Making my career in Australia exposed me to the tyranny of distance, but it gave me opportunities to study our unique native fauna. Distantly related animal species present genetic variation that we can use to explore the most fundamental biological structures and processes. I have compared chromosomes and genomes of kangaroos and platypus, tiger snakes and emus, devils (Tasmanian) and dragons (lizards). I particularly love the challenges posed by sex chromosomes, which, apart from determining sex, provide stunning examples of epigenetic control and break all the evolutionary rules that we currently understand. Here I describe some of those amazing animals and the insights on genome structure, function, and evolution they have afforded us. I also describe my sometimes-random walk in science and the factors and people who influenced my direction. Being a woman in science is still not easy, and I hope others will find encouragement and empathy in my story.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Fisher RA. 1.  1930. The Genetical Theory of Natural Selection Oxford: Clarendon [Google Scholar]
  2. Mazia D. 2.  1961. How cells divide. Sci. Am. 205:100–20 [Google Scholar]
  3. Gulland JM, Jordan DO. 3.  1947. The macro-molecular behaviour of nucleic acids. Symp. Soc. Exp. Biol. 1947:156–65 [Google Scholar]
  4. Lyon MF. 4.  1961. Gene action in the X-chromosome of the mouse (Musmusculus L.). Nature 190:372–73 [Google Scholar]
  5. Graves JAM. 5.  1967. DNA synthesis in chromosomes of cultured leucocytes from two marsupial species. Exp. Cell Res. 46:37–57 [Google Scholar]
  6. Harris M. 6.  1964. Cell Culture and Somatic Variation New York: Holt, Rinehart and Winston [Google Scholar]
  7. Graves JAM. 7.  1972. Cell cycles and chromosome replication patterns in interspecific somatic hybrids. Exp. Cell Res. 73:81–94 [Google Scholar]
  8. Graves JAM. 8.  1972. DNA synthesis in heterokaryons formed by fusion of mammalian cells from different species. Exp. Cell Res. 72:393–403 [Google Scholar]
  9. Ruddle FH. 9.  1973. Linkage analysis in man by somatic cell genetics. Nature 242:165–69 [Google Scholar]
  10. Brown JD, Carone DM, Flynn BL, Finn CE, Mlynarski EE, O'Neill RJ. 10.  2011. Centromere conversion and retention in somatic cell hybrids. Cytogenet. Genome Res. 134:182–90 [Google Scholar]
  11. Sharman GB. 11.  1971. Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230:231–32 [Google Scholar]
  12. Cooper DW. 12.  1971. Directed genetic change model for X chromosome inactivation in eutherian mammals. Nature 230:292–94 [Google Scholar]
  13. Cooper DW, Johnston PG, Graves JAM, Watson JM. 13.  1993. X-inactivation in marsupials and monotremes. Semin. Dev. Biol. 4:117–28 [Google Scholar]
  14. Graves JAM. 14.  2016. Evolution of vertebrate sex chromosomes and dosage compensation. Nat. Rev. Genet. 17:33–46 [Google Scholar]
  15. Graves JA, Chew GK, Cooper DW, Johnston PG. 15.  1979. Marsupial–mouse cell hybrids containing fragments of the marsupial X chromosome. Somat. Cell Genet. 5:481–89 [Google Scholar]
  16. Dawson GW, Graves JAM. 16.  1984. Gene mapping in marsupials and monotremes. I. The chromosomes of rodent-marsupial (Macropus) cell hybrids, and gene assignments to the X chromosome of the grey kangaroo. Chromosoma 91:20–27 [Google Scholar]
  17. Dobrovic A, Graves JAM. 17.  1986. Gene mapping in marsupials and monotremes. II. Assignments to the X chromosome of dasyurid marsupials. Cytogenet. Cell Genet. 41:9–13 [Google Scholar]
  18. Cox DR, Burmeister M, Price ER, Kim S, Myers RM. 18.  1990. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250:245–50 [Google Scholar]
  19. Ohno S. 19.  1967. Sex Chromosomes and Sex-Linked Genes Berlin: Springer-Verlag [Google Scholar]
  20. Gall JG, Pardue ML. 20.  1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. PNAS 63:378–83 [Google Scholar]
  21. Spencer JA, Watson JM, Graves JAM. 21.  1991. The X chromosome of marsupials shares a highly conserved region with eutherians. Genomics 9:598–604 [Google Scholar]
  22. Sinclair AH, Wrigley JM, Graves JAM. 22.  1987. Autosomal assignment of OTC in marsupials and monotremes: implications for the evolution of sex chromosomes. Genet. Res. 50:131–36 [Google Scholar]
  23. Wilcox SA, Watson JM, Spencer JA, Graves JAM. 23.  1996. Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement. Genomics 35:66–70 [Google Scholar]
  24. Spencer JA, Sinclair AH, Watson JM, Graves JAM. 24.  1991. Genes on the short arm of the human X chromosome are not shared with the marsupial X. Genomics 11:339–45 [Google Scholar]
  25. Watson JM, Spencer JA, Riggs AD, Graves JAM. 25.  1991. Sex chromosome evolution: Platypus gene mapping suggests that part of the human X chromosome was originally autosomal. PNAS 88:11256–60 [Google Scholar]
  26. Burt DW, Bumstead N, Bitgood JJ, Ponce de Leon FA, Crittenden LB. 26.  1995. Chicken genome mapping: a new era in avian genetics. Trends Genet 11:190–94 [Google Scholar]
  27. Graves JAM. 27.  1995. The origin and function of the mammalian Y chromosome and Y-borne genes—an evolving understanding. Bioessays 17:311–20 [Google Scholar]
  28. Brown CJ, Carrel L, Willard HF. 28.  1997. Expression of genes from the human active and inactive X chromosomes. Am. J. Hum. Genet. 60:1333–43 [Google Scholar]
  29. Kohn M, Kehrer-Sawatzki H, Vogel W, Graves JA, Hameister H. 29.  2004. Wide genome comparisons reveal the origins of the human X chromosome. Trends Genet 20:598–603 [Google Scholar]
  30. Graves JAM, Young GJ. 30.  1982. X-chromosome activity in heterokaryons and hybrids between mouse fibroblasts and teratocarcinoma stem cells. Exp. Cell Res. 141:87–97 [Google Scholar]
  31. Takagi N, Yoshida MA, Sugawara O, Sasaki M. 31.  1983. Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell 34:1053–62 [Google Scholar]
  32. Harris M. 32.  1982. Induction of thymidine kinase in enzyme-deficient Chinese hamster cells. Cell 29:483–92 [Google Scholar]
  33. Graves JAM. 33.  1982. 5-Azacytidine-induced re-expression of alleles on the inactive X chromosome in a hybrid mouse cell line. Exp. Cell Res. 141:99–105 [Google Scholar]
  34. Graves JAM, Gartler SM. 34.  1986. Mammalian X chromosome inactivation: testing the hypothesis of transcriptional control. Somat. Cell Mol. Genet. 12:275–80 [Google Scholar]
  35. O'Brien SJ, Graves JAM. 35.  1991. Report of the committee on comparative gene mapping. Cytogenet. Cell Genet. 58:1124–51 [Google Scholar]
  36. O'Brien SJ, Eisenberg JF, Miyamoto M, Hedges SB, Kumar S. 36.  et al. 1999. Genome maps 10. Comparative genomics. Mammalian radiations. Wall chart. Science 286:463–78 [Google Scholar]
  37. Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G. 37.  et al. 2005. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–17 [Google Scholar]
  38. Larkin DM, Pape G, Donthu R, Auvil L, Welge M, Lewin HA. 38.  2009. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Res 19:770–77 [Google Scholar]
  39. Donthu R, Lewin HA, Larkin DM. 39.  2009. SyntenyTracker: a tool for defining homologous synteny blocks using radiation hybrid maps and whole-genome sequence. BMC Res. Notes 2:148 [Google Scholar]
  40. Larkin DM. 40.  2010. Role of chromosomal rearrangement and conservative chromosome sites in amniote evolution. Mol. Gen. Microbiol. Virol. 25:1–7 [Google Scholar]
  41. Rens W, O'Brien PC, Fairclough H, Harman L, Graves JAM, Ferguson-Smith MA. 41.  2003. Reversal and convergence in marsupial chromosome evolution. Cytogenet. Genome Res. 102:282–90 [Google Scholar]
  42. Rofe R, Hayman D. 42.  1985. G-banding evidence for a conserved complement in the Marsupialia. Cytogenet. Cell Genet. 39:40–50 [Google Scholar]
  43. Hayman DL, Martin PG. 43.  1969. Cytogenetics of marsupials. Comparative Mammalian Cytogenetics K Benirschke 191–217 Berlin: Springer [Google Scholar]
  44. Glas R, Graves JAM, Toder R, Ferguson-Smith M, O'Brien PC. 44.  1999. Cross-species chromosome painting between human and marsupial directly demonstrates the ancient region of the mammalian X. Mamm. Genome 10:1115–16 [Google Scholar]
  45. Page DC, Mosher R, Simpson EM, Fisher EM, Mardon G. 45.  et al. 1987. The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51:1091–104 [Google Scholar]
  46. Sinclair AH, Foster JW, Spencer JA, Page DC, Palmer M. 46.  et al. 1988. Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature 336:780–83 [Google Scholar]
  47. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL. 47.  et al. 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–44 [Google Scholar]
  48. Foster JW, Brennan FE, Hampikian GK, Goodfellow PN, Sinclair AH. 48.  et al. 1992. Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359:531–33 [Google Scholar]
  49. Foster JW, Graves JAM. 49.  1994. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. PNAS 91:1927–31 [Google Scholar]
  50. Sutton E, Hughes J, White S, Sekido R, Tan J. 50.  et al. 2011. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J. Clin. Investig. 121:328–41 [Google Scholar]
  51. Graves JAM. 51.  2013. How to evolve new vertebrate sex determining genes. Dev. Dyn. 242:354–59 [Google Scholar]
  52. Lahn BT, Page DC. 52.  1997. Functional coherence of the human Y chromosome. Science 278:675–80 [Google Scholar]
  53. Saxena R, Brown LG, Hawkins T, Alagappan RK, Skaletsky H. 53.  et al. 1996. The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nat. Genet. 14:292–99 [Google Scholar]
  54. Delbridge ML, Harry JL, Toder R, O'Neill RJ, Ma K. 54.  et al. 1997. A human candidate spermatogenesis gene, RBM1, is conserved and amplified on the marsupial Y chromosome. Nat. Genet. 15:131–36 [Google Scholar]
  55. Delbridge ML, Lingenfelter PA, Disteche CM, Graves JAM. 55.  1999. The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome. Nat. Genet. 22:223–24 [Google Scholar]
  56. Delbridge ML, Longepied G, Depetris D, Mattei MG, Disteche CM. 56.  et al. 2004. TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X—implications for Y chromosome evolution. Chromosome Res 12:345–56 [Google Scholar]
  57. Pask A, Renfree MB, Graves JAM. 57.  2000. The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implications for the evolution of mammalian sex determination. PNAS 97:13198–202 [Google Scholar]
  58. Murtagh VJ, O'Meally D, Sankovic N, Delbridge ML, Kuroki Y. 58.  et al. 2012. Evolutionary history of novel genes on the tammar wallaby Y chromosome: implications for sex chromosome evolution. Genome Res 22:498–507 [Google Scholar]
  59. Graves JAM. 59.  2000. Human Y chromosome, sex determination, and spermatogenesis—a feminist view. Biol. Reprod. 63:667–76 [Google Scholar]
  60. Aitken RJ, Graves JAM. 60.  2002. The future of sex. Nature 415:963 [Google Scholar]
  61. Just W, Baumstark A, Suss A, Graphodatsky A, Rens W. 61.  et al. 2007. Ellobiuslutescens: sex determination and sex chromosome. Sex. Dev. 1:211–21 [Google Scholar]
  62. Just W, Rau W, Vogel W, Akhverdian M, Fredga K. 62.  et al. 1995. Absence of Sry in species of the vole Ellobius. . Nat. Genet. 11:117–18 [Google Scholar]
  63. Sutou S, Mitsui Y, Tsuchiya K. 63.  2001. Sex determination without the Y chromosome in two Japanese rodents Tokudaiaosimensis and Tokudaiaosimensis spp. Mamm. Genome 12:17–21 [Google Scholar]
  64. Kuroiwa A, Handa S, Nishiyama C, Chiba E, Yamada F. 64.  et al. 2011. Additional copies of CBX2 in the genomes of males of mammals lacking SRY, the Amami spiny rat (Tokudaiaosimensis) and the Tokunoshima spiny rat (Tokudaiatokunoshimensis). Chromosome Res 19:635–44 [Google Scholar]
  65. Deakin JE, Graves JAM, Rens W. 65.  2012. The evolution of marsupial and monotreme chromosomes. Cytogenet. Genome Res. 137:113–29 [Google Scholar]
  66. Deakin JE, Delbridge ML, Koina E, Harley N, Alsop AE. 66.  et al. 2013. Reconstruction of the ancestral marsupial karyotype from comparative gene maps. BMC Evol. Biol. 13:258 [Google Scholar]
  67. Sherwin WB, Murray ND, Graves JAM, Brown PR. 67.  1991. Measurement of genetic variation in endangered populations: bandicoots (Marsupialia: Peramelidae) as an example. Conserv. Biol. 5:103–8 [Google Scholar]
  68. Gemmell NJ, Western PS, Watson JM, Graves JAM. 68.  1996. Evolution of the mammalian mitochondrial control region—comparisons of control region sequences between monotreme and therian mammals. Mol. Biol. Evol. 13:798–808 [Google Scholar]
  69. Taylor AC, Graves JAM, Murray ND, Sherwin WB. 69.  1991. Conservation genetics of the koala (Phascolarctoscinereus). II. Limited variability in minisatellite DNA sequences. Biochem. Genet. 29:355–63 [Google Scholar]
  70. Wildt DE, Bush M, O'Brien SJ, Murray ND, Taylor A, Graves JAM. 70.  1991. Semen characteristics in free-living koalas (Phascolarctoscinereus). J. Reprod. Fertil. 92:99–107 [Google Scholar]
  71. Pearse AM, Swift K. 71.  2006. Allograft theory: transmission of devil facial-tumour disease. Nature 439:549 [Google Scholar]
  72. Deakin JE, Belov K. 72.  2012. A comparative genomics approach to understanding transmissible cancer in Tasmanian devils. Annu. Rev. Genom. Hum. Genet. 13:207–22 [Google Scholar]
  73. Bender HS, Graves JAM, Deakin JE. 73.  2014. Pathogenesis and molecular biology of a transmissible tumor in the Tasmanian devil. Annu. Rev. Anim. Biosci. 2:165–87 [Google Scholar]
  74. Deakin JE, Bender HS, Pearse AM, Rens W, O'Brien PC. 74.  et al. 2012. Genomic restructuring in the Tasmanian devil facial tumour: Chromosome painting and gene mapping provide clues to evolution of a transmissible tumour. PLOS Genet 8:e1002483 [Google Scholar]
  75. Bender HS, Murchison EP, Pickett HA, Deakin JE, Strong MA. 75.  et al. 2012. Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length. PLOS ONE 7:e46195 [Google Scholar]
  76. Murchison EP, Tovar C, Hsu A, Bender HS, Kheradpour P. 76.  et al. 2010. The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science 327:84–87 [Google Scholar]
  77. Jones ME, Cockburn A, Hamede R, Hawkins C, Hesterman H. 77.  et al. 2008. Life-history change in disease-ravaged Tasmanian devil populations. PNAS 105:10023–27 [Google Scholar]
  78. Wrigley JM, Graves JAM. 78.  1988. Karyotypic conservation in the mammalian order monotremata (subclass Prototheria). Chromosoma 96:231–47 [Google Scholar]
  79. Murtagh CEA. 79.  1977. A unique cytogenetic system in monotremes. Chromosoma 65:37–57 [Google Scholar]
  80. Grutzner F, Rens W, Tsend-Ayush E, El-Mogharbel N, O'Brien PC. 80.  et al. 2004. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432:913–17 [Google Scholar]
  81. Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D. 81.  et al. 2008. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res 18:965–73 [Google Scholar]
  82. Graves JAM. 82.  2006. Sex chromosome specialization and degeneration in mammals. Cell 124:901–14 [Google Scholar]
  83. Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL. 83.  et al. 2007. Genome of the marsupial Monodelphisdomestica reveals innovation in non-coding sequences. Nature 447:167–77 [Google Scholar]
  84. Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T. 84.  et al. 2011. Genome sequence of an Australian kangaroo, Macropuseugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 12:R81 [Google Scholar]
  85. Warren WC, Hillier LW, Graves JAM, Birney E, Ponting CP. 85.  et al. 2008. Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–83 [Google Scholar]
  86. Patel VS, Cooper SJ, Deakin JE, Fulton B, Graves T. 86.  et al. 2008. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals. BMC Biol 6:34 [Google Scholar]
  87. Belov K, Deakin JE, Papenfuss AT, Baker ML, Melman SD. 87.  et al. 2006. Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex. PLOS Biol 4:e46 [Google Scholar]
  88. Rapkins RW, Hore T, Smithwick M, Ager E, Pask AJ. 88.  et al. 2006. Recent assembly of an imprinted domain from non-imprinted components. PLOS Genet 2:e182 [Google Scholar]
  89. Hore TA, Koina E, Wakefield MJ, Graves JAM. 89.  2007. The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Res 15:147–61 [Google Scholar]
  90. Premzl M, Sangiorgio L, Strumbo B, Graves JAM, Simonic T, Gready JE. 90.  2003. Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene 314:89–102 [Google Scholar]
  91. Lingenfelter PA, Delbridge ML, Thomas S, Hoekstra HE, Mitchell MJ. 91.  et al. 2001. Expression and conservation of processed copies of the RBMX gene. Mamm. Genome 12:538–45 [Google Scholar]
  92. Shetty S, Griffin DK, Graves JAM. 92.  1999. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res 7:289–95 [Google Scholar]
  93. Nanda I, Schlegelmilch K, Haaf T, Schartl M, Schmid M. 93.  2008. Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination. Cytogenet. Genome Res. 122:150–56 [Google Scholar]
  94. O'Meally D, Patel HR, Stiglec R, Sarre SD, Georges A. 94.  et al. 2010. Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosome Res 18:787–800 [Google Scholar]
  95. Ezaz T, Quinn AE, Miura I, Sarre SD, Georges A, Graves JAM. 95.  2005. The dragon lizard Pogonavitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res 13:763–76 [Google Scholar]
  96. Ezaz T, Moritz B, Waters P, Graves JAM, Georges A, Sarre SD. 96.  2009. The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosome Res 17:965–73 [Google Scholar]
  97. Ezaz T, Azad B, O'Meally D, Young MJ, Matsubara K. 97.  et al. 2013. Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1. BMC Genom 14:899 [Google Scholar]
  98. Western PS, Harry JL, Graves JAM, Sinclair AH. 98.  1999. Temperature-dependent sex determination in the American alligator: AMH precedes SOX9 expression. Dev. Dyn. 216:411–19 [Google Scholar]
  99. Western PS, Harry JL, Graves JAM, Sinclair AH. 99.  1999. Temperature-dependent sex determination: upregulation of SOX9 expression after commitment to male development. Dev. Dyn. 214:171–77 [Google Scholar]
  100. Western PS, Harry JL, Graves JAM, Sinclair AH. 100.  2000. Temperature-dependent sex determination in the American alligator: expression of SF1, WT1 and DAX1 during gonadogenesis. Gene 241:223–32 [Google Scholar]
  101. Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JAM. 101.  2007. Temperature sex reversal implies sex gene dosage in a reptile. Science 316:411 [Google Scholar]
  102. Radder RS, Quinn AE, Georges A, Sarre SD, Shine R. 102.  2008. Genetic evidence for co-occurrence of chromosomal and thermal sex-determining systems in a lizard. Biol. Lett. 4:176–78 [Google Scholar]
  103. Holleley CE, O'Meally D, Sarre SD, Graves JAM, Ezaz T. 103.  et al. 2015. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523:79–82 [Google Scholar]
  104. Serov O, Chowdhary B, Womack JE, Graves JAM. 104.  2005. Comparative gene mapping and chromosome painting in mammals and the reconstruction of the ancestral mammal karyotype. Mammalian Genomics A Ruvinsky, JAM Graves 349–89 Wallingford, UK: CABI [Google Scholar]
  105. Graves JAM, Renfree MB. 105.  2013. Marsupials in the age of genomics. Annu. Rev. Genom. Hum. Genet. 14:393–420 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error