1932

Abstract

A love of science and animals, perseverance, and happenstance propelled my career in veterinary virology and immunology. I have focused on deadly enteric and respiratory viral infections in neonatal livestock and humans with an aim to understand their prevalence, pathogenesis, interspecies transmission, and immunity and develop vaccines. Research on animal coronaviruses (CoVs), including their broad interspecies transmission, provided a foundation to understand emerging zoonotic fatal human respiratory CoVs [severe acute respiratory syndrome, Middle East respiratory syndrome, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)] and reverse zoonosis of SARS-CoV-2 to animals. A highlight of my early research was the discovery of the gut–mammary gland–sIgA axis, documenting a common mucosal immune system. The latter remains pivotal to designing maternal vaccines for passive immunity in neonates. Our discovery and innovative cell propagation of fastidious human and animal rotaviruses and caliciviruses and their infectivity in germ-free animals has provided cell-adapted and animal disease models for ongoing virologic and immunologic investigations and vaccines. Nevertheless, besides the research discoveries, my lasting legacy remains the outstanding mentees who have enriched my science and my life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-101937
2025-02-18
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-101937.html?itemId=/content/journals/10.1146/annurev-animal-111523-101937&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Saif LJ, Bohl EH, Gupta RK. 1972.. Isolation of porcine immunoglobulins and determination of the immunoglobulin classes of transmissible gastroenteritis viral antibodies. . Infect. Immun. 6::6009
    [Crossref] [Google Scholar]
  2. 2.
    Bohl EH, Gupta RK, Olquin MV, Saif LJ. 1972.. Antibody responses in serum, colostrum, and milk of swine after infection or vaccination with transmissible gastroenteritis virus. . Infect. Immun. 6::289301
    [Crossref] [Google Scholar]
  3. 3.
    Bohl EH, Saif LJ. 1975.. Passive immunity in transmissible gastroenteritis of swine: immunoglobulin characteristics of antibodies in milk after inoculating virus by different routes. . Infect. Immun. 11::2332
    [Crossref] [Google Scholar]
  4. 4.
    Saif LJ. 1999.. Enteric viral infections of pigs and strategies for induction of mucosal immunity. . Adv. Vet. Med. 41::42946
    [Crossref] [Google Scholar]
  5. 5.
    Saif LJ. 1985.. Passive immunity to coronavirus and rotavirus infections in swine and cattle: enhancement by maternal vaccination. . In Diarrhea in the Young, ed. S Tzipori , pp. 45667. Amsterdam:: Elsevier
    [Google Scholar]
  6. 6.
    Saif LJ. 2007.. Coronaviruses of domestic livestock and poultry: interspecies transmission, pathogenesis and immunity. . In The Nidoviruses, ed. S Perlman, KV Holmes , pp. 27998. Washington, DC:: Am. Soc. Microbiol.
    [Google Scholar]
  7. 7.
    Saif L, Wang Q, Vlasova A, Jung K, Xiao S. 2024.. Coronaviruses. . In Diseases of Swine, ed. JJ Zimmerman . Ames, IA:: Wiley-Blackwell Publ. , 12th ed.. In press
    [Google Scholar]
  8. 8.
    Chattha K, Roth JA, Saif L. 2015.. Strategies for design and application of enteric viral vaccines. . Annu. Rev. Anim. Biosci. 3::37595
    [Crossref] [Google Scholar]
  9. 9.
    Langel SN, Paim FC, Lager KM, Vlasova AN, Saif LJ. 2016.. Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): historical and current concepts. . Virus Res. 226::93107
    [Crossref] [Google Scholar]
  10. 10.
    VanCott JL, Brim TA, Simkins RA, Saif LJ. 1993.. Isotype-specific antibody-secreting cells to transmissible gastroenteritis virus and porcine respiratory coronavirus in gut- and bronchus-associated lymphoid tissues of suckling pigs. . J. Immunol. 150::39904000
    [Crossref] [Google Scholar]
  11. 11.
    VanCott JL, Brim TA, Lunney JK, Saif LJ. 1994.. Contribution of antibody-secreting cells induced in mucosal lymphoid tissues of pigs inoculated with respiratory or enteric strains of coronavirus to immunity against enteric coronavirus challenge. . J. Immunol. 152::398090
    [Crossref] [Google Scholar]
  12. 12.
    Sestak K, Lanza I, Park SK, Weilnau PA, Saif LJ. 1996.. Contribution of passive immunity to porcine respiratory coronavirus to protection against transmissible gastroenteritis virus challenge exposure in suckling pigs. . Am. J. Vet. Res. 57::66471
    [Crossref] [Google Scholar]
  13. 13.
    Chen F, Knutson TP, Rossow S, Saif LJ, Marthaler DG. 2019.. Decline of transmissible gastroenteritis virus and its complex evolutionary relationship with porcine respiratory coronavirus in the United States. . Sci. Rep. 9::3953
    [Crossref] [Google Scholar]
  14. 14.
    Saif LJ. 2020.. Vaccines for COVID-19: Perspectives, prospects, and challenges based on candidate SARS, MERS, and animal coronavirus vaccines. . Eur. Med. J. 2020.. https://doi.org/10.33590/emj/200324
    [Google Scholar]
  15. 15.
    Xu J, Liu M, Niu X, Hanson J, Jung K, et al. 2022.. The cold-adapted, temperature-sensitive SARS-CoV-2 strain TS11 is attenuated in Syrian hamsters and a candidate attenuated vaccine. . Viruses 15::95
    [Crossref] [Google Scholar]
  16. 16.
    Stevenson GW, Hoang H, Schwartz KJ, Burrough ER, Sun D, et al. 2013.. Emergence of porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. . J. Vet. Diagn. Investig. 25::64954
    [Crossref] [Google Scholar]
  17. 17.
    Wang L, Byrum B, Zhang Y. 2014.. Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014. . Emerg. Infect. Dis. 20::122730
    [Google Scholar]
  18. 18.
    Oka T, Saif LJ, Marthaler D, Esseili MA, Meulia T, et al. 2014.. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene. . Vet. Microbiol. 173::25869
    [Crossref] [Google Scholar]
  19. 19.
    Jung K, Wang Q, Scheuer KA, Lu Z, Zhang Y, et al. 2014.. Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs. . Emerg. Infect. Dis. 20::66265
    [Crossref] [Google Scholar]
  20. 20.
    Jung K, Hu H, Eyerly B, Lu Z, Chepngeno J, et al. 2015.. Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs. . Emerg. Infect. Dis. 21::65054
    [Crossref] [Google Scholar]
  21. 21.
    Vlasova AN, Marthaler D, Wang Q, Culhane MR, Rossow KD, et al. 2014.. Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014. . Emerg. Infect. Dis. 20::162028
    [Crossref] [Google Scholar]
  22. 22.
    Vlasova AN, Kenney SP, Jung K, Wang Q, Saif LJ. 2020.. Deltacoronavirus evolution and transmission: current scenario and evolutionary perspectives. . Front. Vet. Sci. 7::626785
    [Crossref] [Google Scholar]
  23. 23.
    Hou Y, Ke H, Kim J, Yoo D, Su Y, et al. 2019.. Engineering a live attenuated porcine epidemic diarrhea virus vaccine candidate via inactivation of the viral 2'-O-methyltransferase and the endocytosis signal of the spike protein. . J. Virol. 93::e00406-19
    [Google Scholar]
  24. 24.
    Niu X, Hou YJ, Jung K, Kong F, Saif LJ, et al. 2021.. Chimeric porcine deltacoronaviruses with sparrow coronavirus spike protein or the receptor-binding domain infect pigs but lose virulence and intestinal tropism. . Viruses 13::122
    [Crossref] [Google Scholar]
  25. 25.
    Blanco JCG, Pletneva LM, McGinnes-Cullen L, Otoa RO, Patel MC, et al. 2018.. Efficacy of a respiratory syncytial virus vaccine candidate in a maternal immunization model. . Nat. Commun. 9::1904
    [Crossref] [Google Scholar]
  26. 26.
    Mora JR, von Andrian UH. 2009.. Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. . Semin. Immunol. 21::2835
    [Crossref] [Google Scholar]
  27. 27.
    Langel SN, Paim FC, Alhamo MA, Lager KM, Vlasova AN, et al. 2019.. Oral vitamin A supplementation of porcine epidemic diarrhea virus infected gilts enhances IgA and lactogenic immune protection of nursing piglets. . Vet. Res. 50::101
    [Crossref] [Google Scholar]
  28. 28.
    Chepngeno J, Amimo JO, Michael H, Jung K, Raev S, et al. 2022.. Rotavirus A inoculation and oral vitamin A supplementation of vitamin A deficient pregnant sows enhances maternal adaptive immunity and passive protection of piglets against virulent rotavirus A. . Viruses 14::2354
    [Crossref] [Google Scholar]
  29. 29.
    Chepngeno J, Amimo JO, Michael H, Raev SA, Jung K, et al. 2023.. Vitamin A deficiency and vitamin A supplementation affect innate and T cell immune responses to rotavirus A infection in a conventional sow model. . Front. Immunol. 14::1188757
    [Crossref] [Google Scholar]
  30. 30.
    Amimo JO, Michael H, Chepngeno J, Jung K, Raev SA, et al. 2024.. Maternal immunization and vitamin A sufficiency impact sow primary adaptive immunity and passive protection to nursing piglets against porcine endemic diarrhea virus infection. . Front. Immunol. 15::1397118
    [Crossref] [Google Scholar]
  31. 31.
    Saif LJ, Jung K. 2020.. Comparative pathogenesis of bovine and porcine respiratory coronaviruses in the animal host species and SARS-CoV-2 in humans. . J. Clin. Microbiol. 58::e1355-20
    [Crossref] [Google Scholar]
  32. 32.
    Saif LJ. 2009.. Winter dysentery. . Food Anim. Pract. 2009.:11214
    [Google Scholar]
  33. 33.
    Saif LJ. 2010.. Bovine respiratory coronavirus. . Vet. Clin. N. Am. Food Anim. Pract. 26::34964
    [Crossref] [Google Scholar]
  34. 34.
    Heckert RA, Saif LJ, Hoblet KH, Agnes AG. 1990.. A longitudinal study of bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio. . Vet. Microbiol. 22::187201
    [Crossref] [Google Scholar]
  35. 35.
    Heckert RA, Saif LJ, Myers GW, Agnes AG. 1991.. Epidemiologic factors and isotype-specific antibody responses in serum and mucosal secretions of dairy calves with bovine coronavirus respiratory tract and enteric tract infections. . Am. J. Vet. Res. 52::84551
    [Crossref] [Google Scholar]
  36. 36.
    Cho KO, Hasoksuz M, Nielsen PR, Chang KO, Lathrop S, et al. 2001.. Cross-protection studies between respiratory and calf diarrhea and winter dysentery coronavirus strains in calves and RT-PCR and nested PCR for their detection. . Arch. Virol. 146::240119
    [Crossref] [Google Scholar]
  37. 37.
    Saif LJ, Redman DR, Moorhead PD, Theil KW. 1986.. Experimentally induced coronavirus infections in calves: viral replication in the respiratory and intestinal tracts. . Am. J. Vet. Res. 47::142632
    [Google Scholar]
  38. 38.
    Tsunemitsu H, Smith DR, Saif LJ. 1999.. Experimental inoculation of adult dairy cows with bovine coronavirus and detection of coronavirus in feces by RT-PCR. . Arch. Virol. 144::16775
    [Crossref] [Google Scholar]
  39. 39.
    Callow KA, Parry HF, Sergeant M, Tyrrell DA. 1990.. The time course of the immune response to experimental coronavirus infection of man. . Epidemiol. Infect. 105::43546
    [Crossref] [Google Scholar]
  40. 40.
    Murata T, Sakurai A, Suzuki M, Komoto S, Ide T, et al. 2021.. Shedding of viable virus in asymptomatic SARS-CoV-2 carriers. . mSphere 6::e00019-21
    [Crossref] [Google Scholar]
  41. 41.
    Rahman S, Rahman MM, Miah M, Begum MN, Sarmin M, et al. 2022.. COVID-19 reinfections among naturally infected and vaccinated individuals. . Sci. Rep. 12::1438
    [Crossref] [Google Scholar]
  42. 42.
    Evans JP, Zeng C, Carlin C, Lozanski G, Saif LJ, et al. 2022.. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. . Sci. Transl. Med. 14::eabn8057
    [Crossref] [Google Scholar]
  43. 43.
    Saif LJ, Brock KV, Redman DR, Kohler EM. 1991.. Winter dysentery in dairy herds: electron microscopic and serological evidence for an association with coronavirus infection. . Vet. Rec. 128::44749
    [Crossref] [Google Scholar]
  44. 44.
    Benfield DA, Saif LJ. 1990.. Cell culture propagation of a coronavirus isolated from cows with winter dysentery. . J. Clin. Microbiol. 28::145457
    [Crossref] [Google Scholar]
  45. 45.
    Smith DR, Fedorka-Cray PJ, Mohan R, Brock KV, Wittum TE, et al. 1998.. Evaluation of cow-level risk factors for the development of winter dysentery in dairy cattle. . Am. J. Vet. Res. 59::98693
    [Crossref] [Google Scholar]
  46. 46.
    Cho KO, Halbur PG, Bruna JD, Sorden SD, Yoon KJ, et al. 2000.. Detection and isolation of coronavirus from feces of three herds of feedlot cattle during outbreaks of winter dysentery-like disease. . J. Am. Vet. Med. Assoc. 217::119194
    [Crossref] [Google Scholar]
  47. 47.
    Hasoksuz M, Lathrop SL, Gadfield KL, Saif LJ. 1999.. Isolation of bovine respiratory coronaviruses from feedlot cattle and comparison of their biological and antigenic properties with bovine enteric coronaviruses. . Am. J. Vet. Res. 60::122733
    [Crossref] [Google Scholar]
  48. 48.
    Lathrop SL, Wittum TE, Brock KV, Loerch SC, Perino LJ, et al. 2000.. Association between infection of the respiratory tract attributable to bovine coronavirus and health and growth performance of cattle in feedlots. . Am. J. Vet. Res. 61::106266
    [Crossref] [Google Scholar]
  49. 49.
    Cho KO, Hoet AE, Loerch SC, Wittum TE, Saif LJ. 2001.. Evaluation of concurrent shedding of bovine coronavirus via the respiratory tract and enteric route in feedlot cattle. . Am. J. Vet. Res. 62::143641
    [Crossref] [Google Scholar]
  50. 50.
    Thomas CJ, Hoet AE, Sreevatsan S, Wittum TE, Briggs RE, et al. 2006.. Transmission of bovine coronavirus and serologic responses in feedlot calves under field conditions. . Am. J. Vet. Res. 67::141220
    [Crossref] [Google Scholar]
  51. 51.
    Storz J, Lin X, Purdy CW, Chouljenko VN, Kousoulas KG, et al. 2000.. Coronavirus and Pasteurella infections in bovine shipping fever pneumonia and Evans' criteria for causation. . J. Clin. Microbiol. 38::329198
    [Crossref] [Google Scholar]
  52. 52.
    Hasoksuz M, Lathrop S, Al-dubaib MA, Lewis P, Saif LJ. 1999.. Antigenic variation among bovine enteric coronaviruses (BECV) and bovine respiratory coronaviruses (BRCV) detected using monoclonal antibodies. . Arch. Virol. 144::244147
    [Crossref] [Google Scholar]
  53. 53.
    Zhang X, Hasoksuz M, Spiro D, Halpin R, Wang S, et al. 2007.. Quasispecies of bovine enteric and respiratory coronaviruses based on complete genome sequences and genetic changes after tissue culture adaptation. . Virology 363::110
    [Crossref] [Google Scholar]
  54. 54.
    Keusch GT, Amuasi JH, Anderson DE, Daszak P, Eckerle I, et al. 2022.. Pandemic origins and a One Health approach to preparedness and prevention: solutions based on SARS-CoV-2 and other RNA viruses. . PNAS 119::e2202871119
    [Crossref] [Google Scholar]
  55. 55.
    Saif LJ. 2004.. Animal coronaviruses: What can they teach us about the severe acute respiratory syndrome?. Rev. Sci. Technol. 23::64360
    [Crossref] [Google Scholar]
  56. 56.
    Saif LJ. 2004.. Animal coronaviruses: lessons for SARS. . In Learning from SARS: Preparing for the Next Disease Outbreak—Workshop Summary, ed. S Knobler, A Mahmoud, S Lemon, A Mack, K Oberholtzer , pp. 13848. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  57. 57.
    Saif LJ. 2005.. Comparative biology of coronaviruses: lessons for SARS. . In Severe Acute Respiratory Syndrome, ed. M Peiris, LJ Anderson, ADME Osterhaus, Klaus Stohr, K-y Yuen , pp. 8499. Oxford, UK:: Blackwell Pub.
    [Google Scholar]
  58. 58.
    Tsunemitsu H, el-Kanawati ZR, Smith DR, Reed HH, Saif LJ. 1995.. Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea. . J. Clin. Microbiol. 33::326469
    [Crossref] [Google Scholar]
  59. 59.
    Han MG, Cheon DS, Zhang X, Saif LJ. 2006.. Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves. . J. Virol. 80::1235056
    [Crossref] [Google Scholar]
  60. 60.
    Ismail MM, Cho KO, Ward LA, Saif LJ, Saif YM. 2001.. Experimental bovine coronavirus in turkey poults and young chickens. . Avian Dis. 45::15763
    [Crossref] [Google Scholar]
  61. 61.
    Alekseev KP, Vlasova AN, Jung K, Hasoksuz M, Zhang X, et al. 2008.. Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences. . J. Virol. 82::1242231
    [Crossref] [Google Scholar]
  62. 62.
    Zhang XM, Herbst W, Kousoulas KG, Storz J. 1994.. Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child. . J. Med. Virol. 44::15261
    [Crossref] [Google Scholar]
  63. 63.
    Vlasova AN, Zhang X, Hasoksuz M, Nagesha HS, Haynes LM, et al. 2007.. Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein. . J. Virol. 81::1336577
    [Crossref] [Google Scholar]
  64. 64.
    Hemida MG, Perera RA, Al Jassim RA, Kayali G, Siu LY, et al. 2014.. Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia 1993 and Australia 2014 and characterisation of assay specificity. . Eurosurveillance 19::20828
    [Crossref] [Google Scholar]
  65. 65.
    Perera R, Ko R, Tsang OTY, Hui DSC, Kwan MYM, et al. 2021.. Evaluation of a SARS-CoV-2 surrogate virus neutralization test for detection of antibody in human, canine, cat, and hamster sera. . J. Clin. Microbiol. 59::e02504-20
    [Crossref] [Google Scholar]
  66. 66.
    Qu P, Xu K, Faraone JN, Goodarzi N, Zheng YM, et al. 2024.. Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 BA.2.86 and FLip variants. . Cell 187::58595.e6
    [Crossref] [Google Scholar]
  67. 67.
    Boley PA, Dennis PM, Faraone JN, Xu J, Liu M, et al. 2023.. SARS-CoV-2 serological investigation of white-tailed deer in northeastern Ohio. . Viruses 15::1603
    [Crossref] [Google Scholar]
  68. 68.
    Adhikari BE, Oltz M, Bednash JS, Horowitz JC, Amimo JO, et al. 2023.. The impact of endemic coronavirus and SARS-CoV-2 antibody responses on COVID-19 severity and immunity. . Immuno 3::33045
    [Crossref] [Google Scholar]
  69. 69.
    Hale VL, Dennis PM, McBride DS, Nolting JM, Madden C, et al. 2022.. SARS-CoV-2 infection in free-ranging white-tailed deer. . Nature 602::48186
    [Crossref] [Google Scholar]
  70. 70.
    Vlasova AN, Diaz A, Damtie D, Xiu L, Toh TH, et al. 2022.. Novel canine coronavirus isolated from a hospitalized patient with pneumonia in East Malaysia. . Clin. Infect. Dis. 74::44654
    [Crossref] [Google Scholar]
  71. 71.
    Lednicky JA, Tagliamonte MS, White SK, Blohm GM, Alam MM, et al. 2022.. Isolation of a novel recombinant canine coronavirus from a visitor to Haiti: further evidence of transmission of coronaviruses of zoonotic origin to humans. . Clin. Infect. Dis. 75::e1184e87
    [Crossref] [Google Scholar]
  72. 72.
    Silva CS, Mullis LB, Pereira O Jr., Saif LJ, Vlasova A, et al. 2014.. Human respiratory coronaviruses detected in patients with influenza-like illness in Arkansas, USA. . Virol. Mycol. 2014. (Suppl. 2):004
    [Google Scholar]
  73. 73.
    Hu H, Jung K, Vlasova AN, Chepngeno J, Lu Z, et al. 2015.. Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States. . J. Clin. Microbiol. 53::153748
    [Crossref] [Google Scholar]
  74. 74.
    Li W, Hulswit RJG, Kenney SP, Widjaja I, Jung K, et al. 2018.. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. . PNAS 115::E5135E43
    [Crossref] [Google Scholar]
  75. 75.
    Boley PA, Alhamo MA, Lossie G, Yadav KK, Vasquez-Lee M, et al. 2020.. Porcine deltacoronavirus infection and transmission in poultry, United States. . Emerg. Infect. Dis. 26::25565
    [Crossref] [Google Scholar]
  76. 76.
    Jung K, Hu H, Saif LJ. 2017.. Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus. . Arch. Virol. 162::235762
    [Crossref] [Google Scholar]
  77. 77.
    Lednicky JA, Tagliamonte MS, White SK, Elbadry MA, Alam MM, et al. 2021.. Independent infections of porcine deltacoronavirus among Haitian children. . Nature 600::13337
    [Crossref] [Google Scholar]
  78. 78.
    Jung K, Renukaradhya GJ, Alekseev KP, Fang Y, Tang Y, et al. 2009.. Porcine reproductive and respiratory syndrome virus modifies innate immunity and alters disease outcome in pigs subsequently infected with porcine respiratory coronavirus: implications for respiratory viral co-infections. . J. Gen. Virol. 90::271323
    [Crossref] [Google Scholar]
  79. 79.
    Jung K, Alekseev KP, Zhang X, Cheon DS, Vlasova AN, et al. 2007.. Altered pathogenesis of porcine respiratory coronavirus in pigs due to immunosuppressive effects of dexamethasone: implications for corticosteroid use in treatment of severe acute respiratory syndrome coronavirus. . J. Virol. 81::1368193
    [Crossref] [Google Scholar]
  80. 80.
    Saif LJ, Fernandez FM. 1996.. Group A rotavirus veterinary vaccines. . J. Infect. Dis. 174:(Suppl. 1):S98106
    [Crossref] [Google Scholar]
  81. 81.
    Wyatt RG, James WD, Bohl EH, Theil KW, Saif LJ, et al. 1980.. Human rotavirus type 2: cultivation in vitro. . Science 207::18991
    [Crossref] [Google Scholar]
  82. 82.
    Saif LJ, Ward LA, Yuan L, Rosen BI, To TL. 1996.. The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses. . Arch. Virol. Suppl. 12::15361
    [Crossref] [Google Scholar]
  83. 83.
    Yuan L, Saif LJ. 2002.. Induction of mucosal immune responses and protection against enteric viruses: rotavirus infection of gnotobiotic pigs as a model. . Vet. Immunol. Immunopathol. 87::14760
    [Crossref] [Google Scholar]
  84. 84.
    Gonzalez AM, Azevedo MSP, Saif LJ. 2008.. Intestinal and systemic immunity to rotavirus in animal models and humans. . In Immunity Against Mucosal Pathogens, ed. M Vajdy , pp. 26397. New York:: Springer
    [Google Scholar]
  85. 85.
    Azevedo MP, Vlasova AN, Saif LJ. 2013.. Human rotavirus VLP vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease. . Expert Rev. Vaccines 12::16981
    [Crossref] [Google Scholar]
  86. 86.
    Vlasova AN, Kandasamy S, Saif LJ. 2016.. Gnotobiotic neonatal pig model of rotavirus infection and disease. . In Viral Gastroenteritis: Molecular Epidemiology and Pathogenesis, ed. L Svensson, U Desselberger, HB Greenberg, MK Estes , pp. 21941. Amsterdam:: Elsevier
    [Google Scholar]
  87. 87.
    Hoshino Y, Saif LJ, Kang SY, Sereno MM, Chen WK, et al. 1995.. Identification of group A rotavirus genes associated with virulence of a porcine rotavirus and host range restriction of a human rotavirus in the gnotobiotic piglet model. . Virology 209::27480
    [Crossref] [Google Scholar]
  88. 88.
    Guo Y, Wentworth DE, Stucker KM, Halpin RA, Lam HC, et al. 2020.. Amino acid substitutions in positions 385 and 393 of the hydrophobic region of VP4 may be associated with rotavirus attenuation and cell culture adaptation. . Viruses 12::408
    [Crossref] [Google Scholar]
  89. 89.
    Guo Y, Candelero-Rueda RA, Saif LJ, Vlasova AN. 2021.. Infection of porcine small intestinal enteroids with human and pig rotavirus A strains reveals contrasting roles for histo-blood group antigens and terminal sialic acids. . PLOS Pathog. 17::e1009237
    [Crossref] [Google Scholar]
  90. 90.
    Yuan L, Wen K, Azevedo MSP, Gonzalez AM, Zhang W, Saif LJ. 2008.. Virus-specific intestinal IFN-γ producing T cell responses induced by human rotavirus infection and vaccines are correlated with protection against rotavirus diarrhea in gnotobiotic pigs. . Vaccine 26::332231
    [Crossref] [Google Scholar]
  91. 91.
    Yuan L, Geyer A, Saif LJ. 2001.. Short-term immunoglobulin A B-cell memory resides in intestinal lymphoid tissues but not in bone marrow of gnotobiotic pigs inoculated with Wa human rotavirus. . Immunology 103::18898
    [Crossref] [Google Scholar]
  92. 92.
    Park S, Sestak K, Hodgins DC, Shoup DI, Ward LA, et al. 1998.. Immune response of sows vaccinated with attenuated transmissible gastroenteritis virus (TGEV) and recombinant TGEV spike protein vaccines and protection of their suckling pigs against virulent TGEV challenge exposure. . Am. J. Vet. Res. 59::10028
    [Crossref] [Google Scholar]
  93. 93.
    Hodgins DC, Kang SY, deArriba L, Parreño V, Ward LA, et al. 1999.. Effects of maternal antibodies on protection and development of antibody responses to human rotavirus in gnotobiotic pigs. . J. Virol. 73::18697
    [Crossref] [Google Scholar]
  94. 94.
    Parreño V, Hodgins DC, deArriba L, Kang SY, Yuan L, et al. 1999.. Serum and intestinal isotype antibody responses to Wa human rotavirus in gnotobiotic pigs are modulated by maternal antibodies. . J. Gen. Virol. 80:(Pt. 6):141728
    [Crossref] [Google Scholar]
  95. 95.
    Nguyen TV, Yuan L, Azevedo MSP, Jeong K-i, Gonzalez AM, et al. 2006.. High titers of circulating maternal antibodies suppress effector and memory B-cell responses induced by an attenuated rotavirus priming and rotavirus-like particle-immunostimulating complex boosting vaccine regimen. . Clin. Vaccine Immunol. 13::47585
    [Crossref] [Google Scholar]
  96. 96.
    Vega CG, Bok M, Vlasova AN, Chattha KS, Fernandez FM, et al. 2012.. IgY antibodies protect against human rotavirus induced diarrhea in the neonatal gnotobiotic piglet disease model. . PLOS ONE 7::e42788
    [Crossref] [Google Scholar]
  97. 97.
    Vega CG, Bok M, Vlasova AN, Chattha KS, Gómez-Sebastián S, et al. 2013.. Recombinant monovalent llama-derived antibody fragments (VHH) to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea. . PLOS Pathog. 9::e1003334
    [Crossref] [Google Scholar]
  98. 98.
    Vlasova AN, Chattha KS, Kandasamy S, Siegismund CS, Saif LJ. 2013.. Prenatally acquired vitamin A deficiency alters innate immune responses to human rotavirus in a gnotobiotic pig model. . J. Immunol. 190::474253
    [Crossref] [Google Scholar]
  99. 99.
    Chattha KS, Kandasamy S, Vlasova AN, Saif LJ. 2013.. Vitamin A deficiency impairs adaptive B and T cell responses to a prototype monovalent attenuated human rotavirus vaccine and virulent human rotavirus challenge in a gnotobiotic piglet model. . PLOS ONE 8::e82966
    [Crossref] [Google Scholar]
  100. 100.
    Kandasamy S, Chattha KS, Vlasova AN, Saif LJ. 2014.. Prenatal vitamin A deficiency impairs adaptive immune responses to pentavalent rotavirus vaccine (RotaTeq®) in a neonatal gnotobiotic pig model. . Vaccine 32::81624
    [Crossref] [Google Scholar]
  101. 101.
    Kandasamy S, Vlasova AN, Fischer DD, Chattha KS, Shao L, et al. 2017.. Unraveling the differences between gram-positive and gram-negative probiotics in modulating protective immunity to enteric infections. . Front. Immunol. 8::334
    [Crossref] [Google Scholar]
  102. 102.
    Vlasova AN, Kandasamy S, Chattha KS, Rajashekara G, Saif LJ. 2016.. Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. . Vet. Immunol. Immunopathol. 172::7284
    [Crossref] [Google Scholar]
  103. 103.
    Kandasamy S, Vlasova AN, Fischer D, Kumar A, Chattha KS, et al. 2016.. Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus strain GG on human rotavirus binding, infection, and B cell immunity. . J. Immunol. 196::178089
    [Crossref] [Google Scholar]
  104. 104.
    Michael H, Miyazaki A, Langel SN, Amimo JO, Kick MK, et al. 2022.. Escherichia coli Nissle 1917 enhances efficacy of oral attenuated human rotavirus vaccine in a gnotobiotic piglet model. . Vaccines 10::83
    [Crossref] [Google Scholar]
  105. 105.
    Fischer DD, Kandasamy S, Paim FC, Langel SN, Alhamo MA, et al. 2017.. Protein malnutrition alters tryptophan and angiotensin-converting enzyme 2 homeostasis and adaptive immune responses in human rotavirus-infected gnotobiotic pigs with human infant fecal microbiota transplant. . Clin. Vaccine Immunol. 24::e00172-17
    [Crossref] [Google Scholar]
  106. 106.
    Miyazaki A, Kandasamy S, Michael H, Langel SN, Paim FC, et al. 2018.. Protein deficiency reduces efficacy of oral attenuated human rotavirus vaccine in a human infant fecal microbiota transplanted gnotobiotic pig model. . Vaccine 36::627081
    [Crossref] [Google Scholar]
  107. 107.
    Vlasova AN, Rajashekara G, Saif LJ. 2018.. Interactions between human microbiome, diet, enteric viruses and immune system: novel insights from gnotobiotic pig research. . Drug Discov. Today Dis. Models 28::95103
    [Crossref] [Google Scholar]
  108. 108.
    Vlasova AN, Takanashi S, Miyazaki A, Rajashekara G, Saif LJ. 2019.. How the gut microbiome regulates host immune responses to viral vaccines. . Curr. Opin. Virol. 37::1625
    [Crossref] [Google Scholar]
  109. 109.
    Michael H, Srivastava V, Deblais L, Amimo JO, Chepngeno J, et al. 2022.. The combined Escherichia coli Nissle 1917 and tryptophan treatment modulates immune and metabolome responses to human rotavirus infection in a human infant fecal microbiota-transplanted malnourished gnotobiotic pig model. . mSphere 7::e0027022
    [Crossref] [Google Scholar]
  110. 110.
    Srivastava V, Deblais L, Huang HC, Miyazaki A, Kandasamy S, et al. 2020.. Reduced rotavirus vaccine efficacy in protein malnourished human-faecal-microbiota-transplanted gnotobiotic pig model is in part attributed to the gut microbiota. . Benef. Microbes 11::73351
    [Crossref] [Google Scholar]
  111. 111.
    Bohl EH, Theil KW, Saif LJ. 1984.. Isolation and serotyping of porcine rotaviruses and antigenic comparison with other rotaviruses. . J. Clin. Microbiol. 19::10511
    [Crossref] [Google Scholar]
  112. 112.
    Parwani AV, Hussein HA, Rosen BI, Lucchelli A, Navarro L, et al. 1993.. Characterization of field strains of group A bovine rotaviruses by using polymerase chain reaction-generated G and P type-specific cDNA probes. . J. Clin. Microbiol. 31::201015
    [Crossref] [Google Scholar]
  113. 113.
    Fernandez FM, Conner ME, Parwani AV, Todhunter D, Smith KL, et al. 1996.. Isotype-specific antibody responses to rotavirus and virus proteins in cows inoculated with subunit vaccines composed of recombinant SA11 rotavirus core-like particles (CLP) or virus-like particles (VLP). . Vaccine 14::130312
    [Crossref] [Google Scholar]
  114. 114.
    Kim Y, Nielsen PR, Hodgins D, Chang KO, Saif LJ. 2002.. Lactogenic antibody responses in cows vaccinated with recombinant bovine rotavirus-like particles (VLPs) of two serotypes or inactivated bovine rotavirus vaccines. . Vaccine 20::124858
    [Crossref] [Google Scholar]
  115. 115.
    Saif LJ, Bohl EH, Theil KW, Cross RF, House JA. 1980.. Rotavirus-like, calicivirus-like, and 23-nm virus-like particles associated with diarrhea in young pigs. . J. Clin. Microbiol. 12::10511
    [Crossref] [Google Scholar]
  116. 116.
    Bohl EH, Saif LJ, Theil KW, Agnes AG, Cross RF. 1982.. Porcine pararotavirus: detection, differentiation from rotavirus, and pathogenesis in gnotobiotic pigs. . J. Clin. Microbiol. 15::31219
    [Crossref] [Google Scholar]
  117. 117.
    Jiang B, Tsunemitsu H, Dennehy PH, Oishi I, Brown D, et al. 1996.. Sequence conservation and expression of the gene encoding the outer capsid glycoprotein among human group C rotaviruses of global distribution. . Arch. Virol. 141::38190
    [Crossref] [Google Scholar]
  118. 118.
    Tsunemitsu H, Saif LJ, Jiang BM, Shimizu M, Hiro M, et al. 1991.. Isolation, characterization, and serial propagation of a bovine group C rotavirus in a monkey kidney cell line (MA104). . J. Clin. Microbiol. 29::260913
    [Crossref] [Google Scholar]
  119. 119.
    Saif LJ, Jiang B. 1994.. Nongroup A rotaviruses of humans and animals. . Curr. Top. Microbiol. Immunol. 185::33971
    [Google Scholar]
  120. 120.
    Nagai M, Wang Q, Oka T, Saif LJ. 2020.. Porcine sapoviruses: pathogenesis, epidemiology, genetic diversity, and diagnosis. . Virus Res. 286::198025
    [Crossref] [Google Scholar]
  121. 121.
    Theil KW, Saif LJ, Moorhead PD, Whitmoyer RE. 1985.. Porcine rotavirus-like virus (group B rotavirus): characterization and pathogenicity for gnotobiotic pigs. . J. Clin. Microbiol. 21::34045
    [Crossref] [Google Scholar]
  122. 122.
    Chang KO, Parwani AV, Smith D, Saif LJ. 1997.. Detection of group B rotaviruses in fecal samples from diarrheic calves and adult cows and characterization of their VP7 genes. . J. Clin. Microbiol. 35::210710
    [Crossref] [Google Scholar]
  123. 123.
    Jiang B, Tsunemitsu H, Gentsch JR, Glass RI, Green KY, et al. 1992.. Nucleotide sequence of gene 5 encoding the inner capsid protein (VP6) of bovine group C rotavirus: comparison with corresponding genes of group C, A, and B rotaviruses. . Virology 190::54247
    [Crossref] [Google Scholar]
  124. 124.
    Chepngeno J, Takanashi S, Diaz A, Michael H, Paim FC, et al. 2020.. Comparative sequence analysis of historic and current porcine rotavirus C strains and their pathogenesis in 3-day-old and 3-week-old piglets. . Front. Microbiol. 11::780
    [Crossref] [Google Scholar]
  125. 125.
    Saif LJ, Terrett LA, Miller KL, Cross RF. 1988.. Serial propagation of porcine group C rotavirus (pararotavirus) in a continuous cell line and characterization of the passaged virus. . J. Clin. Microbiol. 26::127782
    [Crossref] [Google Scholar]
  126. 126.
    Kim Y, Chang K-O, Kim W-Y, Saif LJ. 2002.. Production of hybrid double- or triple-layered virus-like particles of group A and C rotaviruses using a baculovirus expression system. . Virology 302::18
    [Crossref] [Google Scholar]
  127. 127.
    Tsunemitsu H, Kamiyama M, Kawashima K, Katsuda K, Kohmoto M, et al. 2005.. Molecular characterization of the major capsid protein VP6 of bovine group B rotavirus and its use in seroepidemiology. . J. Gen. Virol. 86::256975
    [Crossref] [Google Scholar]
  128. 128.
    Chepngeno J, Diaz A, Paim FC, Saif LJ, Vlasova AN. 2019.. Rotavirus C: prevalence in suckling piglets and development of virus-like particles to assess the influence of maternal immunity on the disease development. . Vet. Res. 50::84
    [Crossref] [Google Scholar]
  129. 129.
    Kapikian AZ, Wyatt RG, Dolin R, Thornhill TS, Kalica AR, et al. 1972.. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. . J. Virol. 10::107581
    [Crossref] [Google Scholar]
  130. 130.
    Wang QH, Costantini V, Saif LJ. 2007.. Porcine enteric caliciviruses: genetic and antigenic relatedness to human caliciviruses, diagnosis and epidemiology. . Vaccine 25::545366
    [Crossref] [Google Scholar]
  131. 131.
    Smiley JR, Chang KO, Hayes J, Vinje J, Saif LJ. 2002.. Characterization of an enteropathogenic bovine calicivirus representing a potentially new calicivirus genus. . J. Virol. 76::1008998
    [Crossref] [Google Scholar]
  132. 132.
    Oliver SL, Asobayire E, Dastjerdi AM, Bridger JC. 2006.. Genomic characterization of the unclassified bovine enteric virus Newbury agent-1 (Newbury1) endorses a new genus in the family Caliciviridae. . Virology 350::24050
    [Crossref] [Google Scholar]
  133. 133.
    Jung K, Scheuer KA, Zhang Z, Wang Q, Saif LJ. 2014.. Pathogenesis of GIII.2 bovine norovirus, CV186-OH/00/US strain in gnotobiotic calves. . Vet. Microbiol. 168::2027
    [Crossref] [Google Scholar]
  134. 134.
    Han MG, Smiley JR, Thomas C, Saif LJ. 2004.. Genetic recombination between two genotypes of genogroup III bovine noroviruses (BoNVs) and capsid sequence diversity among BoNVs and Nebraska-like bovine enteric caliciviruses. . J. Clin. Microbiol. 42::521424
    [Crossref] [Google Scholar]
  135. 135.
    Han MG, Wang Q, Smiley JR, Chang KO, Saif LJ. 2005.. Self-assembly of the recombinant capsid protein of a bovine norovirus (BoNV) into virus-like particles and evaluation of cross-reactivity of BoNV with human noroviruses. . J. Clin. Microbiol. 43::77885
    [Crossref] [Google Scholar]
  136. 136.
    Thomas C, Jung K, Han MG, Hoet A, Scheuer K, et al. 2014.. Retrospective serosurveillance of bovine norovirus (GIII.2) and nebovirus in cattle from selected feedlots and a veal calf farm in 1999 to 2001 in the United States. . Arch. Virol. 159::8390
    [Crossref] [Google Scholar]
  137. 137.
    Guo M, Saif LJ. 2002.. Pathogenesis of enteric calcivirus infections. . Perspect. Med. Virol. 9::489503
    [Crossref] [Google Scholar]
  138. 138.
    Martella V, Banyai K, Lorusso E, Bellacicco AL, Decaro N, et al. 2008.. Genetic heterogeneity of porcine enteric caliciviruses identified from diarrhoeic piglets. . Virus Genes 36::36573
    [Crossref] [Google Scholar]
  139. 139.
    Guo M, Chang KO, Hardy ME, Zhang Q, Parwani AV, et al. 1999.. Molecular characterization of a porcine enteric calicivirus genetically related to Sapporo-like human caliciviruses. . J. Virol. 73::962531
    [Crossref] [Google Scholar]
  140. 140.
    Lu Z, Yokoyama M, Chen N, Oka T, Jung K, et al. 2016.. Mechanism of cell culture adaptation of an enteric calicivirus, the porcine sapovirus Cowden strain. . J. Virol. 90::134558
    [Crossref] [Google Scholar]
  141. 141.
    Guo M, Qian Y, Chang KO, Saif LJ. 2001.. Expression and self-assembly in baculovirus of porcine enteric calicivirus capsids into virus-like particles and their use in an enzyme-linked immunosorbent assay for antibody detection in swine. . J. Clin. Microbiol. 39::148793
    [Crossref] [Google Scholar]
  142. 142.
    Flynn WT, Saif LJ. 1988.. Serial propagation of porcine enteric calicivirus-like virus in primary porcine kidney cell cultures. . J. Clin. Microbiol. 26::20612
    [Crossref] [Google Scholar]
  143. 143.
    Parwani AV, Flynn WT, Gadfield KL, Saif LJ. 1991.. Serial propagation of porcine enteric calicivirus in a continuous cell line. Effect of medium supplementation with intestinal contents or enzymes. . Arch. Virol. 120::11522
    [Crossref] [Google Scholar]
  144. 144.
    Chang KO, Sosnovtsev SV, Belliot G, Kim Y, Saif LJ, et al. 2004.. Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. . PNAS 101::873338
    [Crossref] [Google Scholar]
  145. 145.
    Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, et al. 2016.. Replication of human noroviruses in stem cell-derived human enteroids. . Science 353::138793
    [Crossref] [Google Scholar]
  146. 146.
    Takagi H, Oka T, Shimoike T, Saito H, Kobayashi T, et al. 2020.. Human sapovirus propagation in human cell lines supplemented with bile acids. . PNAS 117::3207885
    [Crossref] [Google Scholar]
  147. 147.
    Cheetham S, Souza M, McGregor R, Meulia T, Wang Q, et al. 2007.. Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. . J. Virol. 81::353544
    [Crossref] [Google Scholar]
  148. 148.
    Jung K, Wang Q, Chang KO, Saif LJ. 2023.. Intestinal colonization with Escherichia fergusonii enhances infectivity of GII.12 human norovirus in gnotobiotic pigs. . Virus Res. 336::199219
    [Crossref] [Google Scholar]
  149. 149.
    Esseili MA, Gao X, Boley P, Hou Y, Saif LJ, et al. 2019.. Human norovirus histo-blood group antigen (HBGA) binding sites mediate the virus specific interactions with lettuce carbohydrates. . Viruses 11::833
    [Crossref] [Google Scholar]
  150. 150.
    Esseili MA, Meulia T, Saif LJ, Wang Q. 2018.. Tissue distribution and visualization of internalized human norovirus in leafy greens. . Appl. Environ. Microbiol. 84::e00292-18
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-101937
Loading
/content/journals/10.1146/annurev-animal-111523-101937
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error