1932

Abstract

Antarctic notothenioid fishes are the classic example of vertebrate adaptive radiation in a marine environment. Notothenioids diversified from a single common ancestor ∼22 Mya to between 120 and 140 species today, and they represent ∼90% of fish biomass on the continental shelf of Antarctica. As they diversified in the cold Southern Ocean, notothenioids evolved numerous traits, including osteopenia, anemia, cardiomegaly, dyslipidemia, and aglomerular kidneys, that are beneficial or tolerated in their environment but are pathological in humans. Thus, notothenioids are models for understanding adaptive radiations, physiological and biochemical adaptations to extreme environments, and genetic mechanisms of human disease. Since 2014, 16 notothenioid genomes have been published, which enable a first-pass holistic analysis of the notothenioid radiation and the genetic underpinnings of novel notothenioid traits. Here, we review the notothenioid radiation from a genomic perspective and integrate our insights with recent observations from other fish radiations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-081221-064325
2022-02-15
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/animal/10/1/annurev-animal-081221-064325.html?itemId=/content/journals/10.1146/annurev-animal-081221-064325&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Eastman JT, Clarke A 1998. A comparison of adaptive radiations of Antarctic fish with those of non-Antarctic fish. Fishes of Antarctica: A Biological Overviewed. G di Prisco, E Pisano, M Clarkpp. 3–26 Milan, Italy: Springer Milan
    [Google Scholar]
  2. 2. 
    Kock K-H. 1992. Antarctic Fish and Fisheries Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  3. 3. 
    Barnes DKA, Conlan KE. 2007. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. B 362:11–38
    [Google Scholar]
  4. 4. 
    Dornburg A, Federman S, Lamb AD, Jones CD, Near TJ. 2017. Cradles and museums of Antarctic teleost biodiversity. Nat. Ecol. Evol. 1:1379–84
    [Google Scholar]
  5. 5. 
    Chapman CC, Lea MA, Meyer A, Sallée JB, Hindell M. 2020. Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate. Nat. Clim. Change 10:209–19
    [Google Scholar]
  6. 6. 
    Simões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC et al. 2016. The evolving theory of evolutionary radiations. Trends Ecol. Evol. 31:27–34
    [Google Scholar]
  7. 7. 
    Wiens JJ. 2017. What explains patterns of biodiversity across the Tree of Life?. BioEssays 39:1600128
    [Google Scholar]
  8. 8. 
    Naciri Y, Linder HP. 2020. The genetics of evolutionary radiations. Biol. Rev. 95:1055–72
    [Google Scholar]
  9. 9. 
    Eastman JT. 2005. The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107
    [Google Scholar]
  10. 10. 
    DeVries AL 2020. Fish antifreeze proteins. Antifreeze ProteinsVol. 1: Environment, Systematics and Evolutioned H Ramløv, D Friis 85–129 Cham, Switz: Springer
    [Google Scholar]
  11. 11. 
    Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN et al. 2012. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. PNAS 109:3434–39
    [Google Scholar]
  12. 12. 
    Gavrilets S, Losos JB. 2009. Adaptive radiation: contrasting theory with data. Science 323:732–37
    [Google Scholar]
  13. 13. 
    Eastman JT. 2019. An analysis of maximum body size and designation of size categories for notothenioid fishes. Polar Biol 42:1131–45
    [Google Scholar]
  14. 14. 
    Eastman JT. 2020. The buoyancy-based biotope axis of the evolutionary radiation of Antarctic cryonotothenioid fishes. Polar Biol 43:1217–31
    [Google Scholar]
  15. 15. 
    Eastman JT. 2017. Bathymetric distributions of notothenioid fishes. Polar Biol 40:2077–95
    [Google Scholar]
  16. 16. 
    Colombo M, Damerau M, Hanel R, Salzburger W, Matschiner M. 2015. Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes. J. Evol. Biol. 28:376–94
    [Google Scholar]
  17. 17. 
    Fryer G, Iles TD. 1972. The Cichlid Fishes of the Great Lakes of Africa London: Oliver & Boyd
    [Google Scholar]
  18. 18. 
    La Mesa M, Llompart F, Riginella E, Eastman JT 2021. Parental care and reproductive strategies in notothenioid fishes. Fish Fish 22:356–76
    [Google Scholar]
  19. 19. 
    Eastman JT, Eakin RR. 2021. Checklist of the species of notothenioid fishes. Antarct. Sci. 33:273–80
    [Google Scholar]
  20. 20. 
    Shin SC, Ahn DH, Kim SJ, Pyo CW, Lee H et al. 2014. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biol 15:468
    [Google Scholar]
  21. 21. 
    Bargelloni L, Babbucci M, Ferraresso S, Papetti C, Vitulo N et al. 2019. Draft genome assembly and transcriptome data of the icefish Chionodraco myersi reveal the key role of mitochondria for a life without hemoglobin at subzero temperatures. Commun. Biol. 2:443
    [Google Scholar]
  22. 22. 
    Kim B-M, Amores A, Kang S, Ahn DH, Kim JH et al. 2019. Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nat. Ecol. Evol. 3:469–78
    [Google Scholar]
  23. 23. 
    Ahn D-H, Shin SC, Kim B-M, Kang S, Kim J-H et al. 2017. Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti. Gigascience 6:gix060
    [Google Scholar]
  24. 24. 
    Chen L, Lu Y, Li W, Ren Y, Yu M et al. 2019. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes. Gigascience 8:giz016
    [Google Scholar]
  25. 25. 
    Lee SJ, Kim JH, Jo E, Choi E, Kim J et al. 2021. Chromosomal assembly of the Antarctic toothfish (Dissostichus mawsoni) genome using third-generation DNA sequencing and Hi-C technology. Zool. Res. 42:124–29
    [Google Scholar]
  26. 26. 
    Baalsrud HT, Tørresen OK, Solbakken MH, Salzburger W, Hanel R et al. 2018. De novo gene evolution of antifreeze glycoproteins in codfishes revealed by whole genome sequence data. Mol. Biol. Evol. 35:593–606
    [Google Scholar]
  27. 27. 
    Bista I, McCarthy SA, Wood J, Ning Z, Detrich HW III et al. 2020. The genome sequence of the channel bull blenny, Cottoperca gobio (Günther, 1861). Wellcome Open Res 5:148
    [Google Scholar]
  28. 28. 
    Near TJ, Dornburg A, Harrington RC, Oliveira C, Pietsch TW et al. 2015. Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evol. Biol. 15:109
    [Google Scholar]
  29. 29. 
    Daane JM, Dornburg A, Smits P, MacGuigan DJ, Hawkins MB et al. 2019. Historical contingency shapes adaptive radiation in Antarctic fishes. Nat. Ecol. Evol. 3:1102–9
    [Google Scholar]
  30. 30. 
    Feulner PGD, De-Kayne R. 2017. Genome evolution, structural rearrangements and speciation. J. Evol. Biol. 30:1488–90
    [Google Scholar]
  31. 31. 
    Mazzei F, Ghigliotti L, Lecointre G, Ozouf-Costaz C, Coutanceau J-P et al. 2006. Karyotypes of basal lineages in notothenioid fishes: the genus Bovichtus. Polar Biol 29:1071–76
    [Google Scholar]
  32. 32. 
    Pisano E, Ozouf-Costaz C, Hureau J-C, Williams R 1995. Chromosome differentiation in the subantarctic Bovichtidae species Cottoperca gobio (Günther, 1861) and Pseudaphritis urvillii (Valenciennes, 1832) (Pisces, Perciformes). Antarct. Sci. 7:381–86
    [Google Scholar]
  33. 33. 
    Auvinet J, Graça P, Dettai A, Amores A, Postlethwait JH et al. 2020. Multiple independent chromosomal fusions accompanied the radiation of the Antarctic teleost genus Trematomus (Notothenioidei:Nototheniidae). BMC Evol. Biol. 20:39
    [Google Scholar]
  34. 34. 
    Amores A, Wilson CA, Allard CAH, Detrich HW III, Postlethwait JH. 2017. Cold fusion: massive karyotype evolution in the Antarctic bullhead notothen Notothenia coriiceps. G3 7:2195–207
    [Google Scholar]
  35. 35. 
    Auvinet J, Graça P, Belkadi L, Petit L, Bonnivard E et al. 2018. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus. BMC Genom 19:339
    [Google Scholar]
  36. 36. 
    Ghigliotti L, Cheng CHC, Pisano E. 2016. Sex determination in Antarctic notothenioid fish: chromosomal clues and evolutionary hypotheses. Polar Biol 39:11–22
    [Google Scholar]
  37. 37. 
    Oliver KR, Greene WK. 2009. Transposable elements: powerful facilitators of evolution. BioEssays 31:703–14
    [Google Scholar]
  38. 38. 
    Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE et al. 2013. Hybridization and speciation. J. Evol. Biol. 26:229–46
    [Google Scholar]
  39. 39. 
    Poletto AB, Ferreira IA, Cabral-de-Mello DC, Nakajima RT, Mazzuchelli J et al. 2010. Chromosome differentiation patterns during cichlid fish evolution. BMC Genet 11:50Erratum 2012. BMC Genet 13:2
    [Google Scholar]
  40. 40. 
    Svardal H, Salzburger W, Malinsky M. 2021. Genetic variation and hybridization in evolutionary radiations of cichlid fishes. Annu. Rev. Anim. Biosci. 9:55–79
    [Google Scholar]
  41. 41. 
    Conte MA, Joshi R, Moore EC, Nandamuri SP, Gammerdinger WJ et al. 2019. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. Gigascience 8:giz030
    [Google Scholar]
  42. 42. 
    Salzburger W. 2018. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19:705–17
    [Google Scholar]
  43. 43. 
    Marques DA, Meier JI, Seehausen O. 2019. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34:531–44
    [Google Scholar]
  44. 44. 
    McGee MD, Borstein SR, Meier JI, Marques DA, Mwaiko S et al. 2020. The ecological and genomic basis of explosive adaptive radiation. Nature 586:75–79
    [Google Scholar]
  45. 45. 
    Ohno S. 1970. Evolution by Gene Duplication New York: Springer-Verlag
    [Google Scholar]
  46. 46. 
    Detrich HW, Stuart A, Schoenborn M, Parker SK et al. 2010. Genome enablement of the Notothenioidei: genome size estimates from 11 species and BAC libraries from 2 representative taxa. J. Exp. Zool. B 314:369–81
    [Google Scholar]
  47. 47. 
    Chen L, DeVries A, Cheng C. 1997. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. PNAS 94:3811–16
    [Google Scholar]
  48. 48. 
    Miya T, Gon O, Mwale M, Cheng C-HC. 2015. Multiple independent reduction or loss of antifreeze trait in low Antarctic and sub-Antarctic notothenioid fishes. Antarct. Sci. 28:17–28
    [Google Scholar]
  49. 49. 
    Cziko PA, Evans CW, Cheng C-HC, DeVries AL. 2006. Freezing resistance of antifreeze-deficient larval Antarctic fish. J. Exp. Biol. 209:407–20
    [Google Scholar]
  50. 50. 
    Cao L, Huang Q, Wu Z, Cao D, Ma Z et al. 2016. Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids. Nat. Commun. 7:12987
    [Google Scholar]
  51. 51. 
    Halliwell B, Gutteridge JMC. 2015. Free Radicals in Biology and Medicine Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  52. 52. 
    Steinbrenner H, Sies H. 2009. Protection against reactive oxygen species by selenoproteins. Biochim. Biophys. Acta 1790:1478–85
    [Google Scholar]
  53. 53. 
    Xiong P, Hulsey CD, Fruciano C, Wong WY, Nater A et al. 2020. The comparative genomic landscape of adaptive radiation in crater lake cichlid fishes. Mol. Ecol. 30:955–72
    [Google Scholar]
  54. 54. 
    Ronco F, Matschiner M, Böhne A, Boila A, Büscher HH et al. 2021. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 589:76–81
    [Google Scholar]
  55. 55. 
    Brawand D, Wagner CE, Li YI, Malinsky M, Keller I et al. 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–81
    [Google Scholar]
  56. 56. 
    Schrader L, Schmitz J. 2019. The impact of transposable elements in adaptive evolution. Mol. Ecol. 28:1537–49
    [Google Scholar]
  57. 57. 
    Serrato-Capuchina A, Matute D. 2018. The role of transposable elements in speciation. Genes 9:254
    [Google Scholar]
  58. 58. 
    Ricci M, Peona V, Guichard E, Taccioli C, Boattini A. 2018. Transposable elements activity is positively related to rate of speciation in mammals. J. Mol. Evol. 86:303–10
    [Google Scholar]
  59. 59. 
    Chen Z, Cheng C-HC, Zhang J, Cao L, Chen L et al. 2008. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. PNAS 105:12944–49
    [Google Scholar]
  60. 60. 
    Chen S, Yu M, Chu X, Li W, Yin X, Chen L 2017. Cold-induced retrotransposition of fish LINEs. J. Genet. Genom. 44:385–94
    [Google Scholar]
  61. 61. 
    Santos ME, Braasch I, Boileau N, Meyer BS, Sauteur L, Böhne A et al. 2014. The evolution of cichlid fish egg-spots is linked with a cis-regulatory change. Nat. Commun. 5:5149
    [Google Scholar]
  62. 62. 
    Carleton KL, Conte MA, Malinsky M, Nandamuri SP, Sandkam BA, Meier JI et al. 2020. Movement of transposable elements contributes to cichlid diversity. Mol. Ecol. 29:4956–69
    [Google Scholar]
  63. 63. 
    Carroll SB. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36
    [Google Scholar]
  64. 64. 
    Heimberg AM, Sempere LF, Moy VN, Donoghue PCJ, Peterson KJ. 2008. MicroRNAs and the advent of vertebrate morphological complexity. PNAS 105:2946–50
    [Google Scholar]
  65. 65. 
    Daane JM, Giordano D, Coppola D, di Prisco G, Detrich HW, Verde C. 2019. Adaptations to environmental change: globin superfamily evolution in Antarctic fishes. Mar. Genom 49:100724
    [Google Scholar]
  66. 66. 
    Lau Y, Parker SK, Near TJ, Detrich HW III 2012. Evolution and function of the globin intergenic regulatory regions of the Antarctic dragonfishes (Notothenioidei: Bathydraconidae). Mol. Biol. Evol. 29:1071–80
    [Google Scholar]
  67. 67. 
    Lau DT, Saeed-Kothe A, Parker SK, Detrich HW III 2001. Adaptive evolution of gene expression in Antarctic fishes: Divergent transcription of the 5′-to-5′ linked adult α1- and β-globin genes of the Antarctic teleost Notothenia coriiceps is controlled by dual promoters and intergenic enhancers. Am. Zool. 132:113–32
    [Google Scholar]
  68. 68. 
    Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. 2017. Conserved non-coding elements: Developmental gene regulation meets genome organization. Nucleic Acids Res 45:12611–24
    [Google Scholar]
  69. 69. 
    Daane JM, Auvinet J, Stoebenau A, Yergeau D, Harris MP, Detrich HW III 2020. Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change. PLOS Genet 16:e1009173
    [Google Scholar]
  70. 70. 
    Privalov PL. 1990. Cold denaturation of protein. Crit. Rev. Biochem. Mol. Biol. 25:281–306
    [Google Scholar]
  71. 71. 
    Bilyk KT, Vargas-Chacoff L, Cheng C-HC. 2018. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish. BMC Evol. Biol. 18:143
    [Google Scholar]
  72. 72. 
    Lindquist S. 1986. The heat-shock response. Annu. Rev. Biochem. 55:1151–91
    [Google Scholar]
  73. 73. 
    Bogan SN, Place SP. 2019. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes. BMC Evol. Biol. 19:205
    [Google Scholar]
  74. 74. 
    Bilyk KT, Zhuang X, Vargas-Chacoff L, Cheng C-HC. 2021. Evolution of chaperome gene expression and regulatory elements in the Antarctic notothenioid fishes. Heredity 126:424–41
    [Google Scholar]
  75. 75. 
    Sato A. 2018. Chaperones, canalization, and evolution of animal forms. Int. J. Mol. Sci. 19:3029
    [Google Scholar]
  76. 76. 
    Specchia V, Piacentini L, Tritto P, Fanti L, Dalessandro R et al. 2010. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463:662–65
    [Google Scholar]
  77. 77. 
    Desvignes T, Detrich HW III, Postlethwait JH. 2016. Genomic conservation of erythropoietic microRNAs (erythromiRs) in white-blooded Antarctic icefish. Mar. Genom. 30:27–34
    [Google Scholar]
  78. 78. 
    Xu Q, Cai C, Hu X, Liu Y, Guo Y et al. 2015. Evolutionary suppression of erythropoiesis via the modulation of TGF-β signalling in an Antarctic icefish. Mol. Ecol. 24:4664–78
    [Google Scholar]
  79. 79. 
    Huth TJ, Place SP 2016. Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors. BMC Genom 17:127
    [Google Scholar]
  80. 80. 
    Vasadia DJ, Zippay ML, Place SP. 2019. Characterization of thermally sensitive miRNAs reveals a central role of the FoxO signaling pathway in regulating the cellular stress response of an extreme stenotherm, Trematomus bernacchii. Mar. Genom. 48:100698
    [Google Scholar]
  81. 81. 
    Xiong P, Schneider RF, Hulsey CD, Meyer A, Franchini P 2019. Conservation and novelty in the microRNA genomic landscape of hyperdiverse cichlid fishes. Sci. Rep. 9:13848
    [Google Scholar]
  82. 82. 
    Loh YHE, Yi SV, Streelman JT 2011. Evolution of microRNAs and the diversification of species. Genome Biol. Evol. 3:55–65
    [Google Scholar]
  83. 83. 
    Franchini P, Xiong P, Fruciano C, Schneider RF, Woltering JM et al. 2019. MicroRNA gene regulation in extremely young and parallel adaptive radiations of crater lake cichlid fish. Mol. Biol. Evol. 36:2498–511
    [Google Scholar]
  84. 84. 
    Varriale A, Bernardi G. 2006. DNA methylation and body temperature in fishes. Gene 385:111–21
    [Google Scholar]
  85. 85. 
    Lynch M, Ackerman MS, Gout J-F, Long H, Sung W et al. 2016. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17:704–14
    [Google Scholar]
  86. 86. 
    Hedrick PW. 2013. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol. Ecol. 22:4606–18
    [Google Scholar]
  87. 87. 
    Malinsky M, Svardal H, Tyers AM, Miska EA, Genner MJ et al. 2018. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2:1940–55
    [Google Scholar]
  88. 88. 
    Nelson TC, Cresko WA. 2018. Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations. Evol. Lett. 2:9–21
    [Google Scholar]
  89. 89. 
    Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O. 2017. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8:14363
    [Google Scholar]
  90. 90. 
    Lanfear R, Ho SYW, Love D, Bromham L 2010. Mutation rate is linked to diversification in birds. PNAS 107:20423–28
    [Google Scholar]
  91. 91. 
    Goldie X, Lanfear R, Bromham L 2011. Diversification and the rate of molecular evolution: no evidence of a link in mammals. BMC Evol. Biol. 11:286
    [Google Scholar]
  92. 92. 
    Gillman LN, Keeling DJ, Ross HA, Wright SD 2009. Latitude, elevation and the tempo of molecular evolution in mammals. Proc. R. Soc. B 276:3353–59
    [Google Scholar]
  93. 93. 
    Eastman JT, Witmer LM, Ridgely RC, Kuhn KL. 2014. Divergence in skeletal mass and bone morphology in antarctic notothenioid fishes. J. Morphol. 275:841–61
    [Google Scholar]
  94. 94. 
    Janko K, Lecointre G, DeVries A, Couloux A, Cruaud C, Marshall C 2007. Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes? Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol. Biol. 7:220
    [Google Scholar]
  95. 95. 
    Kašparová E, Van de Putte AP, Marshall C, Janko K 2015. Lifestyle and ice: the relationship between ecological specialization and response to Pleistocene climate change. PLOS ONE 10:e0138766
    [Google Scholar]
  96. 96. 
    Ceballos SG, Lessa EP, Victorio MF, Fernández DA. 2012. Phylogeography of the sub-Antarctic notothenioid fish Eleginops maclovinus: evidence of population expansion. Mar. Biol. 159:499–505
    [Google Scholar]
  97. 97. 
    Kuhn KL, Near TJ, Jones CD, Eastman JT. 2009. Aspects of the biology and population genetics of the Antarctic nototheniid fish Trematomus nicolai. Copeia 2009 320–27
    [Google Scholar]
  98. 98. 
    Damerau M, Salzburger W, Hanel R. 2014. Population genetic structure of Lepidonotothen larseni revisited: cyb and microsatellites suggest limited connectivity in the Southern Ocean. Mar. Ecol. Prog. Ser. 517:251–63
    [Google Scholar]
  99. 99. 
    Damerau M, Matschiner M, Salzburger W, Hanel R. 2012. Comparative population genetics of seven notothenioid fish species reveals high levels of gene flow along ocean currents in the southern Scotia Arc, Antarctica. Polar Biol 35:1073–86
    [Google Scholar]
  100. 100. 
    Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y et al. 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350:1493–98
    [Google Scholar]
  101. 101. 
    Dion-Côté AM, Renaut S, Normandeau E, Bernatchez L 2014. RNA-seq reveals transcriptomic shock involving transposable elements reactivation in hybrids of young lake whitefish species. Mol. Biol. Evol. 31:1188–99
    [Google Scholar]
  102. 102. 
    Matschiner M, Hanel R, Salzburger W. 2009. Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol. Ecol. 18:2574–87
    [Google Scholar]
  103. 103. 
    Kuhn KL, Gaffney PM. 2006. Preliminary assessment of population structure in the mackerel icefish (Champsocephalus gunnari). Polar Biol 29:927–35
    [Google Scholar]
  104. 104. 
    Damerau M, Matschiner M, Salzburger W, Hanel R. 2014. Population divergences despite long pelagic larval stages: lessons from crocodile icefishes (Channichthyidae). Mol. Ecol. 23:284–99
    [Google Scholar]
  105. 105. 
    Van de Putte AP, Janko K, Kasparova E, Maes GE, Rock J et al. 2012. Comparative phylogeography of three trematomid fishes reveals contrasting genetic structure patterns in benthic and pelagic species. Mar. Genom. 8:23–34
    [Google Scholar]
  106. 106. 
    Papetti C, Susana E, Patarnello T, Zane L 2009. Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands. Mar. Ecol. Prog. Ser. 376:269–81
    [Google Scholar]
  107. 107. 
    North AW 1991. Review of the early life history of Antarctic notothenioid fish. Biology of Antarctic Fish G di Prisco, B Maresca, B Tota 70–86 Berlin, Heidelberg: Springer
    [Google Scholar]
  108. 108. 
    Deli Antoni MY, Delpiani SM, González-Castro M, Blasina GE, Spath MC et al. 2019. Comparative populational study of Lepidonotothen larseni and L. nudifrons (Teleostei: Nototheniidae) from the Antarctic Peninsula and the South Shetland Islands, Antarctica. Polar Biol 42:1537–47
    [Google Scholar]
  109. 109. 
    Jones CD, Anderson ME, Balushkin AV, Duhamel G, Eakin RR et al. 2008. Diversity, relative abundance, new locality records and population structure of Antarctic demersal fishes from the northern Scotia Arc islands and Bouvetøya. Polar Biol 31:1481–97
    [Google Scholar]
  110. 110. 
    Miya T, Gon O, Mwale M, Poulin E 2016. Molecular systematics and taxonomic status of three latitudinally widespread nototheniid (Perciformes: Notothenioidei) fishes from the Southern Ocean. Zootaxa 4061:381–96
    [Google Scholar]
  111. 111. 
    Dornburg A, Federman S, Eytan RI, Near TJ. 2016. Cryptic species diversity in sub-Antarctic islands: a case study of Lepidonotothen. Mol. Phylogenet. Evol. 104:32–43
    [Google Scholar]
  112. 112. 
    Marino IAM, Benazzo A, Agostini C, Mezzavilla M, Hoban SM et al. 2013. Evidence for past and present hybridization in three Antarctic icefish species provides new perspectives on an evolutionary radiation. Mol. Ecol. 22:5148–61
    [Google Scholar]
  113. 113. 
    Desvignes T, Le François NR, Goetz LC, Smith SS, Shusdock KA et al. 2019. Intergeneric hybrids inform reproductive isolating barriers in the Antarctic icefish radiation. Sci. Rep. 9:5989
    [Google Scholar]
  114. 114. 
    Litsios G, Salamin N. 2014. Hybridisation and diversification in the adaptive radiation of clownfishes. BMC Evol. Biol. 14:245
    [Google Scholar]
  115. 115. 
    Richards EJ, Martin CH. 2017. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. PLOS Genet 13:e1006919
    [Google Scholar]
  116. 116. 
    Stelkens RB, Schmid C, Seehausen O. 2015. Hybrid breakdown in cichlid fish. PLOS ONE 10:e0127207
    [Google Scholar]
  117. 117. 
    Franchini P, Fruciano C, Spreitzer ML, Jones JC, Elmer KR et al. 2014. Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Mol. Ecol. 23:1828–45
    [Google Scholar]
  118. 118. 
    Stelkens RB, Schmid C, Selz O, Seehausen O. 2009. Phenotypic novelty in experimental hybrids is predicted by the genetic distance between species of cichlid fish. BMC Evol. Biol. 9:283
    [Google Scholar]
  119. 119. 
    Nichols P, Genner MJ, van Oosterhout C, Smith A, Parsons P et al. 2015. Secondary contact seeds phenotypic novelty in cichlid fishes. Proc. R. Soc. B 282:20142272
    [Google Scholar]
  120. 120. 
    Selz OM, Seehausen O. 2019. Interspecific hybridization can generate functional novelty in cichlid fish. Proc. R. Soc. B 286:20191621
    [Google Scholar]
  121. 121. 
    Feller AF, Selz OM, McGee MD, Meier JI, Mwaiko S, Seehausen O 2020. Rapid generation of ecologically relevant behavioral novelty in experimental cichlid hybrids. Ecol. Evol. 10:7445–62
    [Google Scholar]
  122. 122. 
    Monroe JG, McKay JK, Weigel D, Flood PJ 2021. The population genomics of adaptive loss of function. Heredity 126:383–95
    [Google Scholar]
  123. 123. 
    Murray AW. 2020. Can gene-inactivating mutations lead to evolutionary novelty?. Curr. Biol. 30:R465–71
    [Google Scholar]
  124. 124. 
    Albalat R, Cañestro C. 2016. Evolution by gene loss. Nat. Rev. Genet. 17:379–91
    [Google Scholar]
  125. 125. 
    Helsen J, Voordeckers K, Vanderwaeren L, Santermans T, Tsontaki M et al. 2020. Gene loss predictably drives evolutionary adaptation. Mol. Biol. Evol. 37:2989–3002
    [Google Scholar]
  126. 126. 
    Goldschmidt R. 1940. The Material Basis of Evolution New Haven, CT: Yale Univ. Press
    [Google Scholar]
  127. 127. 
    Bilyk KT, Zhuang X, Murphy KR, Cheng C-HC. 2019. A tale of two genes: divergent evolutionary fate of haptoglobin and hemopexin in hemoglobinless Antarctic icefishes. J. Exp. Biol. 222:jeb188573
    [Google Scholar]
  128. 128. 
    Peters MJ, Parker SK, Grim J, Allard CAH, Levin J, Detrich HW III 2018. Divergent Hemogen genes of teleosts and mammals share conserved roles in erythropoiesis: analysis using transgenic and mutant zebrafish. Biol. Open 7:bio035576
    [Google Scholar]
  129. 129. 
    Sidell BD, O'Brien KM. 2006. When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. J. Exp. Biol. 209:1791–802
    [Google Scholar]
  130. 130. 
    Laptikhovsky V. 2019. White blood of the Antarctic icefish: Why?. Mar. Ecol. Prog. Ser. 626:227–31
    [Google Scholar]
  131. 131. 
    Xie KT, Wang G, Thompson AC, Wucherpfennig JI, Reimchen TE et al. 2019. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363:81–84
    [Google Scholar]
  132. 132. 
    Urban S, Nater A, Meyer A, Kratochwil CF 2021. Different sources of allelic variation drove repeated color pattern divergence in cichlid fishes. Mol. Biol. Evol. 38:465–77
    [Google Scholar]
  133. 133. 
    Brakefield PM. 2011. Evo-devo and accounting for Darwin's endless forms. Philos. Trans. R. Soc. Lond. B 366:2069–75
    [Google Scholar]
  134. 134. 
    Gibert J. 2017. The flexible stem hypothesis: evidence from genetic data. Dev. Genes Evol. 227:297–307
    [Google Scholar]
  135. 135. 
    Greenwood PH. 1965. Environmental effects on the pharyngeal mill of a cichlid fish, Astatoreochromis alluaudi, and their taxonomic implications. Proc. Linn. Soc 176:1–10
    [Google Scholar]
  136. 136. 
    Muschick M, Barluenga M, Salzburger W, Meyer A. 2011. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol. Biol. 11:116
    [Google Scholar]
  137. 137. 
    Gunter HM, Fan S, Xiong F, Franchini P, Fruciano C, Meyer A 2013. Shaping development through mechanical strain: the transcriptional basis of diet-induced phenotypic plasticity in a cichlid fish. Mol. Ecol. 22:4516–31
    [Google Scholar]
  138. 138. 
    Schneider RF, Meyer A. 2017. How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Mol. Ecol. 26:330–50
    [Google Scholar]
  139. 139. 
    Barrera-Oro E, Eastman JT, Moreira E. 2012. Phenotypic plasticity in the Antarctic nototheniid fish Trematomus newnesi: a guide to the identification of typical, large mouth and intermediate morphs. Polar Biol 35:1047–56
    [Google Scholar]
  140. 140. 
    Landaeta MF, Villegas A, Hüne M. 2021. Shape, condition and diet of the pike icefish Champsocephalus esox (Teleostei: Channichthyidae): Evidence of phenotypic plasticity?. Antarct. Sci. 33:10–16
    [Google Scholar]
  141. 141. 
    Kautt AF, Kratochwil CF, Nater A, Machado-Schiaffino G, Olave M et al. 2020. Contrasting signatures of genomic divergence during sympatric speciation. Nature 588:106–11
    [Google Scholar]
  142. 142. 
    Pankhurst NW, Sideleva VG, Pankhurst PM, Smirnova O, Janssen J. 1994. Ocular morphology of the Baikal sculpin-oilfishes, Comephorus baicalensis and C. dybowskii (Comephoridae). Environ. Biol. Fishes 39:51–58
    [Google Scholar]
  143. 143. 
    Sideleva VG. 1996. Comparative character of the deep-water and inshore cottoid fishes endemic to Lake Baikal. J. Fish Biol. 49:192–206
    [Google Scholar]
  144. 144. 
    Sideleva VG. 2016. Communities of the cottoid fish (Cottoidei) in the areas of hydrothermal vents and cold seeps of the abyssal zone of Baikal Lake. J. Ichthyol. 56:694–701
    [Google Scholar]
  145. 145. 
    Goto A, Yokoyama R, Sideleva VG 2015. Evolutionary diversification in freshwater sculpins (Cottoidea): a review of two major adaptive radiations. Environ. Biol. Fish. 98:307–35
    [Google Scholar]
  146. 146. 
    Nishizaki SS, Boyle AP. 2017. Mining the unknown: assigning function to noncoding single nucleotide polymorphisms toward the goal of understanding variation. Trends Genet 33:34–45
    [Google Scholar]
  147. 147. 
    Eastman JT. 1993. Antarctic Fish Biology: Evolution in a Unique Environment San Diego, CA: Academic
    [Google Scholar]
  148. 148. 
    Hiller M, Schaar BT, Indjeian VB, Kingsley DM, Hagey LR, Bejerano G. 2012. A “forward genomics” approach links genotype to phenotype using independent phenotypic losses among related species. Cell Rep 2:817–23
    [Google Scholar]
  149. 149. 
    Tse W, Lux SE. 1999. Red blood cell membrane disorders. Br. J. Haematol. 104:2–13
    [Google Scholar]
  150. 150. 
    Stefen C, Wagner F, Asztalos M, Giere P, Grobe P et al. 2021. Phenotyping in the era of genomics: MaTrics—a digital character matrix to document mammalian phenotypic traits coded numerically. bioRxiv 426960. https://doi.org/10.1101/2021.01.17.426960
    [Crossref]
  151. 151. 
    Yergeau DA, Cornell CN, Parker SK, Zhou Y, Detrich HW III 2005. bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish. Dev. Biol. 283:97–112
    [Google Scholar]
  152. 152. 
    Scotese C. 2016. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program Rep., PALEOMAP Project Evanston, IL:
    [Google Scholar]
  153. 153. 
    Martínez D, Pontigo J, Morera F, Yañéz A, Vargas-Chacoff L. 2018. Head kidney transcriptome analysis and characterization for the sub-Antarctic notothenioid fish Eleginops maclovinus. Fishes 3:8
    [Google Scholar]
  154. 154. 
    Zhang D, Hu P, Liu T, Wang J, Jiang S et al. 2018. GC bias lead to increased small amino acids and random coils of proteins in cold-water fishes. BMC Genom 19:315
    [Google Scholar]
  155. 155. 
    Touma J, García KK, Bravo S, Leiva F, Moya J et al. 2019. De novo assembly and characterization of Patagonian toothfish transcriptome and develop of EST-SSR markers for population genetics. Front. Mar. Sci. 6:720
    [Google Scholar]
  156. 156. 
    Shin SC, Kim SJ, Lee JK, Ahn DH, Kim MG et al. 2012. Transcriptomics and comparative analysis of three Antarctic notothenioid fishes. PLOS ONE 7:e43762
    [Google Scholar]
  157. 157. 
    Papetti C, Harms L, Windisch HS, Frickenhaus S, Sandersfeld T et al. 2015. A first insight into the spleen transcriptome of the notothenioid fish Lepidonotothen nudifrons: resource description and functional overview. Mar. Genom. 24:237–39
    [Google Scholar]
  158. 158. 
    Gerdol M, Buonocore F, Scapigliati G, Pallavicini A. 2015. Analysis and characterization of the head kidney transcriptome from the Antarctic fish Trematomus bernacchii (Teleostea, Notothenioidea): a source for immune relevant genes. Mar. Genom. 20:13–15
    [Google Scholar]
  159. 159. 
    Kim B-M, Ahn D-H, Kang S, Jeong J, Jo E et al. 2019. Skin transcriptome profiling reveals the distinctive molecular effects of temperature changes on Antarctic bullhead notothen. Mol. Cell. Toxicol. 15:163–72
    [Google Scholar]
  160. 160. 
    Berthelot C, Clarke J, Desvignes T, Detrich HW, Flicek P et al. 2019. Adaptation of proteins to the cold in Antarctic fish: A role for methionine?. Genome Biol. Evol. 11:220–31
    [Google Scholar]
  161. 161. 
    Coppe A, Agostini C, Marino IAM, Zane L, Bargelloni L et al. 2013. Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function. Genome Biol. Evol. 5:45–60
    [Google Scholar]
  162. 162. 
    Ansaloni F, Gerdol M, Torboli V, Fornaini NR, Greco S et al. 2021. Cold adaptation in Antarctic notothenioids: Comparative transcriptomics reveals novel insights in the peculiar role of gills and highlights signatures of cobalamin deficiency. Int. J. Mol. Sci. 22:1812
    [Google Scholar]
/content/journals/10.1146/annurev-animal-081221-064325
Loading
/content/journals/10.1146/annurev-animal-081221-064325
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error