1932

Abstract

Dogs have played an outsized role in the field of behavioral genetics since its earliest days. Their unique evolutionary history and ubiquity in the modern world make them a potentially powerful model system for discovering how genetic changes lead to changes in behavior. Genomic technology has supercharged this potential by enabling scientists to sequence the DNA of thousands of dogs and test for correlations with behavioral traits. However, fractures in the early history of animal behavior between biological and psychological subfields may be impeding progress. In addition, canine behavioral genetics has included almost exclusively dogs from modern breeds, who represent just a small fraction of all dog diversity. By expanding the scope of dog behavior studies, and incorporating an evolutionary perspective on canine behavioral genetics, we can move beyond associations to understanding the complex interactions between genes and environment that lead to dog behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-101954
2025-02-18
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-101954.html?itemId=/content/journals/10.1146/annurev-animal-111523-101954&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Darwin C. 1859.. On the Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life. London:: J. Murray
    [Google Scholar]
  2. 2.
    Lord K, Feinstein M, Smith B, Coppinger R. 2013.. Variation in reproductive traits of members of the genus Canis with special attention to the domestic dog (Canis familiaris). . Behav. Process. 92::13142
    [Crossref] [Google Scholar]
  3. 3.
    Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, et al. 2005.. Genome sequence, comparative analysis and haplotype structure of the domestic dog. . Nature 438:(7069):80319
    [Crossref] [Google Scholar]
  4. 4.
    Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, et al. 2014.. Genome sequencing highlights the dynamic early history of dogs. . PLOS Genet. 10:(1):e1004016
    [Crossref] [Google Scholar]
  5. 5.
    Wayne RK, vonHoldt BM. 2012.. Evolutionary genomics of dog domestication. . Mamm. Genome 23:(1–2):318
    [Crossref] [Google Scholar]
  6. 6.
    Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, et al. 2013.. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. . Nature 495:(7441):36064
    [Crossref] [Google Scholar]
  7. 7.
    Pendleton AL, Shen F, Taravella AM, Emery S, Veeramah KR, et al. 2018.. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. . BMC Biol. 16::64
    [Crossref] [Google Scholar]
  8. 8.
    Cagan A, Blass T. 2016.. Identification of genomic variants putatively targeted by selection during dog domestication. . BMC Evol. Biol. 16::10
    [Crossref] [Google Scholar]
  9. 9.
    Freedman AH, Schweizer RM, Ortega-Del Vecchyo D, Han E, Davis BW, et al. 2016.. Demographically-based evaluation of genomic regions under selection in domestic dogs. . PLOS Genet. 12:(3):e1005851
    [Crossref] [Google Scholar]
  10. 10.
    vonHoldt BM, Shuldiner E, Koch IJ, Kartzinel RY, Hogan A, et al. 2017.. Structural variants in genes associated with human Williams-Beuren syndrome underlie stereotypical hypersociability in domestic dogs. . Sci. Adv. 3:(7):e1700398
    [Crossref] [Google Scholar]
  11. 11.
    Lord K, Schneider RA, Coppinger R. 2016.. Evolution of working dogs. . In The Domestic Dog: Its Evolution, Behavior and Interactions with People, Vol. 4, ed. J Serpell , pp. 4266. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  12. 12.
    Mazzorin JDG, Tagliacozzo A. 2000.. Morphological and osteological changes in the dog from the Neolithic to the Roman period in Italy. . In Dogs Through Time: An Archaeological, Perspective, ed. SJ Crockford , pp. 14161. Oxford, UK:: Archaeopress
    [Google Scholar]
  13. 13.
    Worboys M, Strange J-M, Pemberton N. 2018.. The Invention of the Modern Dog: Breed and Blood in Victorian Britain. Baltimore:: Johns Hopkins Univ. Press
    [Google Scholar]
  14. 14.
    Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, et al. 2005.. Genome sequence, comparative analysis and haplotype structure of the domestic dog. . Nature 438:(7069):80319
    [Crossref] [Google Scholar]
  15. 15.
    Bergström A, Stanton DWG, Taron UH, Frantz L, Sinding M-HS, et al. 2022.. Grey wolf genomic history reveals a dual ancestry of dogs. . Nature 607:(7918):31320
    [Crossref] [Google Scholar]
  16. 16.
    Konno A, Romero T, Inoue-Murayama M, Saito A, Hasegawa T. 2016.. Dog breed differences in visual communication with humans. . PLOS ONE 11:(10):e0164760
    [Crossref] [Google Scholar]
  17. 17.
    Turcsán B, Kubinyi E, Miklósi Á. 2011.. Trainability and boldness traits differ between dog breed clusters based on conventional breed categories and genetic relatedness. . Appl. Anim. Behav. Sci. 132:(1):6170
    [Crossref] [Google Scholar]
  18. 18.
    Larson G, Karlsson EK, Perri A, Webster MT, Ho SYW, et al. 2012.. Rethinking dog domestication by integrating genetics, archeology, and biogeography. . PNAS 109:(23):887883
    [Crossref] [Google Scholar]
  19. 19.
    Moon KL, Huson HJ, Morrill K, Wang M-S, Li X, et al. 2023.. Comparative genomics of Balto, a famous historic dog, captures lost diversity of 1920s sled dogs. . Science 380:(6643):eabn5887
    [Crossref] [Google Scholar]
  20. 20.
    Ní Leathlobhair M, Perri AR, Irving-Pease EK, Witt KE, Linderholm A, et al. 2018.. The evolutionary history of dogs in the Americas. . Science 361:(6397):8185
    [Crossref] [Google Scholar]
  21. 21.
    Surbakti S, Parker HG, McIntyre JK, Maury HK, Cairns KM, et al. 2020.. New Guinea highland wild dogs are the original New Guinea singing dogs. . PNAS 117:(39):2436976
    [Crossref] [Google Scholar]
  22. 22.
    Barlow GW. 1991.. Nature-nurture and the debates surrounding ethology and sociobiology. . Integr. Comp. Biol. 31:(2):28696
    [Google Scholar]
  23. 23.
    Gottlieb G. 2014.. Synthesizing Nature-Nurture: Prenatal Roots of Instinctive Behavior. London:: Psychology
    [Google Scholar]
  24. 24.
    Tinbergen N. 2010.. On aims and methods of Ethology. . Z. Tierpsychol. 20:(4):41033
    [Crossref] [Google Scholar]
  25. 25.
    Scott JP, Fuller JL. 1965.. Genetics and the Social Behavior of the Dog. Chicago:: Univ. Chicago Press
    [Google Scholar]
  26. 26.
    West MJ, King AP, White DJ. 2003.. The case for developmental ecology. . Anim. Behav. 66:(4):61722
    [Crossref] [Google Scholar]
  27. 27.
    Hershey AD, Chase M. 1952.. Independent functions of viral protein and nucleic acid in growth of bacteriophage. . J. Gen. Physiol. 36:(1):3956
    [Crossref] [Google Scholar]
  28. 28.
    Hradecká L, Bartoš L, Svobodová I, Sales J. 2015.. Heritability of behavioural traits in domestic dogs: a meta-analysis. . Appl. Anim. Behav. Sci. 170::113
    [Crossref] [Google Scholar]
  29. 29.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. 2001.. Initial sequencing and analysis of the human genome. . Nature 409:(6822):860921
    [Crossref] [Google Scholar]
  30. 30.
    Pennisi E. 2007.. The geneticist's best friend. . Science 317:(5845):166871
    [Crossref] [Google Scholar]
  31. 31.
    Mouse Genome Seq. Consort. 2002.. Initial sequencing and comparative analysis of the mouse genome. . Nature 420:(6915):52062
    [Crossref] [Google Scholar]
  32. 32.
    Chimpanzee Seq. Anal. Consort. 2005.. Initial sequence of the chimpanzee genome and comparison with the human genome. . Nature 437:(7055):6987
    [Crossref] [Google Scholar]
  33. 33.
    Loos RJF. 2020.. 15 years of genome-wide association studies and no signs of slowing down. . Nat. Commun. 11::5900
    [Crossref] [Google Scholar]
  34. 34.
    Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, et al. 2021.. Genome-wide association studies. . Nat. Rev. Methods Primers 1::59
    [Crossref] [Google Scholar]
  35. 35.
    Duarte RRR, Brentani H, Powell TR. 2021.. Ditching candidate gene association studies: lessons from psychiatric genetics. . Braz. J. Psychiatry 43:(3):34244
    [Crossref] [Google Scholar]
  36. 36.
    van de Weijer MP, Pelt DHM, de Vries LP, Baselmans BML, Bartels M. 2022.. A re-evaluation of candidate gene studies for well-being in light of genome-wide evidence. . J. Happiness Stud. 23:(6):303153
    [Crossref] [Google Scholar]
  37. 37.
    Border R, Johnson EC, Evans LM, Smolen A, Berley N, et al. 2019.. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. . Am. J. Psychiatry 176:(5):37687
    [Crossref] [Google Scholar]
  38. 38.
    Duncan LE, Ostacher M, Ballon J. 2019.. How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. . Neuropsychopharmacology 44:(9):151823
    [Crossref] [Google Scholar]
  39. 39.
    Moses L, Niemi S, Karlsson E. 2018.. Pet genomics medicine runs wild. . Nature 559:(7715):47072
    [Crossref] [Google Scholar]
  40. 40.
    Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler RS, et al. 2005.. Complement factor H polymorphism in age-related macular degeneration. . Science 308:(5720):38589
    [Crossref] [Google Scholar]
  41. 41.
    Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NHC, Zody MC, et al. 2007.. Efficient mapping of mendelian traits in dogs through genome-wide association. . Nat. Genet. 39:(11):132128
    [Crossref] [Google Scholar]
  42. 42.
    Kerns JA, Cargill EJ, Clark LA, Candille SI, Berryere TG, et al. 2007.. Linkage and segregation analysis of black and brindle coat color in domestic dogs. . Genetics 176:(3):167989
    [Crossref] [Google Scholar]
  43. 43.
    Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, et al. 2007.. A β-defensin mutation causes black coat color in domestic dogs. . Science 318:(5855):141823
    [Crossref] [Google Scholar]
  44. 44.
    Drögemüller C, Karlsson EK, Hytönen MK, Perloski M, Dolf G, et al. 2008.. A mutation in hairless dogs implicates FOXI3 in ectodermal development. . Science 321:(5895):1462
    [Crossref] [Google Scholar]
  45. 45.
    Cadieu E, Neff MW, Quignon P, Walsh K, Chase K, et al. 2009.. Coat variation in the domestic dog is governed by variants in three genes. . Science 326:(5949):15053
    [Crossref] [Google Scholar]
  46. 46.
    Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, et al. 2007.. A single IGF1 allele is a major determinant of small size in dogs. . Science 316:(5821):11215
    [Crossref] [Google Scholar]
  47. 47.
    Rimbault M, Beale HC, Schoenebeck JJ, Hoopes BC, Allen JJ, et al. 2013.. Derived variants at six genes explain nearly half of size reduction in dog breeds. . Genome Res. 23:(12):198595
    [Crossref] [Google Scholar]
  48. 48.
    Parker HG, VonHoldt BM, Quignon P, Margulies EH, Shao S, et al. 2009.. An expressed Fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. . Science 325:(5943):99598
    [Crossref] [Google Scholar]
  49. 49.
    Wiik AC, Wade C, Biagi T, Ropstad E-O, Bjerkås E, et al. 2008.. A deletion in nephronophthisis 4 (NPHP4) is associated with recessive cone-rod dystrophy in standard wire-haired dachshund. . Genome Res. 18:(9):141521
    [Crossref] [Google Scholar]
  50. 50.
    Karlsson EK, Lindblad-Toh K. 2008.. Leader of the pack: gene mapping in dogs and other model organisms. . Nat. Rev. Genet. 9:(9):71325
    [Crossref] [Google Scholar]
  51. 51.
    Schoenebeck JJ, Ostrander EA. 2014.. Insights into morphology and disease from the dog genome project. . Annu. Rev. Cell Dev. Biol. 30::53560
    [Crossref] [Google Scholar]
  52. 52.
    Gallagher MD, Chen-Plotkin AS. 2018.. The post-GWAS era: from association to function. . Am. J. Hum. Genet. 102:(5):71730
    [Crossref] [Google Scholar]
  53. 53.
    Lander ES, Schork NJ. 2006.. Genetic dissection of complex traits. . Focus 4:(3):44258
    [Crossref] [Google Scholar]
  54. 54.
    Abdellaoui A, Yengo L, Verweij KJH, Visscher PM. 2023.. 15 years of GWAS discovery: realizing the promise. . Am. J. Hum. Genet. 110:(2):17994
    [Crossref] [Google Scholar]
  55. 55.
    Stewart SE, Yu D, Scharf JM, Neale BM, Fagerness JA, et al. 2013.. Genome-wide association study of obsessive-compulsive disorder. . Mol. Psychiatry 18:(7):78898
    [Crossref] [Google Scholar]
  56. 56.
    Strom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, et al. 2024.. Genome-wide association study identifies 30 obsessive-compulsive disorder associated loci. . medRxiv. https://doi.org/10.1101/2024.03.13.24304161
  57. 57.
    Machiela MJ, Chanock SJ. 2014.. GWAS is going to the dogs. . Genome Biol. 15::105
    [Crossref] [Google Scholar]
  58. 58.
    Dodman NH, Karlsson EK, Moon-Fanelli A, Galdzicka M, Perloski M, et al. 2010.. A canine chromosome 7 locus confers compulsive disorder susceptibility. . Mol. Psychiatry 15:(1):810
    [Crossref] [Google Scholar]
  59. 59.
    Karlsson EK, Sigurdsson S, Ivansson E, Thomas R, Elvers I, et al. 2013.. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B. . Genome Biol. 14::R132
    [Crossref] [Google Scholar]
  60. 60.
    Momozawa Y, Merveille A-C, Battaille G, Wiberg M, Koch J, et al. 2020.. Genome wide association study of 40 clinical measurements in eight dog breeds. . Sci. Rep. 10::6520
    [Crossref] [Google Scholar]
  61. 61.
    Ostrander EA, Wang G-D, Larson G, vonHoldt BM, Davis BW, et al. 2019.. Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. . Natl. Sci. Rev. 6:(4):81024
    [Crossref] [Google Scholar]
  62. 62.
    Meadows JRS, Kidd JM, Wang G-D, Parker HG, Schall PZ, et al. 2023.. Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. . Genome Biol. 24:(1):187
    [Crossref] [Google Scholar]
  63. 63.
    Mars. 2023.. Mars Petcare and the Broad Institute create open-access database of dog and cat genomes to advance preventive pet care. Press Rel., Jan. 9. https://www.mars.com/news-and-stories/press-releases-statements/mars-petcare-broad-institute-open-access-database-dog-cat-genomes
    [Google Scholar]
  64. 64.
    Creevy KE, Akey JM, Kaeberlein M, Promislow DEL, Dog Aging Proj. Consort. 2022.. An open science study of ageing in companion dogs. . Nature 602:(7895):5157
    [Crossref] [Google Scholar]
  65. 65.
    Morrill K, Hekman J, Li X, McClure J, Logan B, et al. 2022.. Ancestry-inclusive dog genomics challenges popular breed stereotypes. . Science 376:(6592):eabk0639
    [Crossref] [Google Scholar]
  66. 66.
    Sullivan PF. 2010.. The psychiatric GWAS consortium: Big science comes to psychiatry. . Neuron 68:(2):18286
    [Crossref] [Google Scholar]
  67. 67.
    Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, et al. 2022.. A saturated map of common genetic variants associated with human height. . Nature 610:(7933):70412
    [Crossref] [Google Scholar]
  68. 68.
    Dahl A, Thompson M, An U, Krebs M, Appadurai V, et al. 2023.. Phenotype integration improves power and preserves specificity in biobank-based genetic studies of major depressive disorder. . Nat. Genet. 55:(12):208293
    [Crossref] [Google Scholar]
  69. 69.
    Cai N, Revez JA, Adams MJ, Andlauer TFM, Breen G, et al. 2020.. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. . Nat. Genet. 52:(4):43747
    [Crossref] [Google Scholar]
  70. 70.
    Saetre P, Strandberg E, Sundgren P-E, Pettersson U, Jazin E, Bergström TF. 2006.. The genetic contribution to canine personality. . Genes Brain Behav. 5:(3):24048
    [Crossref] [Google Scholar]
  71. 71.
    Zapata I, Serpell JA, Alvarez CE. 2016.. Genetic mapping of canine fear and aggression. . BMC Genom. 17::572
    [Crossref] [Google Scholar]
  72. 72.
    Shan S, Xu F, Brenig B. 2021.. Genome-wide association studies reveal neurological genes for dog herding, predation, temperament, and trainability traits. . Front. Vet. Sci. 8::693290
    [Crossref] [Google Scholar]
  73. 73.
    Smith DJ, Escott-Price V, Davies G, Bailey MES, Colodro-Conde L, et al. 2016.. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci. . Mol. Psychiatry 21:(6):74957
    [Crossref] [Google Scholar]
  74. 74.
    Hartz SM, Quan T, Ibiebele A, Fisher SL, Olfson E, et al. 2017.. The significant impact of education, poverty, and race on Internet-based research participant engagement. . Genet. Med. 19:(2):24043
    [Crossref] [Google Scholar]
  75. 75.
    Mahmoudi D, Hawn CL, Henry EH, Perkins DJ, Cooper CB, Wilson SM. 2022.. Mapping for whom? Communities of color and the citizen science gap. . ACME 21:(4):37288
    [Google Scholar]
  76. 76.
    Brady K, Cracknell N, Zulch H, Mills DS. 2018.. A systematic review of the reliability and validity of behavioural tests used to assess behavioural characteristics important in working dogs. . Front. Vet. Sci. 5::103
    [Crossref] [Google Scholar]
  77. 77.
    Crabbe JC, Wahlsten D, Dudek BC. 1999.. Genetics of mouse behavior: interactions with laboratory environment. . Science 284:(5420):167072
    [Crossref] [Google Scholar]
  78. 78.
    Chen FL, Zimmermann M, Hekman JP, Lord KA, Logan B, et al. 2021.. Advancing genetic selection and behavioral genomics of working dogs through collaborative science. . Front. Vet. Sci. 8::662429
    [Crossref] [Google Scholar]
  79. 79.
    Mathis A, Schneider S, Lauer J, Mathis MW. 2020.. A primer on motion capture with deep learning: principles, pitfalls, and perspectives. . Neuron 108:(1):4465
    [Crossref] [Google Scholar]
  80. 80.
    Wu Y, Nichols C, Foster M, Martin D, Dieffenderfer J, et al. 2024.. An exploration of machine learning methods for gait analysis of potential guide dogs. . In ACI ’23: Proceedings of the Tenth International Conference on Animal–Computer Interaction, Art. 10 . New York:: Assoc. Comput. Mach.
    [Google Scholar]
  81. 81.
    Jones P, Chase K, Martin A, Davern P, Ostrander EA, Lark KG. 2008.. Single-nucleotide-polymorphism-based association mapping of dog stereotypes. . Genetics 179:(2):103344
    [Crossref] [Google Scholar]
  82. 82.
    MacLean EL, Snyder-Mackler N, vonHoldt BM, Serpell JA. 2019.. Highly heritable and functionally relevant breed differences in dog behaviour. . Proc. Biol. Sci. 2861912::20190716
    [Google Scholar]
  83. 83.
    Mehrkam LR, Wynne CDL. 2014.. Behavioral differences among breeds of domestic dogs (Canis lupus familiaris): current status of the science. . Appl. Anim. Behav. Sci. 155::1227
    [Crossref] [Google Scholar]
  84. 84.
    Svartberg K. 2006.. Breed-typical behaviour in dogs—historical remnants or recent constructs?. Appl. Anim. Behav. Sci. 96:(3):293313
    [Crossref] [Google Scholar]
  85. 85.
    Hammond A, Rowland T, Mills DS, Pilot M. 2022.. Comparison of behavioural tendencies between “dangerous dogs” and other domestic dog breeds—evolutionary context and practical implications. . Evol. Appl. 15:(11):180619
    [Crossref] [Google Scholar]
  86. 86.
    Akkad DA, Gerding WM, Gasser RB, Epplen JT. 2015.. Homozygosity mapping and sequencing identify two genes that might contribute to pointing behavior in hunting dogs. . Canine Genet. Epidemiol. 2::5
    [Crossref] [Google Scholar]
  87. 87.
    Zapata I, Lilly ML, Herron ME, Serpell JA, Alvarez CE. 2022.. Genetic testing of dogs predicts problem behaviors in clinical and nonclinical samples. . BMC Genom. 23::102
    [Crossref] [Google Scholar]
  88. 88.
    Morrill K. 2023.. The genomics of canine behavior and its comparative relevance to human neuropsychiatric conditions. PhD Thesis , Chan Med. School, Univ. Mass., Cambridge:
    [Google Scholar]
  89. 89.
    de Los Campos G, Vazquez AI, Hsu S, Lello L. 2018.. Complex-trait prediction in the era of big data. . Trends Genet. 34:(10):74654
    [Crossref] [Google Scholar]
  90. 90.
    Ancestry Team. 2023.. Ancestry® launches Know Your Pet DNA. . Ancestry Blog, Sept. 13. https://www.ancestry.com/c/ancestry-blog/ancestry-launches-know-your-pet-dna
    [Google Scholar]
  91. 91.
    Dutrow EV, Serpell JA, Ostrander EA. 2022.. Domestic dog lineages reveal genetic drivers of behavioral diversification. . Cell 185:(25):473755.e18
    [Crossref] [Google Scholar]
  92. 92.
    Morrill K, Chen F, Karlsson E. 2023.. Comparative neurogenetics of dog behavior complements efforts towards human neuropsychiatric genetics. . Hum. Genet. 142:(8):123146
    [Crossref] [Google Scholar]
  93. 93.
    Tsai KL, Clark LA, Murphy KE. 2007.. Understanding hereditary diseases using the dog and human as companion model systems. . Mamm. Genome 18:(6–7):44451
    [Crossref] [Google Scholar]
  94. 94.
    Chen L, Brown RE, McKenna JT, McCarley RW. 2009.. Animal models of narcolepsy. . CNS Neurol. Disord. Drug Targets 8:(4):296308
    [Crossref] [Google Scholar]
  95. 95.
    Paoloni M, Khanna C. 2008.. Translation of new cancer treatments from pet dogs to humans. . Nat. Rev. Cancer 8:(2):14756
    [Crossref] [Google Scholar]
  96. 96.
    Awano T, Johnson GS, Wade CM, Katz ML, Johnson GC, et al. 2009.. Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis. . PNAS 106:(8):279499
    [Crossref] [Google Scholar]
  97. 97.
    Kol A, Arzi B, Athanasiou KA, Farmer DL, Nolta JA, et al. 2015.. Companion animals: translational scientist's new best friends. . Sci. Transl. Med. 7:(308):308ps21
    [Crossref] [Google Scholar]
  98. 98.
    Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. 2013.. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. . Prog. Neurobiol. 106–7::116
    [Crossref] [Google Scholar]
  99. 99.
    Williams E, Scott JP. 1953.. The development of social behavior patterns in the mouse, in relation to natural periods. . Behaviour 6:(1):3565
    [Crossref] [Google Scholar]
  100. 100.
    Peterson BS, Rauh VA, Bansal R, Hao X, Toth Z, et al. 2015.. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. . JAMA Psychiatry 72:(6):53140
    [Crossref] [Google Scholar]
  101. 101.
    Wolfer DP, Litvin O, Morf S, Nitsch RM, Lipp H-P, Würbel H. 2004.. Laboratory animal welfare: cage enrichment and mouse behaviour. . Nature 432:(7019):82122
    [Crossref] [Google Scholar]
  102. 102.
    Arbanas G. 2015.. Diagnostic and statistical manual of mental disorders (DSM-5). . Alcohol. Psychiatry Res. 51::6164
    [Google Scholar]
  103. 103.
    Piantadosi SC, Ahmari SE. 2015.. Using optogenetics to dissect the neural circuits underlying OCD and related disorders. . Curr. Treat Opt. Psychiatry 2:(3):297311
    [Crossref] [Google Scholar]
  104. 104.
    Tye KM, Deisseroth K. 2012.. Optogenetic investigation of neural circuits underlying brain disease in animal models. . Nat. Rev. Neurosci. 13:(4):25166
    [Crossref] [Google Scholar]
  105. 105.
    Herculano-Houzel S. 2009.. The human brain in numbers: a linearly scaled-up primate brain. . Front. Hum. Neurosci. 3::31
    [Crossref] [Google Scholar]
  106. 106.
    Shettleworth SJ. 2010.. Clever animals and killjoy explanations in comparative psychology. . Trends Cogn. Sci. 14:(11):47781
    [Crossref] [Google Scholar]
  107. 107.
    Laland K, Seed A. 2021.. Understanding human cognitive uniqueness. . Annu. Rev. Psychol. 72::689716
    [Crossref] [Google Scholar]
  108. 108.
    Suddendorf T, Corballis MC. 2007.. The evolution of foresight: What is mental time travel, and is it unique to humans?. Behav. Brain Sci. 30:(3):299313; discuss. 313–51
    [Crossref] [Google Scholar]
  109. 109.
    Gupta AS, van der Meer MAA, Touretzky DS, Redish AD. 2010.. Hippocampal replay is not a simple function of experience. . Neuron 65:(5):695705
    [Crossref] [Google Scholar]
  110. 110.
    Kaiser T, Feng G. 2015.. Modeling psychiatric disorders for developing effective treatments. . Nat. Med. 21:(9):97988
    [Crossref] [Google Scholar]
  111. 111.
    Becker RE, Greig NH. 2010.. Lost in translation: neuropsychiatric drug development. . Sci. Transl. Med. 2:(61):61rv6
    [Crossref] [Google Scholar]
  112. 112.
    Feusner JD, Hembacher E, Phillips KA. 2009.. The mouse who couldn't stop washing: pathologic grooming in animals and humans. . CNS Spectr. 14:(9):50313
    [Crossref] [Google Scholar]
  113. 113.
    de Brouwer G, Fick A, Harvey BH, Wolmarans DW. 2019.. A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: mapping the way forward. . Cogn. Affect. Behav. Neurosci. 19:(1):139
    [Crossref] [Google Scholar]
  114. 114.
    Alonso P, López-Solà C, Real E, Segalàs C, Menchón JM. 2015.. Animal models of obsessive-compulsive disorder: utility and limitations. . Neuropsychiatr. Dis. Treat. 11::193955
    [Crossref] [Google Scholar]
  115. 115.
    Stanford SC. 2020.. Some reasons why preclinical studies of psychiatric disorders fail to translate: What can be rescued from the misunderstanding and misuse of animal “models”?. Altern. Lab. Anim. 48:(3):10615
    [Crossref] [Google Scholar]
  116. 116.
    Udell MAR. 2015.. When dogs look back: inhibition of independent problem-solving behaviour in domestic dogs (Canis lupus familiaris) compared with wolves (Canis lupus). . Biol. Lett. 11:(9):20150489
    [Crossref] [Google Scholar]
  117. 117.
    Järvinen-Pasley A, Adolphs R, Yam A, Hill KJ, Grichanik M, et al. 2010.. Affiliative behavior in Williams syndrome: social perception and real-life social behavior. . Neuropsychologia 48:(7):211019
    [Crossref] [Google Scholar]
  118. 118.
    Thurman AJ, Fisher MH. 2015.. The Williams syndrome social phenotype: disentangling the contributions of social interest and social difficulties. . Int. Rev. Res. Dev. Disabil. 49::191227
    [Crossref] [Google Scholar]
  119. 119.
    Vas J, Topál J, Péch É, Miklósi Á. 2007.. Measuring attention deficit and activity in dogs: a new application and validation of a human ADHD questionnaire. . Appl. Anim. Behav. Sci. 103:(1):10517
    [Crossref] [Google Scholar]
  120. 120.
    Lit L, Schweitzer JB, Iosif A-M, Oberbauer AM. 2010.. Owner reports of attention, activity, and impulsivity in dogs: a replication study. . Behav. Brain Funct. 6::1
    [Crossref] [Google Scholar]
  121. 121.
    Mataix-Cols D, Hansen B, Mattheisen M, Karlsson EK, Addington AM, et al. 2020.. Nordic OCD & Related Disorders Consortium: rationale, design, and methods. . Am. J. Med. Genet. B 183:(1):3850
    [Crossref] [Google Scholar]
  122. 122.
    Overall KL. 2000.. Natural animal models of human psychiatric conditions: assessment of mechanism and validity. . Prog. Neuropsychopharmacol. Biol. Psychiatry 24:(5):72776
    [Crossref] [Google Scholar]
  123. 123.
    Overall KL, Dunham AE. 2002.. Clinical features and outcome in dogs and cats with obsessive-compulsive disorder: 126 cases (1989–2000). . J. Am. Vet. Med. Assoc. 221:(10):144552
    [Crossref] [Google Scholar]
  124. 124.
    Ogata N, Gillis TE, Liu X, Cunningham SM, Lowen SB, et al. 2013.. Brain structural abnormalities in Doberman pinschers with canine compulsive disorder. . Prog. Neuropsychopharmacol. Biol. Psychiatry 45::16
    [Crossref] [Google Scholar]
  125. 125.
    Dodman NH, Ginns EI, Shuster L, Moon-Fanelli AA, Galdzicka M, et al. 2016.. Genomic risk for severe canine compulsive disorder, a dog model of human OCD. . Int. J. Appl. Res. Vet. Med. 14:(1):118
    [Google Scholar]
  126. 126.
    Noh HJ, Tang R, Flannick J, O'Dushlaine C, Swofford R, et al. 2017.. Integrating evolutionary and regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder. . Nat. Commun. 8::774
    [Crossref] [Google Scholar]
  127. 127.
    Rapoport SI. 1989.. Hypothesis: Alzheimer's disease is a phylogenetic disease. . Med. Hypotheses 29:(3):14750
    [Crossref] [Google Scholar]
  128. 128.
    de Sousa AA, Rigby Dames BA, Graff EC, Mohamedelhassan R, Vassilopoulos T, Charvet CJ. 2023.. Going beyond established model systems of Alzheimer's disease: Companion animals provide novel insights into the neurobiology of aging. . Commun. Biol. 6::655
    [Crossref] [Google Scholar]
  129. 129.
    Finch CE, Austad SN. 2015.. Commentary: Is Alzheimer's disease uniquely human?. Neurobiol. Aging 36:(2):55355
    [Crossref] [Google Scholar]
  130. 130.
    Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, et al. 2022.. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. . Nature 604:(7906):5028
    [Crossref] [Google Scholar]
  131. 131.
    Brainstorm Consort., Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, et al. 2018.. Analysis of shared heritability in common disorders of the brain. . Science 360:(6395):aap8757
    [Crossref] [Google Scholar]
  132. 132.
    Bastarache L, Denny JC, Roden DM. 2022.. Phenome-wide association studies. . JAMA 327:(1):7576
    [Crossref] [Google Scholar]
  133. 133.
    Bracher-Smith M, Crawford K, Escott-Price V. 2021.. Machine learning for genetic prediction of psychiatric disorders: a systematic review. . Mol. Psychiatry 26:(1):7079
    [Crossref] [Google Scholar]
  134. 134.
    Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, et al. 2019.. Analysis of polygenic risk score usage and performance in diverse human populations. . Nat. Commun. 10::3328
    [Crossref] [Google Scholar]
  135. 135.
    Wise CF, Hammel SC, Herkert N, Ma J, Motsinger-Reif A, et al. 2020.. Comparative exposure assessment using silicone passive samplers indicates that domestic dogs are sentinels to support human health research. . Environ. Sci. Technol. 54:(12):740919
    [Crossref] [Google Scholar]
  136. 136.
    Wise CF, Hammel SC, Herkert NJ, Ospina M, Calafat AM, et al. 2022.. Comparative assessment of pesticide exposures in domestic dogs and their owners using silicone passive samplers and biomonitoring. . Environ. Sci. Technol. 56:(2):114961
    [Crossref] [Google Scholar]
  137. 137.
    Mealin S, Foster M, Cleghern Z, Bozkurt A, Roberts DL. 2021.. Using inertial measurement unit data for objective evaluations of potential guide dogs. . In ACI '20: Proceedings of the Seventh International Conference on Animal–Computer Interaction, Art. 2. New York:: Assoc. Comput. Mach.
    [Google Scholar]
  138. 138.
    Manuck SB, McCaffery JM. 2014.. Gene-environment interaction. . Annu. Rev. Psychol. 65::4170
    [Crossref] [Google Scholar]
  139. 139.
    Virolainen SJ, VonHandorf A, Viel KCMF, Weirauch MT, Kottyan LC. 2023.. Gene-environment interactions and their impact on human health. . Genes Immun. 24::111
    [Crossref] [Google Scholar]
  140. 140.
    Dingemanse NJ, Kazem AJN, Réale D, Wright J. 2010.. Behavioural reaction norms: Animal personality meets individual plasticity. . Trends Ecol. Evol. 25:(2):8189
    [Crossref] [Google Scholar]
  141. 141.
    Loos M, Koopmans B, Aarts E, Maroteaux G, van der Sluis S, et al. 2015.. Within-strain variation in behavior differs consistently between common inbred strains of mice. . Mamm. Genome 26:(7–8):34854
    [Crossref] [Google Scholar]
  142. 142.
    Freedman DG, King JA, Elliot O. 1961.. Critical period in the social development of dogs. . Science 133:(3457):101617
    [Crossref] [Google Scholar]
  143. 143.
    Gazzano A, Mariti C, Notari L, Sighieri C, McBride EA. 2008.. Effects of early gentling and early environment on emotional development of puppies. . Appl. Anim. Behav. Sci. 110:(3):294304
    [Crossref] [Google Scholar]
  144. 144.
    Foyer P, Wilsson E, Wright D, Jensen P. 2013.. Early experiences modulate stress coping in a population of German shepherd dogs. . Appl. Anim. Behav. Sci. 146:(1):7987
    [Crossref] [Google Scholar]
  145. 145.
    Bannasch DL, Kaelin CB, Letko A, Loechel R, Hug P, et al. 2021.. Dog colour patterns explained by modular promoters of ancient canid origin. . Nat. Ecol. Evol. 5:(10):141523
    [Crossref] [Google Scholar]
  146. 146.
    Megquier K, Genereux DP, Hekman J, Swofford R, Turner-Maier J, et al. 2019.. BarkBase: epigenomic annotation of canine genomes. . Genes 10:(6):433
    [Crossref] [Google Scholar]
  147. 147.
    Son KH, Aldonza MBD, Nam A-R, Lee K-H, Lee J-W, et al. 2023.. Integrative mapping of the dog epigenome: reference annotation for comparative intertissue and cross-species studies. . Sci. Adv. 9:(27):eade3399
    [Crossref] [Google Scholar]
  148. 148.
    Kim D-E, Lee J-H, Ji K-B, Park K-S, Kil T-Y, et al. 2022.. Generation of genome-edited dogs by somatic cell nuclear transfer. . BMC Biotechnol. 22:(1):19
    [Crossref] [Google Scholar]
  149. 149.
    Tang R, Noh HJ, Wang D, Sigurdsson S, Swofford R, et al. 2014.. Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. . Genome Biol. 15:(3):R25
    [Crossref] [Google Scholar]
  150. 150.
    Hua H. 2023.. From GWAS to single-cell MPRA. . Nat. Methods 20::349
    [Crossref] [Google Scholar]
  151. 151.
    Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, et al. 2012.. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. . Nat. Biotechnol. 30:(3):27177
    [Crossref] [Google Scholar]
  152. 152.
    Kampmann M. 2020.. CRISPR-based functional genomics for neurological disease. . Nat. Rev. Neurol. 16:(9):46580
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-101954
Loading
/content/journals/10.1146/annurev-animal-111523-101954
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error