1932

Abstract

Second-generation biofuel production, which aims to convert lignocellulose to liquid transportation fuels, could be transformative in worldwide energy portfolios. A bottleneck impeding its large-scale deployment is conversion of the target polysaccharides in lignocellulose to their unit sugars for microbial fermentation to the desired fuels. Cellulose and hemicellulose, the two major polysaccharides in lignocellulose, are complex in nature, and their interactions with pectin and lignin further increase their recalcitrance to depolymerization. This review focuses on the intricate linkages present in the feedstocks of interest and examines the potential of the enzymes evolved by microbes, in the microbe/ruminant symbiotic relationship, to depolymerize the target polysaccharides. We further provide insights to how a rational and more efficient assembly of rumen microbial enzymes can be reconstituted for lignocellulose degradation. We conclude by expounding on how gains in this area can impact the sustainability of both animal agriculture and the energy sector.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021022-030040
2025-02-18
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-021022-030040.html?itemId=/content/journals/10.1146/annurev-animal-021022-030040&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lin Y, Tanaka S. 2006.. Ethanol fermentation from biomass resources: current state and prospects. . Appl. Microbiol. Biotechnol. 69::62742
    [Crossref] [Google Scholar]
  2. 2.
    Singhvi MS, Gokhale DV. 2019.. Lignocellulosic biomass: hurdles and challenges in its valorization. . Appl. Microbiol. Biotechnol. 103::930520
    [Crossref] [Google Scholar]
  3. 3.
    Sanderson MA, Adler PR. 2008.. Perennial forages as second generation bioenergy crops. . Int. J. Mol. Sci. 9::76888
    [Crossref] [Google Scholar]
  4. 4.
    Ho DP, Ngo HH, Guo W. 2014.. A mini review on renewable sources for biofuel. . Bioresour. Technol. 169::74249
    [Crossref] [Google Scholar]
  5. 5.
    Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE. 2005.. Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover. . Appl. Biochem. Biotechnol. 121–24::108199
    [Crossref] [Google Scholar]
  6. 6.
    Kishani S, Escalante A, Toriz G, Vilaplana F, Gatenholm P, et al. 2019.. Experimental and theoretical evaluation of the solubility/insolubility of spruce xylan (arabino glucuronoxylan). . Biomacromolecules 20::126370
    [Crossref] [Google Scholar]
  7. 7.
    Lin S, Agger JW, Wilkens C, Meyer AS. 2021.. Feruloylated arabinoxylan and oligosaccharides: chemistry, nutritional functions, and options for enzymatic modification. . Annu. Rev. Food Sci. Technol. 12::33154
    [Crossref] [Google Scholar]
  8. 8.
    Voiniciuc C. 2022.. Modern mannan: a hemicellulose's journey. . New Phytol. 234::117584
    [Crossref] [Google Scholar]
  9. 9.
    Mohnen D. 2008.. Pectin structure and biosynthesis. . Curr. Opin. Plant Biol. 11::26677
    [Crossref] [Google Scholar]
  10. 10.
    Shrestha S, Rahman MS, Qin W. 2021.. New insights in pectinase production development and industrial applications. . Appl. Microbiol. Biotechnol. 105::906987
    [Crossref] [Google Scholar]
  11. 11.
    Latarullo MB, Tavares EQ, Maldonado GP, Leite DC, Buckeridge MS. 2016.. Pectins, endopolygalacturonases, and bioenergy. . Front. Plant Sci. 7::1401
    [Crossref] [Google Scholar]
  12. 12.
    Abdel-Hamid AM, Solbiati JO, Cann IK. 2013.. Insights into lignin degradation and its potential industrial applications. . Adv. Appl. Microbiol. 82::128
    [Crossref] [Google Scholar]
  13. 13.
    Wong DW. 2009.. Structure and action mechanism of ligninolytic enzymes. . Appl. Biochem. Biotechnol. 157::174209
    [Crossref] [Google Scholar]
  14. 14.
    Reale S, Di Tullio A, Spreti N, De Angelis F. 2004.. Mass spectrometry in the biosynthetic and structural investigation of lignins. . Mass Spectrom. Rev. 23::87126
    [Crossref] [Google Scholar]
  15. 15.
    Sun RC, Sun XF, Zhang SH. 2001.. Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maize stems, oil palm frond fiber, and fast-growing poplar wood. . J. Agric. Food Chem. 49::512229
    [Crossref] [Google Scholar]
  16. 16.
    Kellock M, Rahikainen J, Marjamaa K, Kruus K. 2017.. Lignin-derived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics. . Bioresour. Technol. 232::18391
    [Crossref] [Google Scholar]
  17. 17.
    Somerville C, Youngs H, Taylor C, Davis SC, Long SP. 2010.. Feedstocks for lignocellulosic biofuels. . Science 329::79092
    [Crossref] [Google Scholar]
  18. 18.
    Lueangwattanapong K, Ammam F, Mason PM, Whitehead C, McQueen-Mason SJ, et al. 2020.. Anaerobic digestion of crassulacean acid metabolism plants: exploring alternative feedstocks for semi-arid lands. . Bioresour. Technol. 297::122262
    [Crossref] [Google Scholar]
  19. 19.
    Heaton EA, Flavell RB, Mascia PN, Thomas SR, Dohleman FG, Long SP. 2008.. Herbaceous energy crop development: recent progress and future prospects. . Curr. Opin. Biotechnol. 19::2029
    [Crossref] [Google Scholar]
  20. 20.
    Turner W, Greetham D, Mos M, Squance M, Kam J, Du C. 2021.. Exploring the bioethanol production potential of Miscanthus cultivars. . Appl. Sci. 11::9949
    [Crossref] [Google Scholar]
  21. 21.
    Flint SA, Jordan NR, Shaw RG. 2018.. Plant community response to switchgrass (Panicum virgatum) population source in establishing prairies. . Ecol. Appl. 28::181829
    [Crossref] [Google Scholar]
  22. 22.
    Bouton JH. 2007.. Molecular breeding of switchgrass for use as a biofuel crop. . Curr. Opin. Genet. Dev. 17::55358
    [Crossref] [Google Scholar]
  23. 23.
    Jefferson PG, McCaughey WP, May K, Woosaree J, McFarlane L. 2004.. Potential utilization of native prairie grasses from western Canada as ethanol feedstock. . Can. J. Plant Sci. 84::106775
    [Crossref] [Google Scholar]
  24. 24.
    Wang F, Shi D, Han J, Zhang G, Jiang X, et al. 2020.. Comparative study on pretreatment processes for different utilization purposes of switchgrass. . ACS Omega 5::219992007
    [Crossref] [Google Scholar]
  25. 25.
    Falls M, Shi J, Ebrik MA, Redmond T, Yang B, et al. 2011.. Investigation of enzyme formulation on pretreated switchgrass. . Bioresour. Technol. 102::1107279
    [Crossref] [Google Scholar]
  26. 26.
    Hu Z, Sykes R, Davis MF, Charles Brummer E, Ragauskas AJ. 2010.. Chemical profiles of switchgrass. . Bioresour. Technol. 101::325357
    [Crossref] [Google Scholar]
  27. 27.
    Isci A, Himmelsbach JN, Pometto AL 3rd, Raman DR, Anex RP. 2008.. Aqueous ammonia soaking of switchgrass followed by simultaneous saccharification and fermentation. . Appl. Biochem. Biotechnol. 144::6977
    [Crossref] [Google Scholar]
  28. 28.
    Pasangulapati V, Ramachandriya KD, Kumar A, Wilkins MR, Jones CL, Huhnke RL. 2012.. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. . Bioresour. Technol. 114::66369
    [Crossref] [Google Scholar]
  29. 29.
    Lima CS, Rabelo SC, Ciesielski PN, Roberto IC, Rocha GJM, Driemeier C. 2018.. Multiscale alterations in sugar cane bagasse and straw submitted to alkaline deacetylation. . ACS Sustain. Chem. Eng. 6::3796804
    [Crossref] [Google Scholar]
  30. 30.
    Davis SC. 2022.. Agave americana: characteristics and potential breeding priorities. . Plants 11::2305
    [Crossref] [Google Scholar]
  31. 31.
    Li H, Pattathil S, Foston MB, Ding SY, Kumar R, et al. 2014.. Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. . Biotechnol. Biofuels 7::50
    [Crossref] [Google Scholar]
  32. 32.
    Alducin-Martínez C, Ruiz Mondragón KY, Jiménez-Barrón O, Aguirre-Planter E, Gasca-Pineda J, et al. 2022.. Uses, knowledge and extinction risk faced by Agave species in Mexico. . Plants 12::124
    [Crossref] [Google Scholar]
  33. 33.
    Yang LS, Lu M, Carl S, Mayer JA, Cushman JC, et al. 2015.. Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. . Biomass Bioenergy 76::4353
    [Crossref] [Google Scholar]
  34. 34.
    Woese CR, Kandler O, Wheelis ML. 1990.. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. . PNAS 87::457679
    [Crossref] [Google Scholar]
  35. 35.
    Sato Y, Takebe H, Tominaga K, Yasuda J, Kumagai H, et al. 2024.. A rumen virosphere with implications of contribution to fermentation and methane production, and endemism in cattle breeds and individuals. . Appl. Environ. Microbiol. 90::e0158123
    [Crossref] [Google Scholar]
  36. 36.
    Wang YL, Wang WK, Wu QC, Yang HJ. 2022.. The release and catabolism of ferulic acid in plant cell wall by rumen microbes: a review. . Anim. Nutr. 9::33544
    [Crossref] [Google Scholar]
  37. 37.
    Weimer PJ. 2022.. Degradation of cellulose and hemicellulose by ruminal microorganisms. . Microorganisms 10::2345
    [Crossref] [Google Scholar]
  38. 38.
    Dodd D, Moon YH, Swaminathan K, Mackie RI, Cann IK. 2010.. Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic Bacteroidetes. . J. Biol. Chem. 285::3026173
    [Crossref] [Google Scholar]
  39. 39.
    Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, et al. 2011.. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. . PLOS ONE 6::e18814
    [Crossref] [Google Scholar]
  40. 40.
    Cotta MA. 1988.. Amylolytic activity of selected species of ruminal bacteria. . Appl. Environ. Microbiol. 54::77276
    [Crossref] [Google Scholar]
  41. 41.
    Sechovcová H, Kulhavá L, Fliegerová K, Trundová M, Morais D, et al. 2019.. Comparison of enzymatic activities and proteomic profiles of Butyrivibrio fibrisolvens grown on different carbon sources. . Proteome Sci. 17::2
    [Crossref] [Google Scholar]
  42. 42.
    Pavlostathis SG, Miller TL, Wolin MJ. 1988.. Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. . Appl. Environ. Microbiol. 54::265559
    [Crossref] [Google Scholar]
  43. 43.
    Reveneau C, Adams SE, Cotta MA, Morrison M. 2003.. Phenylacetic and phenylpropionic acids do not affect xylan degradation by Ruminococcus albus. . Appl. Environ. Microbiol. 69::695458
    [Crossref] [Google Scholar]
  44. 44.
    Purushe J, Fouts DE, Morrison M, White BA, Mackie RI, et al. 2010.. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. . Microb. Ecol. 60::72129
    [Crossref] [Google Scholar]
  45. 45.
    Suen G, Stevenson DM, Bruce DC, Chertkov O, Copeland A, et al. 2011.. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7. . J. Bacteriol. 193::557475
    [Crossref] [Google Scholar]
  46. 46.
    Berg Miller ME, Antonopoulos DA, Rincon MT, Band M, Bari A, et al. 2009.. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1. . PLOS ONE 4::e6650
    [Crossref] [Google Scholar]
  47. 47.
    Bauchop T. 1989.. Biology of gut anaerobic fungi. . Biosystems 23::5364
    [Crossref] [Google Scholar]
  48. 48.
    Orpin CG. 1975.. Studies on the rumen flagellate Neocallimastix frontalis. . J. Gen. Microbiol. 91::24962
    [Crossref] [Google Scholar]
  49. 49.
    Hanafy RA, Wang Y, Stajich JE, Pratt CJ, Youssef NH, Elshahed MS. 2023.. Phylogenomic analysis of the Neocallimastigomycota: proposal of Caecomycetaceae fam. nov., Piromycetaceae fam. nov., and emended description of the families Neocallimastigaceae and Anaeromycetaceae. . Int. J. Syst. Evol. Microbiol. 73::005735
    [Crossref] [Google Scholar]
  50. 50.
    Kazemi Shariat Panahi H, Dehhaghi M, Guillemin GJ, Gupta VK, Lam SS, et al. 2022.. A comprehensive review on anaerobic fungi applications in biofuels production. . Sci. Total Environ. 829::154521
    [Crossref] [Google Scholar]
  51. 51.
    Hagen LH, Brooke CG, Shaw CA, Norbeck AD, Piao H, et al. 2021.. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. . ISME J. 15::42134
    [Crossref] [Google Scholar]
  52. 52.
    Kopecný J, Hodrová B. 1995.. Pectinolytic enzymes of anaerobic fungi. . Lett. Appl. Microbiol. 20::31216
    [Crossref] [Google Scholar]
  53. 53.
    Ljungdahl LG. 2008.. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. . Ann. N.Y. Acad. Sci. 1125::30821
    [Crossref] [Google Scholar]
  54. 54.
    Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, et al. 2017.. A parts list for fungal cellulosomes revealed by comparative genomics. . Nat. Microbiol. 2::17087
    [Crossref] [Google Scholar]
  55. 55.
    Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, et al. 2013.. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. . Appl. Environ. Microbiol. 79::462034
    [Crossref] [Google Scholar]
  56. 56.
    Ma J, Ma Y, Li Y, Sun Z, Sun X, et al. 2022.. Characterization of feruloyl esterases from Pecoramyces sp. F1 and the synergistic effect in biomass degradation. . World J. Microbiol. Biotechnol. 39::17
    [Crossref] [Google Scholar]
  57. 57.
    Coleman GS. 1980.. Rumen ciliate protozoa. . Adv. Parasitol. 18::12173
    [Crossref] [Google Scholar]
  58. 58.
    Williams CL, Thomas BJ, McEwan NR, Rees Stevens P, Creevey CJ, Huws SA. 2020.. Rumen protozoa play a significant role in fungal predation and plant carbohydrate breakdown. . Front. Microbiol. 11::720
    [Crossref] [Google Scholar]
  59. 59.
    Andersen TO, Altshuler I, Vera-Ponce de León A, Walter JM, McGovern E, et al. 2023.. Metabolic influence of core ciliates within the rumen microbiome. . ISME J. 17::112840
    [Crossref] [Google Scholar]
  60. 60.
    Lillington SP, Chrisler W, Haitjema CH, Gilmore SP, Smallwood CR, et al. 2021.. Cellulosome localization patterns vary across life stages of anaerobic fungi. . mBio 12::e0083221
    [Crossref] [Google Scholar]
  61. 61.
    Venditto I, Luis AS, Rydahl M, Schückel J, Fernandes VO, et al. 2016.. Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition. . PNAS 113::713641
    [Crossref] [Google Scholar]
  62. 62.
    Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE. 2012.. The Fibrobacteres: an important phylum of cellulose-degrading bacteria. . Microb. Ecol. 63::26781
    [Crossref] [Google Scholar]
  63. 63.
    Mackie RI, Cann I. 2018.. Let them eat fruit. . Nat. Microbiol. 3::12729
    [Crossref] [Google Scholar]
  64. 64.
    Pereira GV, Abdel-Hamid AM, Dutta S, D'Alessandro-Gabazza CN, Wefers D, et al. 2021.. Degradation of complex arabinoxylans by human colonic Bacteroidetes. . Nat. Commun. 12::459
    [Crossref] [Google Scholar]
  65. 65.
    Cann I, Pereira GV, Abdel-Hamid AM, Kim H, Wefers D, et al. 2020.. Thermophilic degradation of hemicellulose, a critical feedstock in the production of bioenergy and other value-added products. . Appl. Environ. Microbiol. 86::e02296-19
    [Crossref] [Google Scholar]
  66. 66.
    Bayer EA, Lamed R. 1986.. Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. . J. Bacteriol. 167::82836
    [Crossref] [Google Scholar]
  67. 67.
    Bayer EA, Belaich JP, Shoham Y, Lamed R. 2004.. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. . Annu. Rev. Microbiol. 58::52154
    [Crossref] [Google Scholar]
  68. 68.
    Rincon MT, Cepeljnik T, Martin JC, Lamed R, Barak Y, et al. 2005.. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. . J. Bacteriol. 187::756978
    [Crossref] [Google Scholar]
  69. 69.
    Rincon MT, Dassa B, Flint HJ, Travis AJ, Jindou S, et al. 2010.. Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. . PLOS ONE 5::e12476
    [Crossref] [Google Scholar]
  70. 70.
    Michel G. 2015.. Ruminococcal cellulosomes: molecular Lego to deconstruct microcrystalline cellulose in human gut. . Environ. Microbiol. 17::311315
    [Crossref] [Google Scholar]
  71. 71.
    Bayer EA. 2017.. Cellulosomes and designer cellulosomes: Why toy with Nature?. Environ. Microbiol. Rep. 9::1415
    [Crossref] [Google Scholar]
  72. 72.
    Akbarzadeh A, Ranaei Siadat SO, Motallebi M, Zamani MR, Barshan Tashnizi M, Moshtaghi S. 2014.. Characterization and high level expression of acidic endoglucanase in Pichia pastoris. . Appl. Biochem. Biotechnol. 172::225365
    [Crossref] [Google Scholar]
  73. 73.
    Iakiviak M, Mackie RI, Cann IK. 2011.. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8. . Appl. Environ. Microbiol. 77::754150
    [Crossref] [Google Scholar]
  74. 74.
    Yi Z, Su X, Revindran V, Mackie RI, Cann I. 2013.. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. . PLOS ONE 8::e84172
    [Crossref] [Google Scholar]
  75. 75.
    Liu J, Wang X, Xu D. 2010.. QM/MM study on the catalytic mechanism of cellulose hydrolysis catalyzed by cellulase Cel5A from Acidothermus cellulolyticus. . J. Phys. Chem. B 114::146270
    [Crossref] [Google Scholar]
  76. 76.
    Petersen L, Ardèvol A, Rovira C, Reilly PJ. 2009.. Mechanism of cellulose hydrolysis by inverting GH8 endoglucanases: a QM/MM metadynamics study. . J. Phys. Chem. B 113::733139
    [Crossref] [Google Scholar]
  77. 77.
    Iakiviak M, Devendran S, Skorupski A, Moon YH, Mackie RI, Cann I. 2016.. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium. . Sci. Rep. 6::29979
    [Crossref] [Google Scholar]
  78. 78.
    Garcia-Vallvé S, Romeu A, Palau J. 2000.. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. . Mol. Biol. Evol. 17::35261
    [Crossref] [Google Scholar]
  79. 79.
    Sandgren M, Wu M, Karkehabadi S, Mitchinson C, Kelemen BR, et al. 2013.. The structure of a bacterial cellobiohydrolase: the catalytic core of the Thermobifida fusca family GH6 cellobiohydrolase Cel6B. . J. Mol. Biol. 425::62235
    [Crossref] [Google Scholar]
  80. 80.
    Cerda-Mejía L, Valenzuela SV, Frías C, Diaz P, Pastor FI. 2017.. A bacterial GH6 cellobiohydrolase with a novel modular structure. . Appl. Microbiol. Biotechnol. 101::294352
    [Crossref] [Google Scholar]
  81. 81.
    Taylor LE 2nd, Knott BC, Baker JO, Alahuhta PM, Hobdey SE, et al. 2018.. Engineering enhanced cellobiohydrolase activity. . Nat. Commun. 9::1186
    [Crossref] [Google Scholar]
  82. 82.
    Mello BL, Polikarpov I. 2014.. Family 1 carbohydrate binding-modules enhance saccharification rates. . AMB Express 4::36
    [Crossref] [Google Scholar]
  83. 83.
    Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK. 2010.. Thermostable enzymes as biocatalysts in the biofuel industry. . Adv. Appl. Microbiol. 70::155
    [Crossref] [Google Scholar]
  84. 84.
    Devendran S, Abdel-Hamid AM, Evans AF, Iakiviak M, Kwon IH, et al. 2016.. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides. . Sci. Rep. 6::35342
    [Crossref] [Google Scholar]
  85. 85.
    Harhangi HR, Freelove AC, Ubhayasekera W, van Dinther M, Steenbakkers PJ, et al. 2003.. Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. . Biochim. Biophys. Acta 1628::3039
    [Crossref] [Google Scholar]
  86. 86.
    Iyo AH, Forsberg CW. 1994.. Features of the cellodextrinase gene from Fibrobacter succinogenes S85. . Can. J. Microbiol. 40::59296
    [Crossref] [Google Scholar]
  87. 87.
    Xue GP, Orpin CG, Gobius KS, Aylward JH, Simpson GD. 1992.. Cloning and expression of multiple cellulase cDNAs from the anaerobic rumen fungus Neocallimastix patriciarum in Escherichia coli. . J. Gen. Microbiol. 138::141320
    [Crossref] [Google Scholar]
  88. 88.
    de Groeve MR, Desmet T, Soetaert W. 2011.. Engineering of cellobiose phosphorylase for glycoside synthesis. . J. Biotechnol. 156::25360
    [Crossref] [Google Scholar]
  89. 89.
    Gavlighi HA, Meyer AS, Mikkelsen JD. 2013.. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal. . Biotechnol. Lett 35::20512
    [Crossref] [Google Scholar]
  90. 90.
    Kruus K, Andreacchi A, Wang WK, Wu JH. 1995.. Product inhibition of the recombinant CelS, an exoglucanase component of the Clostridium thermocellum cellulosome. . Appl. Microbiol. Biotechnol. 44::399404
    [Crossref] [Google Scholar]
  91. 91.
    Dan S, Marton I, Dekel M, Bravdo BA, He S, et al. 2000.. Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger β-glucosidase. . J. Biol. Chem. 275::497380
    [Crossref] [Google Scholar]
  92. 92.
    Buchanan CJ, Mitchell WJ. 1992.. Two β-glucosidase activities in Fibrobacter succinogenes S85. . J. Appl. Bacteriol. 73::24350
    [Crossref] [Google Scholar]
  93. 93.
    Chen H, Li X, Ljungdahl LG. 1994.. Isolation and properties of an extracellular beta-glucosidase from the polycentric rumen fungus Orpinomyces sp. strain PC-2. . Appl. Environ. Microbiol. 60::6470
    [Crossref] [Google Scholar]
  94. 94.
    Huang L, Forsberg CW. 1988.. Purification and comparison of the periplasmic and extracellular forms of the cellodextrinase from Bacteroides succinogenes. . Appl. Environ. Microbiol. 54::148893
    [Crossref] [Google Scholar]
  95. 95.
    Berger E, Jones WA, Jones DT, Woods DR. 1990.. Sequencing and expression of a cellodextrinase (ced1) gene from Butyrivibrio fibrisolvens H17c cloned in Escherichia coli. . Mol. Gen. Genet. 223::31018
    [Crossref] [Google Scholar]
  96. 96.
    Dodd D, Kiyonari S, Mackie RI, Cann IK. 2010.. Functional diversity of four glycoside hydrolase family 3 enzymes from the rumen bacterium Prevotella bryantii B14. . J. Bacteriol. 192::233545
    [Crossref] [Google Scholar]
  97. 97.
    Yoon JJ, Kim KY, Cha CJ. 2008.. Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. . J. Microbiol. 46::5155
    [Crossref] [Google Scholar]
  98. 98.
    Tryfona T, Bourdon M, Delgado Marques R, Busse-Wicher M, Vilaplana F, et al. 2023.. Grass xylan structural variation suggests functional specialization and distinctive interaction with cellulose and lignin. . Plant J. 113::100420
    [Crossref] [Google Scholar]
  99. 99.
    Moon YH, Iakiviak M, Bauer S, Mackie RI, Cann IK. 2011.. Biochemical analyses of multiple endoxylanases from the rumen bacterium Ruminococcus albus 8 and their synergistic activities with accessory hemicellulose-degrading enzymes. . Appl. Environ. Microbiol. 77::515769
    [Crossref] [Google Scholar]
  100. 100.
    Dodd D, Kocherginskaya SA, Spies MA, Beery KE, Abbas CA, et al. 2009.. Biochemical analysis of a β-d-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. . J. Bacteriol. 191::332838
    [Crossref] [Google Scholar]
  101. 101.
    Gasparic A, Marinsek-Logar R, Martin J, Wallace RJ, Nekrep FV, Flint HJ. 1995.. Isolation of genes encoding β-d-xylanase, β-d-xylosidase and α-l-arabinofuranosidase activities from the rumen bacterium Prevotella ruminicola B14. . FEMS Microbiol. Lett. 125::13541
    [Google Scholar]
  102. 102.
    Maslen SL, Goubet F, Adam A, Dupree P, Stephens E. 2007.. Structure elucidation of arabinoxylan isomers by normal phase HPLC-MALDI-TOF/TOF-MS/MS. . Carbohydr. Res. 342::72435
    [Crossref] [Google Scholar]
  103. 103.
    Fujimoto Z, Kaneko S, Kuno A, Kobayashi H, Kusakabe I, Mizuno H. 2004.. Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. . J. Biol. Chem. 279::960614
    [Crossref] [Google Scholar]
  104. 104.
    Vardakou M, Flint J, Christakopoulos P, Lewis RJ, Gilbert HJ, Murray JW. 2005.. A family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants. . J. Mol. Biol. 352::106067
    [Crossref] [Google Scholar]
  105. 105.
    Pell G, Szabo L, Charnock SJ, Xie H, Gloster TM, et al. 2004.. Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. . J. Biol. Chem. 279::1177788
    [Crossref] [Google Scholar]
  106. 106.
    Pai CK, Wu ZY, Chen MJ, Zeng YF, Chen JW, et al. 2010.. Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum. . Appl. Microbiol. Biotechnol. 85::145162
    [Crossref] [Google Scholar]
  107. 107.
    Devillard E, Newbold CJ, Scott KP, Forano E, Wallace RJ, et al. 1999.. A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from gram-positive bacteria. . FEMS Microbiol. Lett. 181::14552
    [Crossref] [Google Scholar]
  108. 108.
    Henrissat B. 1991.. A classification of glycosyl hydrolases based on amino acid sequence similarities. . Biochem. J. 280:(Part 2):30916
    [Crossref] [Google Scholar]
  109. 109.
    Garcia-Campayo V, Wood TM. 1993.. Purification and characterisation of a β-d-xylosidase from the anaerobic rumen fungus Neocallimastix frontalis. . Carbohydr. Res. 242::22945
    [Crossref] [Google Scholar]
  110. 110.
    Wefers D, Dong J, Abdel-Hamid AM, Paul HM, Pereira GV, et al. 2017.. Enzymatic mechanism for arabinan degradation and transport in the thermophilic bacterium Caldanaerobius polysaccharolyticus. . Appl. Environ. Microbiol. 83::e00794-17
    [Crossref] [Google Scholar]
  111. 111.
    Utt EA, Eddy CK, Keshav KF, Ingram LO. 1991.. Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with β-d-xylosidase and α-l-arabinofuranosidase activities. . Appl. Environ. Microbiol. 57::122734
    [Crossref] [Google Scholar]
  112. 112.
    Zhou J, Bao L, Chang L, Zhou Y, Lu H. 2012.. Biochemical and kinetic characterization of GH43 β-d-xylosidase/α-l-arabinofuranosidase and GH30 α-l-arabinofuranosidase/β-d-xylosidase from rumen metagenome. . J. Ind. Microbiol. Biotechnol. 39::14352
    [Crossref] [Google Scholar]
  113. 113.
    Williams AG, Orpin CG. 1987.. Glycoside hydrolase enzymes present in the zoospore and vegetative growth stages of the rumen fungi Neocallimastix patriciarum, Piromonas communis, and an unidentified isolate, grown on a range of carbohydrates. . Can. J. Microbiol. 33::42734
    [Crossref] [Google Scholar]
  114. 114.
    Wang W, Yan R, Nocek BP, Vuong TV, Di Leo R, et al. 2016.. Biochemical and structural characterization of a five-domain GH115 α-glucuronidase from the marine bacterium Saccharophagus degradans 2-40T. . J. Biol. Chem. 291::1412033
    [Crossref] [Google Scholar]
  115. 115.
    Biely P, de Vries RP, Vrsanská M, Visser J. 2000.. Inverting character of α-glucuronidase A from Aspergillus tubingensis. . Biochim. Biophys. Acta 1474::36064
    [Crossref] [Google Scholar]
  116. 116.
    Rogowski A, Baslé A, Farinas CS, Solovyova A, Mortimer JC, et al. 2014.. Evidence that GH115 α-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. . J. Biol. Chem. 289::5364
    [Crossref] [Google Scholar]
  117. 117.
    Chong SL, Derba-Maceluch M, Koutaniemi S, Gómez LD, McQueen-Mason SJ, et al. 2015.. Active fungal GH115 α-glucuronidase produced in Arabidopsis thaliana affects only the UX1-reactive glucuronate decorations on native glucuronoxylans. . BMC Biotechnol. 15::56
    [Crossref] [Google Scholar]
  118. 118.
    Malgas S, Mafa MS, Mathibe BN, Pletschke BI. 2021.. Unraveling synergism between various GH family xylanases and debranching enzymes during hetero-xylan degradation. . Molecules 26::6770
    [Crossref] [Google Scholar]
  119. 119.
    Yan R, Wang W, Vuong TV, Xiu Y, Skarina T, et al. 2021.. Structural characterization of the family GH115 α-glucuronidase from Amphibacillus xylanus yields insight into its coordinated action with α-arabinofuranosidases. . Nat. Biotechnol 62::4956
    [Google Scholar]
  120. 120.
    Han Y, Agarwal V, Dodd D, Kim J, Bae B, et al. 2012.. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus. . J. Biol. Chem. 287::3494660
    [Crossref] [Google Scholar]
  121. 121.
    Wood TM, Wilson CA. 1995.. α-(4-O-methyl)-d-glucuronidase activity produced by the rumen anaerobic fungus Piromonas communis: a study of selected properties. . Appl. Microbiol. Biotechnol. 43::893900
    [Crossref] [Google Scholar]
  122. 122.
    Lee CC, Kibblewhite RE, Wagschal K, Li R, Orts WJ. 2012.. Isolation of α-glucuronidase enzyme from a rumen metagenomic library. . Protein J. 31::20611
    [Crossref] [Google Scholar]
  123. 123.
    Oliveira DM, Mota TR, Oliva B, Segato F, Marchiosi R, et al. 2019.. Feruloyl esterases: biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. . Bioresour. Technol. 278::40823
    [Crossref] [Google Scholar]
  124. 124.
    Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. 2016.. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. . Enzyme Microb. Technol. 93–94::7991
    [Crossref] [Google Scholar]
  125. 125.
    Cheng F, Sheng J, Cai T, Jin J, Liu W, et al. 2012.. A protease-insensitive feruloyl esterase from China Holstein cow rumen metagenomic library: expression, characterization, and utilization in ferulic acid release from wheat straw. . J. Agric. Food Chem. 60::254653
    [Crossref] [Google Scholar]
  126. 126.
    Hameleers L, Penttinen L, Ikonen M, Jaillot L, Fauré R, et al. 2021.. Polysaccharide utilization loci-driven enzyme discovery reveals BD-FAE: a bifunctional feruloyl and acetyl xylan esterase active on complex natural xylans. . Biotechnol. Biofuels 14::127
    [Crossref] [Google Scholar]
  127. 127.
    Wong DW, Takeoka G, Chan VJ, Liao H, Murakami MT. 2015.. Cloning of a novel feruloyl esterase from rumen microbial metagenome for substantial yield of mono- and diferulic acids from natural substrates. . Protein Pept. Lett. 22::68188
    [Crossref] [Google Scholar]
  128. 128.
    Aurilia V, Martin JC, McCrae SI, Scott KP, Rincon MT, Flint HJ. 2000.. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. . Microbiology 146:(6):139197
    [Crossref] [Google Scholar]
  129. 129.
    Dalrymple BP, Cybinski DH, Layton I, McSweeney CS, Xue GP, et al. 1997.. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. . Microbiology 143:(8):260514
    [Crossref] [Google Scholar]
  130. 130.
    Kabel MA, Yeoman CJ, Han Y, Dodd D, Abbas CA, et al. 2011.. Biochemical characterization and relative expression levels of multiple carbohydrate esterases of the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate. . Appl. Environ. Microbiol. 77::567181
    [Crossref] [Google Scholar]
  131. 131.
    Yoshida S, Mackie RI, Cann IK. 2010.. Biochemical and domain analyses of FSUAxe6B, a modular acetyl xylan esterase, identify a unique carbohydrate binding module in Fibrobacter succinogenes S85. . J. Bacteriol. 192::48393
    [Crossref] [Google Scholar]
  132. 132.
    Borneman WS, Ljungdahl LG, Hartley RD, Akin DE. 1991.. Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. . Appl. Environ. Microbiol. 57::233744
    [Crossref] [Google Scholar]
  133. 133.
    Kaur D, Sharma V, Joshi A, Batra N, Ramniwas S, Sharma AK. 2023.. Pectinases as promising green biocatalysts having broad-spectrum applications: recent trends, scope, and relevance. . Biotechnol. Appl. Biochem. 70::166378
    [Crossref] [Google Scholar]
  134. 134.
    Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R. 2016.. Microbial pectinases: an ecofriendly tool of nature for industries. . 3 Biotech 6::47
    [Crossref] [Google Scholar]
  135. 135.
    Verhertbruggen Y, Marcus SE, Haeger A, Verhoef R, Schols HA, et al. 2009.. Developmental complexity of arabinan polysaccharides and their processing in plant cell walls. . Plant J. 59::41325
    [Crossref] [Google Scholar]
  136. 136.
    Wefers D, Tyl CE, Bunzel M. 2014.. Novel arabinan and galactan oligosaccharides from dicotyledonous plants. . Front. Chem. 2::100
    [Crossref] [Google Scholar]
  137. 137.
    Saeidy S, Petera B, Pierre G, Fenoradosoa TA, Djomdi D, et al. 2021.. Plants arabinogalactans: from structures to physico-chemical and biological properties. . Biotechnol. Adv. 53::107771
    [Crossref] [Google Scholar]
  138. 138.
    Sakamoto T, Ishimaru M. 2013.. Peculiarities and applications of galactanolytic enzymes that act on type I and II arabinogalactans. . Appl. Microbiol. Biotechnol. 97::520113
    [Crossref] [Google Scholar]
  139. 139.
    Heinrichova K, Wojciechowicz M, Ziołecki A. 1989.. The pectinolytic enzyme of Selenomonas ruminantium. . J. Appl. Bacteriol. 66::16974
    [Crossref] [Google Scholar]
  140. 140.
    Deng Q, Sun X, Gao D, Wang Y, Liu Y, et al. 2023.. Characterization of two novel rumen-derived exo-polygalacturonases: catalysis and molecular simulations. . Microorganisms 11::760
    [Crossref] [Google Scholar]
  141. 141.
    Yuan P, Meng K, Wang Y, Luo H, Huang H, et al. 2012.. Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem. . PLOS ONE 7::e40940
    [Crossref] [Google Scholar]
  142. 142.
    Williams AG, Orpin CG. 1987.. Polysaccharide-degrading enzymes formed by three species of anaerobic rumen fungi grown on a range of carbohydrate substrates. . Can. J. Microbiol. 33::41826
    [Crossref] [Google Scholar]
  143. 143.
    Sousa AC, Martins LO, Robalo MP. 2021.. Laccases: versatile biocatalysts for the synthesis of heterocyclic cores. . Molecules 26::3719
    [Crossref] [Google Scholar]
  144. 144.
    Wang Z, Wu W, Cui L, Li X, Kulyar MF, et al. 2021.. Isolation, characterization, and interaction of lignin-degrading bacteria from rumen of buffalo (Bubalus bubalis). . J. Basic Microbiol. 61::75768
    [Crossref] [Google Scholar]
  145. 145.
    Zhong H, Zhou J, Wang F, Wu W, Abdelrahman M, Li X. 2022.. Whole-genome sequencing reveals lignin-degrading capacity of a ligninolytic bacterium (Bacillus cereus) from buffalo (Bubalus bubalis) rumen. . Genes 13::842
    [Crossref] [Google Scholar]
  146. 146.
    Ufarté L, Potocki-Veronese G, Cecchini D, Tauzin AS, Rizzo A, et al. 2018.. Highly promiscuous oxidases discovered in the bovine rumen microbiome. . Front. Microbiol. 9::861
    [Crossref] [Google Scholar]
  147. 147.
    Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, et al. 2018.. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. . Nat. Biotechnol. 36::35967
    [Crossref] [Google Scholar]
  148. 148.
    Li Z, Wang X, Zhang Y, Yu Z, Zhang T, et al. 2022.. Genomic insights into the phylogeny and biomass-degrading enzymes of rumen ciliates. . ISME J. 16::277587
    [Crossref] [Google Scholar]
  149. 149.
    Ferrer M, Ghazi A, Beloqui A, Vieites JM, López-Cortés N, et al. 2012.. Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen. . PLOS ONE 7::e38134
    [Crossref] [Google Scholar]
  150. 150.
    Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. 2019.. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. . Nat. Biotechnol. 37::95361
    [Crossref] [Google Scholar]
  151. 151.
    Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, et al. 2018.. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. . Nat. Commun. 9::870
    [Crossref] [Google Scholar]
  152. 152.
    de Lima EA, Mandelli F, Kolling D, Matsusato Souza J, de Oliveira Filho CA, et al. 2022.. Development of an economically competitive Trichoderma-based platform for enzyme production: bioprocess optimization, pilot plant scale-up, techno-economic analysis and life cycle assessment. . Bioresour. Technol. 364::128019
    [Crossref] [Google Scholar]
  153. 153.
    Su X, Schmitz G, Zhang M, Mackie RI, Cann IK. 2012.. Heterologous gene expression in filamentous fungi. . Adv. Appl. Microbiol. 81::161
    [Crossref] [Google Scholar]
  154. 154.
    Liu H, Zhu JY, Fu SY. 2010.. Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose. . J. Agric. Food Chem. 58::723338
    [Crossref] [Google Scholar]
  155. 155.
    Krause DO, Nagaraja TG, Wright AD, Callaway TR. 2013.. Board-invited review: rumen microbiology: leading the way in microbial ecology. . J. Anim. Sci. 91::33141
    [Crossref] [Google Scholar]
  156. 156.
    Zhang M, Chekan JR, Dodd D, Hong PY, Radlinski L, et al. 2014.. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. . PNAS 111::E370817
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021022-030040
Loading
/content/journals/10.1146/annurev-animal-021022-030040
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error