1932

Abstract

Most conservation programs and laws aim to prevent extinction. However, there is a gulf between such aspirations and the current reality of escalating biodiversity loss. This review focuses on efforts to prevent extinctions in Australia, but much of this consideration is likely to apply globally. As context, we consider the reasons for trying to prevent extinction, review Australia's extinction record, and note that there are likely to be many more extinctions than formally recognized. We describe recent cases where conservation actions have prevented extinction. We note that extinction is a pathway rather than solely an endpoint, and many decisions made or not made on that pathway can determine the fate of species. We conclude that all looming extinctions can and should be prevented. This will require transformational change in legislation, increased resourcing, more consideration of poorly known species, and increased societal recognition of the need to be responsible for the care of country.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-102004
2025-02-18
2025-06-17
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-102004.html?itemId=/content/journals/10.1146/annurev-animal-111523-102004&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Banks PB, Hochuli DF. 2017.. Extinction, de-extinction and conservation: a dangerous mix of ideas. . Aust. Zool. 38::39094
    [Crossref] [Google Scholar]
  2. 2.
    Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015.. Accelerated modern human–induced species losses: entering the sixth mass extinction. . Sci. Adv. 1::e1400253
    [Crossref] [Google Scholar]
  3. 3.
    Humphreys AM, Govaerts R, Ficinski SZ, Nic Lughadha E, Vorontsova MS. 2019.. Global dataset shows geography and life form predict modern plant extinction and rediscovery. . Nat. Ecol. Evol. 3::104347
    [Crossref] [Google Scholar]
  4. 4.
    Dasgupta P. 2021.. The Economics of Biodiversity: The Dasgupta Review. London:: HM Treas.
    [Google Scholar]
  5. 5.
    Costanza R, d'Arge R, De Groot R, Farber S, Grasso M, et al. 1997.. The value of the world's ecosystem services and natural capital. . Nature 387::25360
    [Crossref] [Google Scholar]
  6. 6.
    Keniger LE, Gaston KJ, Irvine KN, Fuller RA. 2013.. What are the benefits of interacting with nature?. Int. J. Environ. Res. Public Health 10::91335
    [Crossref] [Google Scholar]
  7. 7.
    Albrecht G. 2005.. Solastalgia: a new concept of human health and identity. . PAN 3::4155
    [Google Scholar]
  8. 8.
    Rose DB. 2011.. Wild Dog Dreaming: Love and Extinction. Charlottesville:: Univ. Va. Press
    [Google Scholar]
  9. 9.
    Passmore J. 1974.. Man's Responsibility for Nature. Ecological Problems and Western Tradition. London:: Duckworth
    [Google Scholar]
  10. 10.
    Pope Francis. 2015.. Encyclical Letter Luadato Si of the Holy Father Francis: On Care for our Common Home. Vatican City:: Cathol. Church
    [Google Scholar]
  11. 11.
    Stone CD. 1972.. Should trees have standing?—Towards legal rights for natural objects. . South. Calif. Law Rev. 45::450501
    [Google Scholar]
  12. 12.
    Callicott JB. 2005.. The intrinsic value of nature in public policy: the case of the Endangered Species Act. . In Contemporary Debates in Applied Ethics, ed. AI Cohen, CH Wellman , pp. 27997. Malden, MA:: Blackwell Publ. Ltd.
    [Google Scholar]
  13. 13.
    Hayward MW, Meyer NFV, Balkenhol N, Beranek CT, Bugir CK, et al. 2022.. Intergenerational inequity: stealing the joy and benefits of nature from our children. . Front. Ecol. Evol. 10::830830
    [Crossref] [Google Scholar]
  14. 14.
    Norton B. 1991.. Toward Unity Among Environmentalists. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  15. 15.
    Woolaston K, Akhtar-Khavari A. 2020.. Extinction, law and thinking emotionally about invertebrates. . Griffith Law Rev. 29::585610
    [Crossref] [Google Scholar]
  16. 16.
    Zander KK, St-Laurent GP, Hogg CJ, Sunnucks P, Woinarski J, et al. 2021.. Measuring social preferences for conservation management in Australia. . Biol. Conserv. 262::109323
    [Crossref] [Google Scholar]
  17. 17.
    Zander KK, Burton M, Pandit R, Gunawardena A, Pannell D, Garnett ST. 2022.. How public values for threatened species are affected by conservation strategies. . J. Environ. Manag. 319::115659
    [Crossref] [Google Scholar]
  18. 18.
    Woinarski JCZ, Garnett ST, Zander KK. 2024.. Social valuation of biodiversity relative to other types of assets at risk in wildfire. . Conserv. Biol. 38:(3):e14230
    [Crossref] [Google Scholar]
  19. 19.
    Tisdell C, Wilson C, Nantha HS. 2006.. Public choice of species for the ‘Ark’: phylogenetic similarity and preferred wildlife species for survival. . J. Nat. Conserv. 14::97105
    [Crossref] [Google Scholar]
  20. 20.
    Tisdell C, Swarna Nantha H, Wilson C. 2007.. Endangerment and likeability of wildlife species: How important are they for payments proposed for conservation?. Ecol. Econ. 60::62733
    [Crossref] [Google Scholar]
  21. 21.
    Pearson EL, Mellish S, McLeod EM, Sanders B, Ryan JC. 2022.. Can we save Australia's endangered wildlife by increasing species recognition?. J. Nat. Conserv. 69::126257
    [Crossref] [Google Scholar]
  22. 22.
    Walsh JC, Watson JEM, Bottrill MC, Joseph LN, Possingham HP. 2013.. Trends and biases in the listing and recovery planning for threatened species: an Australian case study. . Oryx 47::13443
    [Crossref] [Google Scholar]
  23. 23.
    Régnier C, Achaz G, Lambert A, Cowie RH, Bouchet P, Fontaine B. 2015.. Mass extinction in poorly known taxa. . PNAS 112::776166
    [Crossref] [Google Scholar]
  24. 24.
    Rose DB, van Dooren T. 2011.. Introduction. Unloved others: death of the disregarded in the time of extinctions. . Aust. Humanit. Rev. 50::14
    [Crossref] [Google Scholar]
  25. 25.
    Commonw. Aust. 2022.. 2022–2032 Threatened Species Action Plan: Towards Zero Extinctions. Canberra:: Dep. Clim. Change Energy Environ. Water
    [Google Scholar]
  26. 26.
    Bottrill MC, Joseph LN, Cawardine J, Bode M, Cook C, et al. 2008.. Is conservation triage just smart decision making?. Trends Ecol. Evol. 23::64954
    [Crossref] [Google Scholar]
  27. 27.
    Bergstrom DM, Wienecke BC, van den Hoff J, Hughes L, Lindenmayer DB, et al. 2021.. Combating ecosystem collapse from the tropics to the Antarctic. . Glob. Change Biol. 27::1692703
    [Crossref] [Google Scholar]
  28. 28.
    Vucetich JA, Nelson MP, Bruskotter JT. 2017.. Conservation triage falls short because conservation is not like emergency medicine. . Front. Ecol. Evol. 5::45
    [Crossref] [Google Scholar]
  29. 29.
    Wiedenfeld DA, Alberts AC, Angulo A, Bennett EL, Byers O, et al. 2021.. Conservation resource allocation, small population resiliency, and the fallacy of conservation triage. . Conserv. Biol. 35::138895
    [Crossref] [Google Scholar]
  30. 30.
    Joseph LN, Maloney RF, Possingham HP. 2009.. Optimal allocation of resources among threatened species: a project prioritization protocol. . Conserv. Biol. 23::32838
    [Crossref] [Google Scholar]
  31. 31.
    Brazill-Boast J, Williams M, Rickwood B, Partridge T, Bywater G, et al. 2018.. A large-scale application of project prioritization to threatened species investment by a government agency. . PLOS ONE 13::e0201413
    [Crossref] [Google Scholar]
  32. 32.
    Bessell TJ, Stuart-Smith J, Barrett NS, Lynch TP, Edgar GJ, et al. 2022.. Prioritising conservation actions for extremely data-poor species: a risk assessment for one of the world's rarest marine fishes. . Biol. Conserv. 268::109501
    [Crossref] [Google Scholar]
  33. 33.
    Maron M, Rhodes JR, Gibbons P. 2013.. Calculating the benefit of conservation actions. . Conserv. Lett. 6::35967
    [Crossref] [Google Scholar]
  34. 34.
    Garnett ST, Hayward-Brown BK, Kopf RK, Woinarski JCZ, Cameron KA, et al. 2022.. Australia's most imperilled vertebrates. . Biol. Conserv. 270::109561
    [Crossref] [Google Scholar]
  35. 35.
    Woinarski JCZ, Garnett ST, Legge SM, Lindenmayer DB. 2017.. The contribution of policy, law, management, research, and advocacy failings to the recent extinctions of three Australian vertebrate species. . Conserv. Biol. 31::1323
    [Crossref] [Google Scholar]
  36. 36.
    Lim M. 2020.. Extinction: hidden in plain sight—can stories of ‘the last’ unearth environmental law's unspeakable truth?. Griffith Law Rev. 29::61142
    [Crossref] [Google Scholar]
  37. 37.
    van Dooren T. 2014.. Flight Ways: Life and Loss at the Edge of Extinction. New York:: Columbia Univ. Press
    [Google Scholar]
  38. 38.
    Woinarski JCZ. 2018.. A Bat's End: The Christmas Island Pipistrelle and Extinction in Australia. Melbourne, Aust:.: CSIRO Publ.
    [Google Scholar]
  39. 39.
    Reside AE, Cosgrove AJ, Pointon R, Trezise J, Watson JEM, Maron M. 2019.. How to send a finch extinct. . Environ. Sci. Policy 94::16373
    [Crossref] [Google Scholar]
  40. 40.
    Awruch CA, Bell JD, Semmens JM, Lyle JM. 2021.. Life history traits and conservation actions for the Maugean skate (Zearaja maugeana), an endangered species occupying an anthropogenically impacted estuary. . Aquat. Conserv. 31::217892
    [Crossref] [Google Scholar]
  41. 41.
    Jarić I, Roll U, Bonaiuto M, Brook BW, Courchamp F, et al. 2022.. Societal extinction of species. . Trends Ecol. Evol. 37::41119
    [Crossref] [Google Scholar]
  42. 42.
    CBD (Conv. Biol. Divers.). 2022.. Kunming-Montreal Global Biodiversity Framework. Decision CBD/COP/15/L.25. Montreal, Can.:: Secr. Conv. Biol. Divers.
    [Google Scholar]
  43. 43.
    Akçakaya HR, Bennett EL, Brooks TM, Grace MK, Heath A, et al. 2018.. Quantifying species recovery and conservation success to develop an IUCN Green List of Species. . Conserv. Biol. 32::112838
    [Crossref] [Google Scholar]
  44. 44.
    Garnett ST, Baker GB, Berryman AJ, Carlile N, Ely I, et al. 2024.. Australian threatened birds for which the risk of extinction declined between 1990 and 2020. . Emu 124::6882
    [Crossref] [Google Scholar]
  45. 45.
    Scott JM, Goble DD, Haines AM, Wiens JA, Neel MC. 2010.. Conservation-reliant species and the future of conservation. . Conserv. Lett. 3::9197
    [Crossref] [Google Scholar]
  46. 46.
    Woinarski JCZ, Garnett ST, Gillespie G, Legge SM, Lintermans M, Rumpff L. 2023.. Lights at the end of the tunnel: the incidence and characteristics of recovery for Australian threatened animals. . Biol. Conserv. 279::109946
    [Crossref] [Google Scholar]
  47. 47.
    Novak BJ. 2018.. De-extinction. . Genes 9::548
    [Crossref] [Google Scholar]
  48. 48.
    Waterhouse J, Mitchell C. 2022.. “ Has anybody seen a Tasmanian tiger lately?”: Ethical and ontological considerations of thylacine de-extinction. . Green Lett. 26::1427
    [Crossref] [Google Scholar]
  49. 49.
    Cohen S. 2014.. The ethics of de-extinction. . NanoEthics 8::16578
    [Crossref] [Google Scholar]
  50. 50.
    Sandler R. 2014.. The ethics of reviving long extinct species. . Conserv. Biol. 28::35460
    [Crossref] [Google Scholar]
  51. 51.
    Chapman AD. 2009.. Numbers of Living Species in Australia and the World. Canberra:: Aust. Biol. Resour. Study
    [Google Scholar]
  52. 52.
    Gallagher RV, Allen SP, Govaerts R, Rivers MC, Allen AP, et al. 2023.. Global shortfalls in threat assessments for endemic flora by country. . Plants People Planet 5::88598
    [Crossref] [Google Scholar]
  53. 53.
    Woinarski JCZ, Braby MF, Burbidge AA, Coates D, Garnett ST, et al. 2019.. Reading the black book: the number, timing, distribution and causes of listed extinctions in Australia. . Biol. Conserv. 239::108261
    [Crossref] [Google Scholar]
  54. 54.
    Roberts DL, Fisher M. 2020.. Schrödinger's cat extinction paradox. . Oryx 54::14344
    [Crossref] [Google Scholar]
  55. 55.
    Keith DA, Burgman MA. 2004.. The Lazarus effect: Can the dynamics of extinct species lists tell us anything about the status of biodiversity?. Biol. Conserv. 117::4148
    [Crossref] [Google Scholar]
  56. 56.
    Forster PI. 2019.. Rediscovery of the previously Extinct Marsdenia araujacea F. Muell. (Apocynaceae). . Austrobaileya 10::53940
    [Google Scholar]
  57. 57.
    Roycroft E, MacDonald AJ, Moritz C, Moussalli A, Miguez RP, Rowe KC. 2021.. Museum genomics reveals the rapid decline and extinction of Australian rodents since European settlement. . PNAS 118::e2021390118
    [Crossref] [Google Scholar]
  58. 58.
    Ayre BM, Hayashi T, Phillips RD, Reiter N. 2021.. The Kiandra leek orchid is the previously presumed extinct mignonette leek orchid (Orchidaceae; Orchidoideae): evidence from morphological comparisons. . Phytotaxa 528::7183
    [Crossref] [Google Scholar]
  59. 59.
    Tedesco PA, Bigorne R, Bogan AE, Giam X, Jézéquel C, Hugueny B. 2014.. Estimating how many undescribed species have gone extinct. . Conserv. Biol. 28::136070
    [Crossref] [Google Scholar]
  60. 60.
    Boehm MMA, Cronk QCB. 2021.. Dark extinction: the problem of unknown historical extinctions. . Biol. Lett. 17::20210007
    [Crossref] [Google Scholar]
  61. 61.
    James DJ, Green PJ, Humphreys WF, Woinarski JCZ. 2019.. Endemic species of Christmas Island, Indian Ocean. . Rec. West. Aust. Mus. 35::55114
    [Crossref] [Google Scholar]
  62. 62.
    Colwell RK, Dunn RR, Harris NC. 2012.. Coextinction and persistence of dependent species in a changing world. . Annu. Rev. Ecol. Evol. Syst. 43::183203
    [Crossref] [Google Scholar]
  63. 63.
    Kwak ML. 2018.. Australia's vanishing fleas (Insecta: Siphonaptera): a case study in methods for the assessment and conservation of threatened flea species. . J. Insect Conserv. 22::54550
    [Crossref] [Google Scholar]
  64. 64.
    Strona G, Bradshaw CJA. 2022.. Coextinctions dominate future vertebrate losses from climate and land use change. . Sci. Adv. 8::eabn4345
    [Crossref] [Google Scholar]
  65. 65.
    Webster PTD, Leseberg NP, Murphy SA, Joseph L, Watson JEM. 2022.. A review of specimens of Buff-breasted Button-quail Turnix olivii suggests serious concern for its conservation outlook. . Emu 122::12130
    [Crossref] [Google Scholar]
  66. 66.
    Stuart-Smith J, Edgar GJ, Last P, Linardich C, Lynch T, et al. 2020.. Conservation challenges for the most threatened family of marine bony fishes (handfishes: Brachionichthyidae). . Biol. Conserv. 252::108831
    [Crossref] [Google Scholar]
  67. 67.
    IUCN SSC Stand. Petitions Comm. 2021.. Sympterichthys unipennis. IUCN Red List of Threatened Species 2021:e.T123423283A207621852
    [Google Scholar]
  68. 68.
    Akçakaya HR, Keith DA, Burgman M, Butchart SHM, Hoffmann M, et al. 2017.. Inferring extinctions III: a cost-benefit framework for listing extinct species. . Biol. Conserv. 214::33642
    [Crossref] [Google Scholar]
  69. 69.
    Woinarski JCZ, Tiernan B, Legge SM. 2023.. Should the Christmas Island shrew Crocidura trichura be considered extinct?. Aust. Mammal. 46::AM23033
    [Crossref] [Google Scholar]
  70. 70.
    IUCN Stand. Petitions Subcomm. 2022.. Guidelines for Using the IUCN Red List Categories and Criteria, Version 15. Guidel., IUCN, Gland, Switz:.
    [Google Scholar]
  71. 71.
    Collar NJ. 1998.. Extinction by assumption; or, the Romeo Error on Cebu. . Oryx 32::23944
    [Crossref] [Google Scholar]
  72. 72.
    Garnett ST, Baker GB, eds. 2021.. Action Plan for Australian Birds 2020. Melbourne, Aust:.: CSIRO Publ.
    [Google Scholar]
  73. 73.
    Oliver PM, Blom MPK, Cogger HG, Fisher RN, Richmond JQ, Woinarski JCZ. 2018.. Insular biogeographic origins and high phylogenetic distinctiveness of the recently depleted lizard fauna of Christmas Island, Australia. . Biol. Lett. 14::20170696
    [Crossref] [Google Scholar]
  74. 74.
    Tershy BR, Shen K-W, Newton KM, Holmes ND, Croll DA. 2015.. The importance of islands for the protection of biological and linguistic diversity. . Bioscience 65::59297
    [Crossref] [Google Scholar]
  75. 75.
    Gray A. 2019.. The ecology of plant extinction: rates, traits and island comparisons. . Oryx 53::42428
    [Crossref] [Google Scholar]
  76. 76.
    Woinarski JCZ, Burbidge AA, Harrison PL. 2015.. The ongoing unravelling of a continental fauna: decline and extinction of Australian mammals since European settlement. . PNAS 112::453140
    [Crossref] [Google Scholar]
  77. 77.
    McKenzie NL, Burbidge AA, Baynes A, Brereton RN, Dickman CR, et al. 2007.. Analysis of factors implicated in the recent decline of Australia's mammal fauna. . J. Biogeogr. 34::597611
    [Crossref] [Google Scholar]
  78. 78.
    Fleming PA, Anderson H, Prendergast AS, Bretz MR, Valentine LE, Hardy GE. 2014.. Is the loss of Australian digging mammals contributing to a deterioration in ecosystem function?. Mammal. Rev. 44::94108
    [Crossref] [Google Scholar]
  79. 79.
    Brook BW, Sleightholme SR, Campbell CR, Jarić I, Buettel JC. 2023.. Resolving when (and where) the Thylacine went extinct. . Sci. Total Environ. 877::162878
    [Crossref] [Google Scholar]
  80. 80.
    Moir ML. 2021.. Coextinction of Pseudococcus markharveyi (Hemiptera: Pseudococcidae): a case study in the modern insect extinction crisis. . Aust. Entomol. 60::8997
    [Crossref] [Google Scholar]
  81. 81.
    Geyle HM, Woinarski JCZ, Baker GB, Dickman CR, Dutson G, et al. 2018.. Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions. . Pac. Conserv. Biol. 24::15767
    [Crossref] [Google Scholar]
  82. 82.
    Geyle HM, Braby MF, Andren M, Beaver E, Bell P, et al. 2021.. Butterflies on the brink: identifying the Australian butterflies (Lepidoptera) most at risk of extinction. . Aust. Entomol. 60::98110
    [Crossref] [Google Scholar]
  83. 83.
    Lintermans M, Geyle HM, Beatty S, Brown C, Ebner B, et al. 2020.. Big trouble for little fish: identifying Australian freshwater fishes in imminent risk of extinction. . Pac. Conserv. Biol. 26::36577
    [Crossref] [Google Scholar]
  84. 84.
    Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, et al. 2019.. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. . Science 363::145963
    [Crossref] [Google Scholar]
  85. 85.
    Ward M, Carwardine J, Yong CJ, Watson JEM, Silcock J, et al. 2021.. A national-scale dataset for threats impacting Australia's imperiled flora and fauna. . Ecol. Evol. 11::1174961
    [Crossref] [Google Scholar]
  86. 86.
    Kearney SG, Watson JEM, Reside AE, Fisher DO, Maron M, et al. 2023.. Threat-abatement framework confirms habitat retention and invasive species management are critical to conserve Australia's threatened species. . Biol. Conserv. 277::109833
    [Crossref] [Google Scholar]
  87. 87.
    Garnett ST, Woinarski JCZ, Baker GB, Berryman AJ, Crates R, et al. 2024.. Monitoring threats to Australian threatened birds: Climate change was the biggest threat in 2020 with minimal progress on its management. . Emu 124::3754
    [Crossref] [Google Scholar]
  88. 88.
    Waller NL, Gynther IC, Freeman AB, Lavery TH, Leung LK-P. 2017.. The Bramble Cay melomys Melomys rubicola (Rodentia: Muridae): A first mammalian extinction caused by human-induced climate change?. Wildl. Res. 44::921
    [Crossref] [Google Scholar]
  89. 89.
    Tran BN, Tanase MA, Bennett LT, Aponte C. 2020.. High-severity wildfires in temperate Australian forests have increased in extent and aggregation in recent decades. . PLOS ONE 15::e0242484
    [Crossref] [Google Scholar]
  90. 90.
    Hoffmann AA, Rymer PD, Byrne M, Ruthrof KX, Whinam J, et al. 2019.. Impacts of recent climate change on terrestrial flora and fauna: some emerging Australian examples. . Aust. Ecol. 44::327
    [Crossref] [Google Scholar]
  91. 91.
    de la Fuente A, Navarro A, Williams SE. 2023.. The climatic drivers of long-term population changes in rainforest montane birds. . Glob. Change Biol. 29::213240
    [Crossref] [Google Scholar]
  92. 92.
    Legge S, Rumpff L, Garnett ST, Woinarski JCZ. 2023.. Loss of terrestrial biodiversity in Australia: magnitude, causation, response and pathways for resilience. . Science 381::62232
    [Crossref] [Google Scholar]
  93. 93.
    Gallagher R, Barrett S, Bell SAJ, Copeland LM, Dillon R, et al. 2023.. Blackened roots and green shoots: emerging trends in decline and recovery in Australian plant species after the 2019–20 wildfires. . In Australia's Megafires: Biodiversity Impacts and Lessons from 2012–2020, ed. L Rumpff, SM Legge, S van Leeuwen, B Wintle, JCZ Woinarski , pp. 11126. Melbourne, Aust:.: CSIRO Publ.
    [Google Scholar]
  94. 94.
    Keith DA, Allen SP, Gallagher RV, Mackenzie BDE, Auld TD, et al. 2022.. Fire-related threats and transformational change in Australian ecosystems. . Glob. Ecol. Biogeogr. 31::207084
    [Crossref] [Google Scholar]
  95. 95.
    Fensham RJ, Carnegie AJ, Laffineur B, Makinson RO, Pegg GS, Wills J. 2020.. Imminent extinction of Australian Myrtaceae by fungal disease. . Trends Ecol. Evol. 35::55457
    [Crossref] [Google Scholar]
  96. 96.
    Spencer R-J, Van Dyke J, Petrov K, Ferronato B, McDougall F, et al. 2018.. Profiling a possible rapid extinction event in a long-lived species. . Biol. Conserv. 221::19097
    [Crossref] [Google Scholar]
  97. 97.
    Degnan RM, Shuey LS, Radford-Smith J, Gardiner DM, Carroll BJ, et al. 2023.. Double-stranded RNA prevents and cures infection by rust fungi. . Commun. Biol. 6::1234
    [Crossref] [Google Scholar]
  98. 98.
    Ward MS, Simmonds JS, Reside AE, Watson JEM, Rhodes JR, et al. 2019.. Lots of loss with little scrutiny: the attrition of habitat critical for threatened species in Australia. . Conserv. Sci. Pract. 1::e117
    [Crossref] [Google Scholar]
  99. 99.
    Woinarski JCZ, Armstrong M, Brennan K, Fisher A, Griffiths AD, et al. 2010.. Monitoring indicates rapid and severe decline of native small mammals in Kakadu National Park, northern Australia. . Wildl. Res. 37::11626
    [Crossref] [Google Scholar]
  100. 100.
    Legge S, Smith J, James A, Tuft K, Webb T, Woinarski J. 2019.. Interactions among threats affect conservation management outcomes: Livestock grazing removes the benefits of fire management for small mammals in Australian tropical savannas. . Conserv. Sci. Pract. 1::e52
    [Crossref] [Google Scholar]
  101. 101.
    Waldron A, Miller DC, Redding D, Mooers A, Kuhn TS, et al. 2017.. Reductions in global biodiversity loss predicted from conservation spending. . Nature 551::36467
    [Crossref] [Google Scholar]
  102. 102.
    Wintle BA, Cadenhead NCR, Morgain RA, Legge SM, Bekessy SA, et al. 2019.. Spending to save: What will it cost to halt Australia's extinction crisis?. Conserv. Lett. 12::e12682
    [Crossref] [Google Scholar]
  103. 103.
    Taylor MF, Suckling KF, Rachlinski JJ. 2005.. The effectiveness of the Endangered Species Act: a quantitative analysis. . BioScience 55::36067
    [Crossref] [Google Scholar]
  104. 104.
    Caughley G. 1994.. Directions in conservation biology. . J. Anim. Ecol. 63::21544
    [Crossref] [Google Scholar]
  105. 105.
    Grace MK, Akçakaya HR, Bennett EL, Brooks TM, Heath A, et al. 2021.. Testing a global standard for quantifying species recovery and assessing conservation impact. . Conserv. Biol. 35::183349
    [Crossref] [Google Scholar]
  106. 106.
    Garnett S, Latch P, Lindenmayer D, Woinarksi J, eds. 2018.. Recovering Australian Threatened Species: A Book of Hope. Clayton, Aust:.: CSIRO Publ.
    [Google Scholar]
  107. 107.
    Legge SM, Woinarski JCZ, Burbidge AA, Palmer A, Ringma J, et al. 2018.. Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to protecting mammal species that are susceptible to introduced predators. . Wildl. Res. 45::62744
    [Crossref] [Google Scholar]
  108. 108.
    Harrison PL, Woinarski JCZ. 2018.. Recovery of Australian subpopulations of Humpback Whale Megaptera novaeangliae. . In Recovering Australian Threatened Species: A Book of Hope, ed. S Garnett, P Latch, D Lindenmayer, J Woinarski , pp. 512. Clayton, Aust:.: CSIRO Publ.
    [Google Scholar]
  109. 109.
    Woinarski JCZ, Burbidge AA, Reside A. 2018.. Enhancing island conservation outcomes: the policy and legal context, need, and options. . In Australian Island Arks: Conservation Management and Opportunities, ed. D Moro, D Ball, S Bryant , pp. 4559. Clayton, Aust:.: CSIRO Publ.
    [Google Scholar]
  110. 110.
    Wallach AD, Lundgren E, Batavia C, Nelson MP, Yanco E, et al. 2020.. When all life counts in conservation. . Conserv. Biol. 34::9971007
    [Crossref] [Google Scholar]
  111. 111.
    Bird JP, Fuller RA, Shaw JD. 2024.. Patterns of recovery in extant and extirpated seabirds after the world's largest multipredator eradication. . Conserv. Biol. 38::e14239
    [Crossref] [Google Scholar]
  112. 112.
    Bower P, Carlile N, Cleave R, Haselden C, Hiscox D, O'Neill L. 2018.. The path to recovery for the ‘extinct’ Lord Howe phasmid. . In Recovering Australian Threatened Species: A Book of Hope, ed. S Garnett, P Latch, D Lindenmayer, J Woinarski , pp. 18998. Clayton, Aust:.: CSIRO Publ.
    [Google Scholar]
  113. 113.
    Andrew P, Cogger H, Driscoll D, Flakus S, Harlow P, et al. 2018.. Somewhat saved: a captive breeding program for two endemic Christmas Island lizard species, now extinct in the wild. . Oryx 52::17174
    [Crossref] [Google Scholar]
  114. 114.
    Woinarski JCZ. 2023.. To the future: an ecology of love, hope, and action. . Aust. Ecol. 48::170512
    [Crossref] [Google Scholar]
  115. 115.
    Weeks AR, Heinze D, Perrin L, Stoklosa J, Hoffmann AA, et al. 2017.. Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. . Nat. Commun. 8::e1071
    [Crossref] [Google Scholar]
  116. 116.
    Ortiz-Catedral L, Nias R, Fitzsimons J, Vine S, Christian M. 2018.. Back from the brink–again: the decline and recovery of the Norfolk Island green parrot. . In Recovering Australian Threatened Species: A Book of Hope, ed. S Garnett, P Latch, D Lindenmayer, J Woinarski , pp. 10514. Clayton, Aust:.: CSIRO Publ.
    [Google Scholar]
  117. 117.
    Smith D, Abeli T, Bruns EB, Dalrymple SE, Foster J, et al. 2023.. Extinct in the wild: the precarious state of Earth's most threatened group of species. . Science 379::eadd2889
    [Crossref] [Google Scholar]
  118. 118.
    Shelley JJ, Raadik TA, Lintermans M. 2021.. Summary of the 2019/20 bushfire impacts on freshwater fish and emergency conservation response in south-eastern Australia. Rep. , NESP Threat. Species Recovery Hub, Brisbane, Aust:.
    [Google Scholar]
  119. 119.
    Owens G, Heinsohn R, Crates R, Stojanovic D. 2023.. Long-term ecological data confirm and refine conservation assessment of critically endangered swift parrots. . Anim. Conserv. 26::45063
    [Crossref] [Google Scholar]
  120. 120.
    Webb MH, Stojanovic D, Heinsohn R. 2018.. Policy failure and conservation paralysis for the critically endangered swift parrot. . Pac. Conserv. Biol. 25::11623
    [Crossref] [Google Scholar]
  121. 121.
    Heinsohn R, Webb M, Lacy R, Terauds A, Alderman R, Stojanovic D. 2015.. A severe predator-induced population decline predicted for endangered, migratory swift parrots (Lathamus discolor). . Biol. Conserv. 186::7582
    [Crossref] [Google Scholar]
  122. 122.
    Mac Nally R, Kutt AS, Eyre TJ, Perry JJ, Vanderduys EP, et al. 2014.. The hegemony of the ‘despots’: the control of avifaunas over vast continental areas. . Divers. Distrib. 20::107183
    [Crossref] [Google Scholar]
  123. 123.
    Pritchard R, Ferraro P. 2023.. Applying specific needs assessment and feasibility check to decision making for the swift parrot Lathamus discolor. Threat. Species Framew. Rep., Aug. , Vic. Dep. Energy Environ. Clim. Action, Melbourne, Aust.:
    [Google Scholar]
  124. 124.
    Samuel G. 2020.. Final report of the independent review of the Environment Protection and Biodiversity Conservation Act 1999. Rep., Aust. Gov., Canberra:
    [Google Scholar]
  125. 125.
    McCormack PC. 2023.. Implications of extinction in law: preventing, declaring and learning from species extinctions. . Cambridge Prisms 1::e21
    [Google Scholar]
  126. 126.
    Takacs D. 2021.. Standing for rivers, mountains—and trees—in the Anthropocene. . South. Calif. Law Rev. 95::1469500
    [Google Scholar]
  127. 127.
    Aust. Bur. Stat. 2012.. Measures of Australia's progress 2012: Is life in Australia getting better? Aust. Bur. Stat., Canberra:
    [Google Scholar]
  128. 128.
    Aust. Treas. n.d.. Measuring what matters. Aust. Treas., Canberra:. https://treasury.gov.au/policy-topics/measuring-what-matters
    [Google Scholar]
  129. 129.
    Environ. Prot. Auth. 2009.. Guidance for the assessment of environmental factors (in accordance with the Environmental Protection Act 1986). Sampling of short range endemic invertebrate fauna for environmental impact assessment in Western Australia. Tech. Guid., Environ. Prot. Auth., Perth, Aust.:
    [Google Scholar]
  130. 130.
    Reside AE, Briscoe NJ, Dickman CR, Greenville AC, Hradsky BA, et al. 2019.. Persistence through tough times: fixed and shifting refuges in threatened species conservation. . Biodivers. Conserv. 28::130330
    [Crossref] [Google Scholar]
  131. 131.
    Woinarski JCZ, Chapple DG, Garnett ST, Legge SM, Lintermans M, Scheele BC. 2024.. Few havens for threatened Australian animal taxa that are highly susceptible to introduced and problematic native species. . Biodivers. Conserv. 33::30531
    [Crossref] [Google Scholar]
  132. 132.
    Fraser H, Legge SM, Garnett ST, Geyle H, Silcock J, et al. 2022.. Application of expert elicitation to estimate population trajectories for species prioritized in Australia's first threatened species strategy. . Biol. Conserv. 274::109731
    [Crossref] [Google Scholar]
  133. 133.
    Block G, Fraser F, Hayes A-L, Marsh H, Rumpff L, Woinarski J. 2023.. Response by the Australian Government to the 2019–20 wildfires. . In Australia's Megafires: Biodiversity Impacts and Lessons from 2019–2020, ed. L Rumpff, SM Legge, S van Leeuwen, B Wintle, JCZ Woinarski , pp. 28598. Melbourne, Aust:.: CSIRO Publ.
    [Google Scholar]
  134. 134.
    Martin TG, Nally S, Burbidge AA, Arnall S, Garnett ST, et al. 2012.. Acting fast helps avoid extinction. . Conserv. Lett. 5::27480
    [Crossref] [Google Scholar]
  135. 135.
    Kujala H, Burgman MA, Moilanen A. 2013.. Treatment of uncertainty in conservation under climate change. . Conserv. Lett. 6::7385
    [Crossref] [Google Scholar]
  136. 136.
    Marsh JR, Bal P, Fraser H, Umbers K, Latty T, et al. 2022.. Accounting for the neglected: invertebrate species and the 2019–20 Australian megafires. . Glob. Ecol. Biogeogr. 31::212030
    [Crossref] [Google Scholar]
  137. 137.
    Taylor GS, Braby MF, Moir ML, Harvey MS, Sands DPA, et al. 2018.. Strategic national approach for improving the conservation management of insects and allied invertebrates in Australia. . Aust. Entomol. 57::12449
    [Crossref] [Google Scholar]
  138. 138.
    Braby MF. 2018.. Threatened species conservation of invertebrates in Australia: an overview. . Aust. Entomol. 57::17381
    [Crossref] [Google Scholar]
  139. 139.
    Woods B. 2000.. Beauty and the beast: preferences for animals in Australia. . J. Tour. Stud. 11::2535
    [Google Scholar]
  140. 140.
    Ruppert KM, Kline RJ, Rahman MS. 2019.. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. . Glob. Ecol. Conserv. 17::e00547
    [Google Scholar]
  141. 141.
    Lindken T, Anderson CV, Ariano-Sánchez D, Barki G, Biggs C, et al. 2024.. What factors influence the rediscovery of lost tetrapod species?. Glob. Change Biol. 30::e17107
    [Crossref] [Google Scholar]
  142. 142.
    Lindenmayer DB, Sato C. 2018.. Hidden collapse is driven by fire and logging in a socioecological forest ecosystem. . PNAS 115::518186
    [Crossref] [Google Scholar]
  143. 143.
    Lindenmayer DB, Wood J, MacGregor C, Foster C, Scheele B, et al. 2018.. Conservation conundrums and the challenges of managing unexplained declines of multiple species. . Biol. Conserv. 221::27992
    [Crossref] [Google Scholar]
  144. 144.
    Adams VM, O'Donnell J, Burley A, Lawson J, Auld TD, et al. 2019.. Planning for success: why conservation programs need a strategic program for recovering species. . Conserv. Sci. Pract. 1::e95
    [Crossref] [Google Scholar]
  145. 145.
    Tulloch AIT, Jackson MV, Bayraktarov E, Carey AR, Correa-Gomez DF, et al. 2023.. Effects of different management strategies on long-term trends of Australian threatened and near-threatened mammals. . Conserv. Biol. 37::e14032
    [Crossref] [Google Scholar]
  146. 146.
    Scheele BC, Legge S, Blanchard W, Garnett ST, Geyle HM, et al. 2019.. Continental-scale assessment reveals inadequate monitoring for threatened vertebrates in a megadiverse country. . Biol. Conserv. 235::27378
    [Crossref] [Google Scholar]
  147. 147.
    Rowley JJL, Callaghan CT, Cornwell WK. 2020.. Widespread short-term persistence of frog species after the 2019–2020 bushfires in eastern Australia revealed by citizen science. . Conserv. Sci. Pract. 2::e287
    [Crossref] [Google Scholar]
  148. 148.
    Wood CM, Socolar J, Kahl S, Peery MZ, Chaon P, et al. 2024.. A scalable and transferable approach to combining emerging conservation technologies to identify biodiversity change after large disturbances. . J. Appl. Ecol. 61:(4):797808
    [Crossref] [Google Scholar]
  149. 149.
    Kusmanoff AM, Fidler F, Gordon A, Garrard GE, Bekessy SA. 2020.. Five lessons to guide more effective biodiversity conservation message framing. . Conserv. Biol. 34::113141
    [Crossref] [Google Scholar]
  150. 150.
    Rose DB, van Dooren T, Chrulew M, eds. 2017.. Extinction Studies: Stories of Time, Death, and Generations. New York:: Columbia Univ. Press
    [Google Scholar]
  151. 151.
    Gray B. 2021.. Extinct: Artistic Impressions of Our Lost Wildlife. Melbourne, Aust:.: CSIRO Publ.
    [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-102004
Loading
/content/journals/10.1146/annurev-animal-111523-102004
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error