. Zoo
    [Google Scholar]
  20. 20. 
    Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A et al. 2006. The Late Miocene radiation of modern Felidae: a genetic assessment. Science 311:575773–77
    [Google Scholar]
  21. 21. 
    Li G, Davis BW, Eizirik E, Murphy WJ 2016. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res 26:11–11
    [Google Scholar]
  22. 22. 
    O'Brien SJ, Johnson WE 2007. The evolution cats. Sci. Am. 297:168–75
    [Google Scholar]
  23. 23. 
    Nowak RM 1999. Walker's Mammals of the World 1 Baltimore: Johns Hopkins Univ. Press
    [Google Scholar]
  24. 24. 
    Buckley-Beason VA, Johnson WE, Nash WG, Stanyon R, Menninger JC et al. 2006. Molecular evidence for species-level distinctions in clouded leopards. Curr. Biol. 16:232371–76
    [Google Scholar]
  25. 25. 
    Kitchener AC, Beaumont MA, Richardson D 2006. Geographical variation in the clouded leopard, Neofelis nebulosa, reveals two species. Curr. Biol. 16:232377–83
    [Google Scholar]
  26. 26. 
    Hemmer H 1979. Fossil history of living Felidae. Carnivor 2:58–61
    [Google Scholar]
  27. 27. 
    Driscoll CA, Yamaguchi N, Bar-Gal GK, Roca AL, Luo S et al. 2009. Mitochondrial phylogeography illuminates the origin of the extinct Caspian tiger and its relationship to the amur tiger. PLOS ONE 4:1e4125
    [Google Scholar]
  28. 28. 
    Xue HR, Yamaguchi N, Driscoll CA, Han Y, Bar-Gal GK et al. 2015. Genetic ancestry of the extinct Javan and Bali Tigers. J. Hered. 106:3247–57
    [Google Scholar]
  29. 29. 
    Cho YS, Hu L, Hou H, Lee H, Xu J et al. 2013. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat. Commun. 4:2433
    [Google Scholar]
  30. 30. 
    Wilting A, Courtiol A, Christiansen P, Niedballa J, Scharf AK et al. 2015. Planning tiger recovery: understanding intraspecific variation for effective conservation. Sci. Adv. 1:5e1400175
    [Google Scholar]
  31. 31. 
    Luo SJ, Kim JH, Johnson WE, van der Welt J, Martenson J et al. 2004. Phylogeography and genetic ancestry of tigers (Panthera tigris). PLOS Biol 2:122275–93
    [Google Scholar]
  32. 32. 
    Liu YC, Sun X, Driscoll C, Miquelle DG, Xu X et al. 2018. Genome-wide evolutionary analysis of natural history and adaptation in the world's tigers. Curr. Biol. 2823P3840–49
    [Google Scholar]
  33. 33. 
    Uphyrkina O, Johnson WE, Quigley H, Miquelle D, Marker L et al. 2001. Phylogenetics, genome diversity and origin of modern leopard. Panthera pardus. Mol. Ecol. 10:112617–33
    [Google Scholar]
  34. 34. 
    Eizirik E, Kim JH, Menotti-Raymond M, Crawshaw PG, O'Brien SJ, Johnson WE 2001. Phylogeography, population history and conservation genetics of jaguars (Panthera onca, Mammalia, Felidae). Mol. Ecol 10165–79
  35. 35. 
    Rampino MR, Self S 1992. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359:639050–52
    [Google Scholar]
  36. 36. 
    Rampino MR, Self S 1993. Climate-volcanism feedback and the Toba eruption of ∼74,000 years ago. Quat. Res. 40:03269–80
    [Google Scholar]
  37. 37. 
    Hernandez RD, Hubisz MJ, Wheeler DA, Smith DG, Ferguson B et al. 2007. Demographic histories and patterns of linkage disequilibrium in Chinese and Indian rhesus macaques. Science 316:5822240–43
    [Google Scholar]
  38. 38. 
    Thalmann OH, Fischer AH, Lankester FH, Pääbo SH, Vigilant LH 2007. The complex evolutionary history of gorillas: insights from genomic data. Mol. Biol. Evol. 24:1146–58
    [Google Scholar]
  39. 39. 
    Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:6735429–36
    [Google Scholar]
  40. 40. 
    Wikramanayake E, Dinerstein E, Seidensticker J, Lumpkin S, Pandav B et al. 2011. A landscape-based conservation strategy to double the wild tiger population. Conserv. Lett. 4:3219–27
    [Google Scholar]
  41. 41. 
    Maguire LA, Lacy RC 1990. Allocating scarce resources for conservation of endangered subspecies: partitioning zoo space for tigers. Conserv. Biol. 4:2157–66
    [Google Scholar]
  42. 42. 
    Seidensticker J, Christie S, Jackson P 1999. Riding the Tiger: Tiger Conservation in Human-Dominated Landscapes Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  43. 43. 
    O'Brien SJ, Mayr E 1991. Bureaucratic mischief: recognizing endangered species and subspecies. Science 251:49981187–88
    [Google Scholar]
  44. 44. 
    Taylor BL, Archer FI, Martien KK, Rosel PE, Hancock-Hanser BL et al. 2017. Guidelines and quantitative standards to improve consistency in cetacean subspecies and species delimitation relying on molecular genetic data. Mar. Mamm. Sci. 33:S1132–55
    [Google Scholar]
  45. 45. 
    Tilson R, Nyhus PJ, eds. 2010. Tigers of the World, the Science, Politics and Conservation of Panthera tigris London: Elsevier. , 2nd ed..
    [Google Scholar]
  46. 46. 
    Kitchener AC, Yamaguchi N 2010. What is a tiger? Biogeography, morphology, and taxonomy. See Reference 45 53–84
  47. 47. 
    Mazák JH 2010. Craniometric variation in the tiger (Panthera tigris): implications for patterns of diversity, taxonomy and conservation. Mamm. Biol. 75:145–68
    [Google Scholar]
  48. 48. 
    Cooper DM, Dugmore AJ, Gittings BM, Scharf AK, Wilting A, Kitchener AC 2016. Predicted Pleistocene-Holocene range shifts of the tiger (Panthera tigris). Divers. Distrib. 22:111199–211
    [Google Scholar]
  49. 49. 
    Kitchener A, Breitenmoser-Würsten C, Eizirik E, Gentry A, Werdelin L et al. 2017. A revised taxonomy of the Felidae: the final report of the Cat Classification Task Force of the IUCN Cat Specialist Group. CATnews Spec. Issue 11
    [Google Scholar]
  50. 50. 
    Allendorf FW, Hohenlohe PA, Luikart G 2010. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11:10697–709
    [Google Scholar]
  51. 51. 
    Kohn MH, Murphy WJ, Ostrander EA, Wayne RK 2006. Genomics and conservation genetics. Trends Ecol. Evol. 21:11629–37
    [Google Scholar]
  52. 52. 
    Nielsen R 2005. Molecular signatures of natural selection. Annu. Rev. Genet. 39:1197–218
    [Google Scholar]
  53. 53. 
    Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J et al. 2010. Adaptation genomics: the next generation. Trends Ecol. Evol. 25:12705–12
    [Google Scholar]
  54. 54. 
    Radwan J, Babik W 2012. The genomics of adaptation. Proc. R. Soc. B Biol. Sci. 279:17495024–28
    [Google Scholar]
  55. 55. 
    Oleksyk TK, Smith MW, O'Brien SJ 2010. Genome-wide scans for selection. Philos. Trans. R. Soc. Lond. B 365:1537185–205
    [Google Scholar]
  56. 56. 
    Barlow ACD, Mazák J, Ahmad IU, Smith JLD 2010. A preliminary investigation of Sundarbans tiger morphology. Mammalia 74:3329–31
    [Google Scholar]
  57. 57. 
    Belin AC, Westerlund M, Anvret A, Lindqvist E, Pernold K et al. 2011. Modeling Parkinson's disease genetics: altered function of the dopamine system in Adh4 knockout mice. Behav. Brain Res. 217:2439–45
    [Google Scholar]
  58. 58. 
    Yin L, Coelho SG, Valencia JC, Ebsen D, Mahns A et al. 2015. Identification of genes expressed in hyperpigmented skin using meta-analysis of microarray data sets. J. Investig. Dermatol. 135:102455–63
    [Google Scholar]
  59. 59. 
    Prigent M, Dubois T, Raposo G, Derrien V, Tenza D et al. 2003. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J. Cell Biol. 163:51111–21
    [Google Scholar]
  60. 60. 
    Zebley M, Olson TA, Ito S 1997. The genetic and biochemical basis for the “golden tabby” and “snow white” Bengal tigers. Proceedings of the Annual Meeting of the American Association of Zoo Veterinarians, Oct. 26–30, Houston, Texas78–82 Yulee, FL: Am. Assoc. Zoo Vet.
    [Google Scholar]
  61. 61. 
    Hartwell S 2018. Hybrid & Mutant Animals http://messybeast.com/genetics/hybrid-cats.htm
    [Google Scholar]
  62. 62. 
    Kondo T, Hearing VJ 2011. Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert Rev. Dermatol. 6:197–108
    [Google Scholar]
  63. 63. 
    Xu X, Dong GX, Schmidt-Küntzel A, Zhang XL, Zhuang Y et al. 2017. The genetics of tiger pelage color variations. Cell Res 27:7954–57
    [Google Scholar]
  64. 64. 
    Robinson R 1976. Homologous genetic variation in the Felidae. Genetica 46:11–31
    [Google Scholar]
  65. 65. 
    Robinson R 1969. The white tigers of Rewa and gene homology in the Felidae. Genetica 40:1198–200
    [Google Scholar]
  66. 66. 
    Maruska EJ 1987. White tiger: Phantom or freak?. Tigers of the World: The Biology, Biopolitics, Management, and Conservation of an Endangered Species RL Tilson, US Seal 372–79 Norwich, NY: Noyes. , 1st ed..
    [Google Scholar]
  67. 67. 
    Guillery RW, Kaas JH 1973. Genetic abnormality of the visual pathways in a “white” tiger. Science 180:40921287–89
    [Google Scholar]
  68. 68. 
    Xu X, Dong GX, Hu XS, Miao L, Zhang XL et al. 2013. The genetic basis of white tigers. Curr. Biol. 23:111031–35
    [Google Scholar]
  69. 69. 
    Newton JM, Cohen-Barak O, Hagiwara N, Gardner JM, Davisson MT et al. 2001. Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4. Am. J. Hum. Genet. 69:5981–88
    [Google Scholar]
  70. 70. 
    Fukamachi S, Shimada A, Shima A 2001. Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nat. Genet. 28:4381–85
    [Google Scholar]
  71. 71. 
    Caduff M, Bauer A, Jagannathan V, Leeb T 2017. A single base deletion in the SLC45A2 gene in a Bullmastiff with oculocutaneous albinism. Anim. Genet. 48:5619–21
    [Google Scholar]
  72. 72. 
    Wijesena HR, Schmutz SM 2015. A missense mutation in SLC45A2 is associated with albinism in several small long haired dog breeds. J. Hered. 106:3285–88
    [Google Scholar]
  73. 73. 
    Winkler PA, Gornik KR, Ramsey DT, Dubielzig RR, Venta PJ et al. 2014. A partial gene deletion of SLC45A2 causes oculocutaneous albinism in Doberman pinscher dogs. PLOS ONE 9:3e92127
    [Google Scholar]
  74. 74. 
    Mariat D, Taourit S, Guérin G 2003. A mutation in the MATP gene causes the cream coat colour in the horse. Genet. Sel. Evol. 35:1119–33
    [Google Scholar]
  75. 75. 
    Gunnarsson U, Hellström AR, Tixier-Boichard M, Minvielle F, Bed'hom B et al. 2007. Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics 175:2867–77
    [Google Scholar]
  76. 76. 
    Prado-Martinez J, Hernando-Herraez I, Lorente-Galdos B, Dabad M, Ramirez O et al. 2013. The genome sequencing of an albino Western lowland gorilla reveals inbreeding in the wild. BMC Genom 14:1363–69
    [Google Scholar]
  77. 77. 
    Sturm RA, Duffy DL 2012. Human pigmentation genes under environmental selection. Genom. Biol. 13:248
    [Google Scholar]
  78. 78. 
    Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N et al. 2015. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528:499–503
    [Google Scholar]
  79. 79. 
    Dooley CM, Schwarz H, Mueller KP, Mongera A, Konantz M et al. 2013. Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafish, providing a mechanism for human pigment evolution and disease. Pigment Cell Melanoma Res 26:2205–17
    [Google Scholar]
  80. 80. 
    Kaelin CB, Xu X, Hong LZ, David VA, McGowan KA et al. 2012. Specifying and sustaining pigmentation patterns in domestic and wild cats. Science 337:61011536–41
    [Google Scholar]
  81. 81. 
    Desai JH, Malhotra AK 1992. The White Tiger New Delhi: Publ. Div., Minist. Inf. Broadcast., Gov. India
    [Google Scholar]
  82. 82. 
    Enshell-Seijffers D, Lindon C, Morgan BA 2007. The serine protease Corin is a novel modifier of the agouti pathway. Development 135:2217–25
    [Google Scholar]
  83. 83. 
    Dong N, Fang C, Jiang Y, Zhou T, Liu M et al. 2013. Corin mutation R539C from hypertensive patients impairs zymogen activation and generates an inactive alternative ectodomain fragment. J. Biol. Chem. 288:117867–74
    [Google Scholar]
  84. 84. 
    Dries DL, Victor RG, Rame JE, Cooper RS, Wu X et al. 2005. Corin gene minor allele defined by 2 missense mutations is common in blacks and associated with high blood pressure and hypertension. Circulation 112:162403–10
    [Google Scholar]
  85. 85. 
    Rame JE, Drazner MH, Post W, Peshock R, Lima J et al. 2007. Corin I555(P568) allele is associated with enhanced cardiac hypertrophic response to increased systemic afterload. Hypertension 49:4857–64
    [Google Scholar]
  86. 86. 
    Kaelin C, Barsh G 2010. Tabby pattern genetics—a whole new breed of cat. Pigment Cell Melanoma Res 23:4514–16
    [Google Scholar]
  87. 87. 
    Eizirik E, David VA, Buckley-Beason V, Roelke ME, Schäffer AA et al. 2010. Defining and mapping mammalian coat pattern genes: multiple genomic regions implicated in domestic cat stripes and spots. Genetics 184:1267–75
    [Google Scholar]
  88. 88. 
    Luo SJ, Johnson WE, O'Brien SJ 2010. Applying molecular genetic tools to tiger conservation. Integr. Zool. 5:4351–62
    [Google Scholar]
  89. 89. 
    Mondol S, Karanth KU, Ramakrishnan U 2009. Why the Indian subcontinent holds the key to global tiger recovery. PLOS Genet 5:8e1000585
    [Google Scholar]
  90. 90. 
    Henry P, Miquelle D, Sugimoto T, McCullough DR, Caccone A, Russello MA 2009. In situ population structure and ex situ representation of the endangered Amur tiger. Mol. Ecol. 18:153173–84
    [Google Scholar]
  91. 91. 
    Mondol S, Ullas Karanth K, Samba Kumar N, Gopalaswamy AM, Andheria A, Ramakrishnan U 2009. Evaluation of non-invasive genetic sampling methods for estimating tiger population size. Biol. Conserv. 142:102350–60
    [Google Scholar]
  92. 92. 
    Sharma R, Stuckas H, Bhaskar R, Rajput S, Khan I et al. 2009. MtDNA indicates profound population structure in Indian tiger (Panthera tigris tigris). Conserv. Genet. 10:4909–14
    [Google Scholar]
  93. 93. 
    Zou ZT, Uphyrkina OV, Fomenko P, Luo SJ 2015. The development and application of a multiplex short tandem repeat (STR) system for identifying subspecies, individuals and sex in tigers. Integr. Zool. 10:4376–88
    [Google Scholar]
  94. 94. 
    Hendrickson SL, Mayer GC, Wallen EP, Quigley K 2000. Genetic variability and geographic structure of three subspecies of tigers (Panthera tigris) based on MHC class I variation. Anim. Conserv. 3:2135–43
    [Google Scholar]
  95. 95. 
    Driscoll CA, Luo S, MacDonald D, Dinerstein E, Chestin I et al. 2011. Restoring tigers to the Caspian region. Science 333:6044822–23
    [Google Scholar]
  96. 96. 
    Kawanishi K, Gumal M, Shepherd LA, Goldthorpe G, Shepherd CR et al. 2010. The Malayan Tiger. See Reference 45 367–76
  97. 97. 
    Luo SJ, Johnson WE, Smith JLD, O'Brien SJ 2010. What is a tiger? Genetics and phylogeography. See Reference 45 35–51
  98. 98. 
    Pritchard JK, Stephens M, Donnelly P 2000. Inference of population structure using multilocus genotype data. Genetics 155:2945–59
    [Google Scholar]
  99. 99. 
    Waits LP, Paetkau D 2005. Noninvasive genetic sampling tools for wildlife biologist: a review of applications and recommendations for accurate data collection. J. Wildl. Manag. 69:41419–33
    [Google Scholar]
  100. 100. 
    Bhagavatula J, Singh L 2006. Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genet 7:148–59
    [Google Scholar]
  101. 101. 
    Sorokin PA, Rozhnov VV, Krasnenko AU, Lukarevskiy VS, Naidenko SV, Hernandez-Blanco JA 2016. Genetic structure of the Amur tiger (Panthera tigris altaica) population: Are tigers in Sikhote-Alin and southwest Primorye truly isolated. Integr. Zool. 11:125–32
    [Google Scholar]
  102. 102. 
    Wang D, Hu Y, Ma T, Nie Y, Xie Y, Wei F 2016. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China. Integr. Zool. 11:216–24
    [Google Scholar]
  103. 103. 
    Dou H, Yang H, Feng L, Mou P, Wang T, Ge J 2016. Estimating the population size and genetic diversity of Amur tigers in Northeast China. PLOS ONE 11:4e0154254
    [Google Scholar]
  104. 104. 
    Russello MA, Gladyshev E, Miquelle D, Caccone A 2004. Potential genetic consequences of a recent bottleneck in the Amur tiger of the Russian far east. Conserv. Genet. 5:5707–13
    [Google Scholar]
  105. 105. 
    Sugimoto T, Nagata J, Aramilev VV, McCullough DR 2012. Population size estimation of Amur tigers in Russian Far East using noninvasive genetic samples. J. Mammal. 93:193–101
    [Google Scholar]
  106. 106. 
    Gour DS, Bhagavatula J, Bhavanishankar M, Reddy PA, Gupta JA et al. 2013. Philopatry and dispersal patterns in tiger (Panthera tigris). PLOS ONE 8:7e66956
    [Google Scholar]
  107. 107. 
    Sharma S, Dutta T, Maldonado JE, Wood TC, Panwar HS, Seidensticker J 2013. Spatial genetic analysis reveals high connectivity of tiger (Panthera tigris) populations in the Satpura-Maikal landscape of Central India. Ecol. Evol. 3:148–60
    [Google Scholar]
  108. 108. 
    Sharma S, Dutta T, Maldonado JE, Wood TC, Panwar HS, Seidensticker J 2013. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc. R. Soc. B Biol. Sci. 280:176720131506
    [Google Scholar]
  109. 109. 
    Yumnam B, Jhala YV, Qureshi Q, Maldonado JE, Gopal R et al. 2014. Prioritizing tiger conservation through landscape genetics and habitat linkages. PLOS ONE 9:11e111207
    [Google Scholar]
  110. 110. 
    Reddy PA, Gour DS, Bhavanishankar M, Jaggi K, Hussain SM et al. 2012. Genetic evidence of tiger population structure and migration within an isolated and fragmented landscape in northwest India. PLOS ONE 7:1e29827
    [Google Scholar]
  111. 111. 
    Singh SK, Mishra S, Aspi J, Kvist L, Nigam P et al. 2015. Tigers of Sundarbans in India: Is the population a separate conservation unit. PLOS ONE 10:4e0118846
    [Google Scholar]
  112. 112. 
    Mondol S, Bruford MW, Ramakrishnan U 2013. Demographic loss, genetic structure and the conservation implications for Indian tigers. Proc. R. Soc. B Biol. Sci. 280:20130496
    [Google Scholar]
  113. 113. 
    O'Brien SJ, Luo SJ, Kim JH, Johnson WE 2005. Molecular genetic analysis reveals six living subspecies of tiger. Cat News 42:16–8
    [Google Scholar]
  114. 114. 
    Mondol S, Thatte P, Yadav P, Ramakrishnan U 2012. A set of miniSTRs for population genetic analyses of tigers (Panthera tigris) with cross-species amplification for seven other Felidae. Conserv. Genet. Resour. 4:163–66
    [Google Scholar]
  115. 115. 
    Mondol S, Kumar NS, Gopalaswamy A, Sunagar K, Karanth KU, Ramakrishnan U 2015. Identifying species, sex and individual tigers and leopards in the Malenad-Mysore Tiger Landscape, Western Ghats, India. Conserv. Genet. Resour. 7:2353–61
    [Google Scholar]
  116. 116. 
    Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW 2010. Conservation genetics in transition to conservation genomics. Trends Genet 26:4177–87
    [Google Scholar]
/content/journals/10.1146/annurev-animal-020518-115106
Loading
/content/journals/10.1146/annurev-animal-020518-115106
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error