1932

Abstract

Deleterious mutations decrease reproductive fitness and are ubiquitous in genomes. Given that many organisms face ongoing threats of extinction, there is interest in elucidating the impact of deleterious variation on extinction risk and optimizing management strategies accounting for such mutations. Quantifying deleterious variation and understanding the effects of population history on deleterious variation are complex endeavors because we do not know the strength of selection acting on each mutation. Further, the effect of demographic history on deleterious mutations depends on the strength of selection against the mutation and the degree of dominance. Here we clarify how deleterious variation can be quantified and studied in natural populations. We then discuss how different demographic factors, such as small population size, nonequilibrium population size changes, inbreeding, and gene flow, affect deleterious variation. Lastly, we provide guidance on studying deleterious variation in nonmodel populations of conservation concern.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-080522-093311
2023-02-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/animal/11/1/annurev-animal-080522-093311.html?itemId=/content/journals/10.1146/annurev-animal-080522-093311&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kimura M. 1977. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:560827576
    [Google Scholar]
  2. 2.
    Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD et al. 2008. Assessing the evolutionary impact of amino acid mutations in the human genome. PLOS Genet. 4:5e1000083
    [Google Scholar]
  3. 3.
    Eyre-Walker A, Keightley PD 2007. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8:861018
    [Google Scholar]
  4. 4.
    Bataillon T, Bailey SF. 2014. Effects of new mutations on fitness: insights from models and data. Ann. N.Y. Acad. Sci. 1320:17692
    [Google Scholar]
  5. 5.
    Hedrick PW, Kalinowski ST. 2000. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Evol. Syst. 31:13962
    [Google Scholar]
  6. 6.
    Bertorelle G, Raffini F, Bosse M, Bortoluzzi C, Iannucci A et al. 2022. Genetic load: genomic estimates and applications in non-model animals. Nat. Rev. Genet. 23:8492503
    [Google Scholar]
  7. 7.
    Agrawal AF, Whitlock MC. 2012. Mutation load: the fitness of individuals in populations where deleterious alleles are abundant. Annu. Rev. Ecol. Evol. Syst. 43:11535
    [Google Scholar]
  8. 8.
    Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. 2015. Genetic rescue to the rescue. Trends Ecol. Evol. 30:14249
    [Google Scholar]
  9. 9.
    Kyriazis CC, Wayne RK, Lohmueller KE. 2021. Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol. Lett. 5:13347
    [Google Scholar]
  10. 10.
    Paez S, Kraus RHS, Shapiro B, Gilbert MTP, Jarvis ED, Vertebr. Genomes Proj. Conserv. Group. 2022. Reference genomes for conservation. Science 377:660436466
    [Google Scholar]
  11. 11.
    Kim BY, Huber CD, Lohmueller KE. 2017. Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. Genetics 206:134561
    [Google Scholar]
  12. 12.
    Eyre-Walker A, Keightley PD 2009. Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol. Biol. Evol. 26:92097108
    [Google Scholar]
  13. 13.
    Huber CD, Kim BY, Marsden CD, Lohmueller KE. 2017. Determining the factors driving selective effects of new nonsynonymous mutations. PNAS 114:17446570
    [Google Scholar]
  14. 14.
    Chen J, Glémin S, Lascoux M. 2017. Genetic diversity and the efficacy of purifying selection across plant and animal species. Mol. Biol. Evol. 34:6141728
    [Google Scholar]
  15. 15.
    Tataru P, Mollion M, Glémin S, Bataillon T. 2017. Inference of distribution of fitness effects and proportion of adaptive substitutions from polymorphism data. Genetics 207:3110319
    [Google Scholar]
  16. 16.
    Castellano D, Macià MC, Tataru P, Bataillon T, Munch K. 2019. Comparison of the full distribution of fitness effects of new amino acid mutations across great apes. Genetics 213:395366
    [Google Scholar]
  17. 17.
    Muller HJ. 1950. Our load of mutations. Am. J. Hum. Genet. 2:11176
    [Google Scholar]
  18. 18.
    Haldane JBS. 1937. The effect of variation on fitness. Am. Nat. 71:33749
    [Google Scholar]
  19. 19.
    Crow JF 1970. Genetic loads and the cost of natural selection. Mathematical Topics in Population Genetics K Kojima 12877. Berlin, Heidelberg: Springer
    [Google Scholar]
  20. 20.
    Lesecque Y, Keightley PD, Eyre-Walker A. 2012. A resolution of the mutation load paradox in humans. Genetics 191:4132130
    [Google Scholar]
  21. 21.
    Kimura M, Maruyama T, Crow JF. 1963. The mutation load in small populations. Genetics 48:130312
    [Google Scholar]
  22. 22.
    Whitlock MC, Ingvarsson PK, Hatfield T. 2000. Local drift load and the heterosis of interconnected populations. Heredity 84:445257
    [Google Scholar]
  23. 23.
    Lynch M, Gabriel W. 1990. Mutation load and the survival of small populations. Evolution 44:7172537
    [Google Scholar]
  24. 24.
    Lynch M, Conery J, Burger R. 1995. Mutation accumulation and the extinction of small populations. Am. Nat. 146:4489518
    [Google Scholar]
  25. 25.
    Morton NE, Crow JF, Muller HJ. 1956. An estimate of the mutational damage in man from data on consanguineous marriages. PNAS 42:1185563
    [Google Scholar]
  26. 26.
    Hedrick PW, Garcia-Dorado A. 2016. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31:1294052
    [Google Scholar]
  27. 27.
    Keller LF, Waller DM. 2002. Inbreeding effects in wild populations. Trends Ecol. Evol. 17:523041
    [Google Scholar]
  28. 28.
    Wallace B. 1975. Hard and soft selection revisited. Evolution 29:346573
    [Google Scholar]
  29. 29.
    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6:28092
    [Google Scholar]
  30. 30.
    Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38:16e164
    [Google Scholar]
  31. 31.
    Resch AM, Carmel L, Mariño-Ramírez L, Ogurtsov AY, Shabalina SA et al. 2007. Widespread positive selection in synonymous sites of mammalian genes. Mol. Biol. Evol. 24:8182131
    [Google Scholar]
  32. 32.
    Lawrie DS, Messer PW, Hershberg R, Petrov DA. 2013. Strong purifying selection at synonymous sites in D. melanogaster. PLOS Genet. 9:5e1003527
    [Google Scholar]
  33. 33.
    Machado HE, Lawrie DS, Petrov DA. 2020. Pervasive strong selection at the level of codon usage bias in Drosophila melanogaster. Genetics 214:251128
    [Google Scholar]
  34. 34.
    Zhou T, Gu W, Wilke CO. 2010. Detecting positive and purifying selection at synonymous sites in yeast and worm. Mol. Biol. Evol. 27:8191222
    [Google Scholar]
  35. 35.
    Monroe JG, McKay JK, Weigel D, Flood PJ. 2021. The population genomics of adaptive loss of function. Heredity 126:338395
    [Google Scholar]
  36. 36.
    MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J et al. 2012. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335:607082328
    [Google Scholar]
  37. 37.
    Grantham R. 1974. Amino acid difference formula to help explain protein evolution. Science 185:415486264
    [Google Scholar]
  38. 38.
    Miyata T, Miyazawa S, Yasunaga T. 1979. Two types of amino acid substitutions in protein evolution. J. Mol. Evol. 12:321936
    [Google Scholar]
  39. 39.
    Cooper GM, Stone EA, Asimenos G, NISC Comp. Seq. Prog., Green ED et al. 2005. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15:790113
    [Google Scholar]
  40. 40.
    Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. 2010. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLOS Comput. Biol. 6:12e1001025
    [Google Scholar]
  41. 41.
    Kumar P, Henikoff S, Ng PC. 2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4:7107381
    [Google Scholar]
  42. 42.
    Ng PC, Henikoff S. 2001. Predicting deleterious amino acid substitutions. Genome Res. 11:586374
    [Google Scholar]
  43. 43.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A et al. 2010. A method and server for predicting damaging missense mutations. Nat. Methods 7:424849
    [Google Scholar]
  44. 44.
    Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. 2012. Predicting the functional effect of amino acid substitutions and indels. PLOS ONE 7:10e46688
    [Google Scholar]
  45. 45.
    Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J 2014. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46:331015
    [Google Scholar]
  46. 46.
    Huber CD, Kim BY, Lohmueller KE. 2020. Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution. PLOS Genet. 16:5e1008827
    [Google Scholar]
  47. 47.
    Sandell L, Sharp NP. 2022. Fitness effects of mutations: an assessment of PROVEAN predictions using mutation accumulation data. Genome Biol. Evol. 14:1evac004
    [Google Scholar]
  48. 48.
    Lawrie DS, Petrov DA. 2014. Comparative population genomics: power and principles for the inference of functionality. Trends Genet. 30:413339
    [Google Scholar]
  49. 49.
    Simons YB, Turchin MC, Pritchard JK, Sella G 2014. The deleterious mutation load is insensitive to recent population history. Nat. Genet. 46:322024
    [Google Scholar]
  50. 50.
    Do R, Balick D, Li H, Adzhubei I, Sunyaev S, Reich D. 2015. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat. Genet. 47:212631
    [Google Scholar]
  51. 51.
    Henn BM, Botigué LR, Bustamante CD, Clark AG, Gravel S. 2015. Estimating the mutation load in human genomes. Nat. Rev. Genet. 16:633343
    [Google Scholar]
  52. 52.
    Brandvain Y, Wright SI. 2016. The limits of natural selection in a nonequilibrium world. Trends Genet. 32:420110
    [Google Scholar]
  53. 53.
    Pedersen C-ET, Lohmueller KE, Grarup N, Bjerregaard P, Hansen T et al. 2017. The effect of an extreme and prolonged population bottleneck on patterns of deleterious variation: insights from the Greenlandic Inuit. Genetics 205:2787801
    [Google Scholar]
  54. 54.
    Messer PW. 2013. SLiM: simulating evolution with selection and linkage. Genetics 194:4103739
    [Google Scholar]
  55. 55.
    Haller BC, Messer PW. 2019. SLiM 3: forward genetic simulations beyond the Wright-Fisher model. Mol. Biol. Evol. 36:363237
    [Google Scholar]
  56. 56.
    Adrion JR, Cole CB, Dukler N, Galloway JG, Gladstein AL et al. 2020. A community-maintained standard library of population genetic models. eLife 9:e54967
    [Google Scholar]
  57. 57.
    Ohta T. 1976. Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theor. Popul. Biol. 10:325475
    [Google Scholar]
  58. 58.
    Ohta T. 1973. Slightly deleterious mutant substitutions in evolution. Nature 246:54289698
    [Google Scholar]
  59. 59.
    Ohta T. 1992. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Evol. Syst. 23:26386
    [Google Scholar]
  60. 60.
    Moyers BT, Morrell PL, McKay JK. 2018. Genetic costs of domestication and improvement. J. Hered. 109:210316
    [Google Scholar]
  61. 61.
    Makino T, Rubin C-J, Carneiro M, Axelsson E, Andersson L, Webster MT. 2018. Elevated proportions of deleterious genetic variation in domestic animals and plants. Genome Biol. Evol. 10:127690
    [Google Scholar]
  62. 62.
    Lu J, Tang T, Tang H, Huang J, Shi S, Wu C-I. 2006. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet. 22:312631
    [Google Scholar]
  63. 63.
    Nabholz B, Sarah G, Sabot F, Ruiz M, Adam H et al. 2014. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol. Ecol. 23:9221027
    [Google Scholar]
  64. 64.
    Liu Q, Zhou Y, Morrell PL, Gaut BS. 2017. Deleterious variants in Asian rice and the potential cost of domestication. Mol. Biol. Evol. 34:490824
    [Google Scholar]
  65. 65.
    Kono TJY, Fu F, Mohammadi M, Hoffman PJ, Liu C et al. 2016. The role of deleterious substitutions in crop genomes. Mol. Biol. Evol. 33:9230717
    [Google Scholar]
  66. 66.
    Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH et al. 2013. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. PNAS 110:28E265562
    [Google Scholar]
  67. 67.
    Renaut S, Rieseberg LH. 2015. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other Compositae crops. Mol. Biol. Evol. 32:9227383
    [Google Scholar]
  68. 68.
    Marsden CD, Ortega-Del Vecchyo D, O'Brien DP, Taylor JF, Ramirez O et al. 2016. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. PNAS 113:115257
    [Google Scholar]
  69. 69.
    Schubert M, Jónsson H, Chang D, Sarkissian CD, Ermini L et al. 2014. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. PNAS 111:52E566169
    [Google Scholar]
  70. 70.
    Wang M-S, Zhang J-J, Guo X, Li M, Meyer R et al. 2021. Large-scale genomic analysis reveals the genetic cost of chicken domestication. BMC Biol. 19:1118
    [Google Scholar]
  71. 71.
    Frantz LAF, Schraiber JG, Madsen O, Megens H-J, Cagan A et al. 2015. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat. Genet. 47:10114148
    [Google Scholar]
  72. 72.
    Xue Y, Prado-Martinez J, Sudmant PH, Narasimhan V, Ayub Q et al. 2015. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348:623124245
    [Google Scholar]
  73. 73.
    van der Valk T, Díez-del-Molino D, Marques-Bonet T, Guschanski K, Dalén L. 2019. Historical genomes reveal the genomic consequences of recent population decline in eastern gorillas. Curr. Biol. 29:116570.e6
    [Google Scholar]
  74. 74.
    Robinson JA, Ortega-Del Vecchyo D, Fan Z, Kim BY, vonHoldt BM et al. 2016. Genomic flatlining in the endangered island fox. Curr. Biol. 26:9118389
    [Google Scholar]
  75. 75.
    Robinson JA, Brown C, Kim BY, Lohmueller KE, Wayne RK. 2018. Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Curr. Biol. 28:21348794.e4
    [Google Scholar]
  76. 76.
    de Manuel M, Barnett R, Sandoval-Velasco M, Yamaguchi N, Garrett Vieira F et al. 2020. The evolutionary history of extinct and living lions. PNAS 117:201092734
    [Google Scholar]
  77. 77.
    von Seth J, Dussex N, Díez-del-Molino D, van der Valk T, Kutschera VE et al. 2021. Genomic insights into the conservation status of the world's last remaining Sumatran rhinoceros populations. Nat. Commun. 12:12393
    [Google Scholar]
  78. 78.
    Liu L, Bosse M, Megens H-J, de Visser M, Groenen MAM, Madsen O. 2021. Genetic consequences of long-term small effective population size in the critically endangered pygmy hog. Evol. Appl. 14:371020
    [Google Scholar]
  79. 79.
    Dussex N, van der Valk T, Morales HE, Wheat CW, Díez-del-Molino D et al. 2021. Population genomics of the critically endangered kākāpō. Cell Genom. 1:1100002
    [Google Scholar]
  80. 80.
    Robinson JA, Kyriazis CC, Nigenda-Morales SF, Beichman AC, Rojas-Bracho L et al. 2022. The critically endangered vaquita is not doomed to extinction by inbreeding depression. Science 376:659363539
    [Google Scholar]
  81. 81.
    Leroy T, Rousselle M, Tilak M-K, Caizergues AE, Scornavacca C et al. 2021. Island songbirds as windows into evolution in small populations. Curr. Biol. 31:6130310.e4
    [Google Scholar]
  82. 82.
    Gravel S. 2016. When is selection effective?. Genetics 203:145162
    [Google Scholar]
  83. 83.
    Nei M, Maruyama T, Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution 29:1110
    [Google Scholar]
  84. 84.
    Balick DJ, Do R, Cassa CA, Reich D, Sunyaev SR. 2015. Dominance of deleterious alleles controls the response to a population bottleneck. PLOS Genet. 11:8e1005436
    [Google Scholar]
  85. 85.
    Kirkpatrick M, Jarne P. 2000. The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat. 155:215467
    [Google Scholar]
  86. 86.
    Lohmueller KE. 2014. The impact of population demography and selection on the genetic architecture of complex traits. PLOS Genet. 10:5e1004379
    [Google Scholar]
  87. 87.
    Henn BM, Botigué LR, Peischl S, Dupanloup I, Lipatov M et al. 2016. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. PNAS 113:4E44049
    [Google Scholar]
  88. 88.
    Benazzo A, Trucchi E, Cahill JA, Maisano Delser P, Mona S et al. 2017. Survival and divergence in a small group: the extraordinary genomic history of the endangered Apennine brown bear stragglers. PNAS 114:45E958997
    [Google Scholar]
  89. 89.
    Beichman AC, Koepfli K-P, Li G, Murphy W, Dobrynin P et al. 2019. Aquatic adaptation and depleted diversity: a deep dive into the genomes of the sea otter and giant otter. Mol. Biol. Evol. 36:12263155
    [Google Scholar]
  90. 90.
    Feng S, Fang Q, Barnett R, Li C, Han S et al. 2019. The genomic footprints of the fall and recovery of the crested ibis. Curr. Biol. 29:234049.e7
    [Google Scholar]
  91. 91.
    Grossen C, Guillaume F, Keller LF, Croll D. 2020. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11:11001
    [Google Scholar]
  92. 92.
    Hu Y, Thapa A, Fan H, Ma T, Wu Q et al. 2020. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6:9eaax5751
    [Google Scholar]
  93. 93.
    Ochoa A, Gibbs HL. 2021. Genomic signatures of inbreeding and mutation load in a threatened rattlesnake. Mol. Ecol. 30:21545469
    [Google Scholar]
  94. 94.
    Kleinman-Ruiz D, Lucena-Perez M, Villanueva B, Fernández J, Saveljev AP et al. 2022. Purging of deleterious burden in the endangered Iberian lynx. PNAS 119:11e2110614119
    [Google Scholar]
  95. 95.
    Xie H-X, Liang X-X, Chen Z-Q, Li W-M, Mi C-R et al. 2022. Ancient demographics determine the effectiveness of genetic purging in endangered lizards. Mol. Biol. Evol. 39:1msab359
    [Google Scholar]
  96. 96.
    Beichman AC, Kalhori P, Kyriazis CC, DeVries AA, Nigenda-Morales S et al. 2021. Genomic analyses reveal range-wide devastation of sea otter populations. Mol. Ecol. In press
    [Google Scholar]
  97. 97.
    Peischl S, Dupanloup I, Kirkpatrick M, Excoffier L. 2013. On the accumulation of deleterious mutations during range expansions. Mol. Ecol. 22:24597282
    [Google Scholar]
  98. 98.
    Peischl S, Kirkpatrick M, Excoffier L. 2015. Expansion load and the evolutionary dynamics of a species range. Am. Nat. 185:4E8193
    [Google Scholar]
  99. 99.
    Peischl S, Dupanloup I, Foucal A, Jomphe M, Bruat V et al. 2018. Relaxed selection during a recent human expansion. Genetics 208:276377
    [Google Scholar]
  100. 100.
    Willi Y, Fracassetti M, Zoller S, Van Buskirk J. 2018. Accumulation of mutational load at the edges of a species range. Mol. Biol. Evol. 35:478191
    [Google Scholar]
  101. 101.
    Perrier A, Sánchez-Castro D, Willi Y 2020. Expressed mutational load increases toward the edge of a species’ geographic range. Evolution 74:8171123
    [Google Scholar]
  102. 102.
    Jones MR, Mills LS, Jensen JD, Good JM. 2020. The origin and spread of locally adaptive seasonal camouflage in snowshoe hares. Am. Nat. 196:331632
    [Google Scholar]
  103. 103.
    Rougemont Q, Moore J-S, Leroy T, Normandeau E, Rondeau EB et al. 2020. Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific salmon. PLOS Genet. 16:8e1008348
    [Google Scholar]
  104. 104.
    Charlesworth D, Charlesworth B. 1987. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Evol. Syst. 18:23768
    [Google Scholar]
  105. 105.
    Charlesworth D, Willis JH. 2009. The genetics of inbreeding depression. Nat. Rev. Genet. 10:1178396
    [Google Scholar]
  106. 106.
    Wang J, Hill WG, Charlesworth D, Charlesworth B. 1999. Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genet. Res. 74:0216578
    [Google Scholar]
  107. 107.
    Hedrick PW. 1994. Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity 73:436372
    [Google Scholar]
  108. 108.
    Räikkönen J, Vucetich JA, Peterson RO, Nelson MP. 2009. Congenital bone deformities and the inbred wolves (Canis lupus) of Isle Royale. Biol. Conserv. 142:5102531
    [Google Scholar]
  109. 109.
    Hedrick PW, Peterson RO, Vucetich LM, Adams JR, Vucetich JA. 2014. Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population. Conserv. Genet. 15:5111121
    [Google Scholar]
  110. 110.
    Robinson JA, Räikkönen J, Vucetich LM, Vucetich JA, Peterson RO et al. 2019. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci. Adv. 5:5eaau0757
    [Google Scholar]
  111. 111.
    Khan A, Patel K, Shukla H, Viswanathan A, van der Valk T et al. 2021. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. PNAS 118:49e2023018118
    [Google Scholar]
  112. 112.
    Kyriazis CC, Beichman AC, Brzeski KE, Hoy SR, Peterson RO et al. 2022. Genomic underpinnings of population persistence in Isle Royale moose. bioRxiv 488504. https://doi.org/10.1101/2022.04.15.488504
    [Crossref]
  113. 113.
    Crow JF. 1948. Alternative hypotheses of hybrid vigor. Genetics 33:547787
    [Google Scholar]
  114. 114.
    Kim BY, Huber CD, Lohmueller KE. 2018. Deleterious variation shapes the genomic landscape of introgression. PLOS Genet. 14:10e1007741
    [Google Scholar]
  115. 115.
    Harris K, Zhang Y, Nielsen R. 2019. Genetic rescue and the maintenance of native ancestry. Conserv. Genet. 20:15964
    [Google Scholar]
  116. 116.
    Tallmon DA, Luikart G, Waples RS. 2004. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19:948996
    [Google Scholar]
  117. 117.
    Bell DA, Robinson ZL, Funk WC, Fitzpatrick SW, Allendorf FW et al. 2019. The exciting potential and remaining uncertainties of genetic rescue. Trends Ecol. Evol. 34:12107079
    [Google Scholar]
  118. 118.
    Frankham R. 2016. Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biol. Conserv. 195:3336
    [Google Scholar]
  119. 119.
    Hedrick PW, Robinson JA, Peterson RO, Vucetich JA. 2019. Genetics and extinction and the example of Isle Royale wolves. Anim. Conserv. 22:33029
    [Google Scholar]
  120. 120.
    Lotsander A, Hasselgren M, Larm M, Wallén J, Angerbjörn A, Norén K. 2021. Low persistence of genetic rescue across generations in the Arctic fox (Vulpes lagopus). J. Hered. 112:327685
    [Google Scholar]
  121. 121.
    Lande R. 1994. Risk of population extinction from fixation of new deleterious mutations. Evolution 48:5146069
    [Google Scholar]
  122. 122.
    Rogers RL, Slatkin M. 2017. Excess of genomic defects in a woolly mammoth on Wrangel Island. PLOS Genet. 13:3e1006601
    [Google Scholar]
  123. 123.
    Schultz ST, Lynch M. 1997. Mutation and extinction: the role of variable mutational effects, synergistic epistasis, beneficial mutations, and degree of outcrossing. Evolution 51:5136371
    [Google Scholar]
  124. 124.
    Beyer RM, Manica A. 2020. Historical and projected future range sizes of the world's mammals, birds, and amphibians. Nat. Commun. 11:15633
    [Google Scholar]
  125. 125.
    Ceballos G, Ehrlich PR, Raven PH. 2020. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. PNAS 117:2413596602
    [Google Scholar]
  126. 126.
    Johnson WE, Onorato DP, Roelke ME, Land ED, Cunningham M et al. 2010. Genetic restoration of the Florida panther. Science 329:5999164145
    [Google Scholar]
  127. 127.
    Haller BC, Messer PW. 2019. Evolutionary modeling in SLiM 3 for beginners. Mol. Biol. Evol. 36:511019
    [Google Scholar]
  128. 128.
    Kimura M. 1962. On the probability of fixation of mutant genes in a population. Genetics 47:71319
    [Google Scholar]
/content/journals/10.1146/annurev-animal-080522-093311
Loading
/content/journals/10.1146/annurev-animal-080522-093311
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error