1932

Abstract

There are plenty of reasons to believe that parasite populations will respond to biodiversity loss, warming, pollution, and other forms of global change. But will global change enhance transmission, increasing the incidence of troublesome parasites that put people, livestock, and wildlife at risk? Or will parasite species decline in abundance—or even become extinct—suggesting trouble on the horizon for parasite biodiversity? Here, I explain why answers have thus far eluded us and suggest new lines of research that would advance the field. Data collected to date suggest that parasites can respond to global change with increases or decreases in abundance, depending on the driver and the parasite. The future will certainly bring outbreaks of some parasites, and these should be addressed to protect human and ecosystem health. But troublesome parasites should not consume all of our research effort, because this changing world contains many parasite species that are in trouble.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-102039
2025-02-18
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-102039.html?itemId=/content/journals/10.1146/annurev-animal-111523-102039&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Poulin R. 2021.. The rise of ecological parasitology: twelve landmark advances that changed its history. . Int. J. Parasitol. 51:(13–14):107384
    [Crossref] [Google Scholar]
  2. 2.
    CDC (Cent. Dis. Control). 2024.. Lyme disease surveillance data. https://www.cdc.gov/lyme/data-research/facts-stats/surveillance-data-1.html
    [Google Scholar]
  3. 3.
    Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS, Hinckley AF. 2021.. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. . Emerg. Infect. Dis. 27:(2):61619
    [Crossref] [Google Scholar]
  4. 4.
    Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, et al. 2015.. Biodiversity inhibits parasites: broad evidence for the dilution effect. . PNAS 112:(28):866771
    [Crossref] [Google Scholar]
  5. 5.
    Cohen JM, Sauer EL, Santiago O, Spencer S, Rohr JR. 2020.. Divergent impacts of warming weather on wildlife disease risk across climates. . Science 370:(6519):eabb1702
    [Crossref] [Google Scholar]
  6. 6.
    Carlson CJ, Hopkins S, Bell KC, Doña J, Godfrey SS, et al. 2020.. A global parasite conservation plan. . Biol. Conserv. 250:(108596):108596
    [Crossref] [Google Scholar]
  7. 7.
    Wood CL, Johnson PT. 2015.. A world without parasites: exploring the hidden ecology of infection. . Front. Ecol. Environ. 13:(8):42534
    [Crossref] [Google Scholar]
  8. 8.
    Howard I, Davis E, Lippert G, Quinn TP, Wood CL. 2019.. Abundance of an economically important nematode parasite increased in Puget Sound between 1930 and 2016: evidence from museum specimens confirms historical data. . J. Appl. Ecol. 56:(1):190200
    [Crossref] [Google Scholar]
  9. 9.
    Wood CL, Welicky RL, Preisser WC, Leslie KL, Mastick N, et al. 2023.. A reconstruction of parasite burden reveals one century of climate-associated parasite decline. . PNAS 120:(3):e2211903120
    [Crossref] [Google Scholar]
  10. 10.
    Welicky RL, Preisser WC, Leslie KL, Mastick N, Fiorenza E, et al. 2021.. Parasites of the past: 90 years of change in parasitism for English sole. . Front. Ecol. Environ. 19:(8):47077
    [Crossref] [Google Scholar]
  11. 11.
    Wood CL, Lafferty KD. 2015.. How have fisheries affected parasite communities?. Parasitology 142:(1):13444
    [Crossref] [Google Scholar]
  12. 12.
    Allan BF, Keesing F, Ostfeld RS. 2003.. Effect of forest fragmentation on Lyme disease risk. . Conserv. Biol. 17:(1):26772
    [Crossref] [Google Scholar]
  13. 13.
    McKenzie VJ. 2007.. Human land use and patterns of parasitism in tropical amphibian hosts. . Biol. Conserv. 137:(1):10216
    [Crossref] [Google Scholar]
  14. 14.
    Ogrzewalska M, Uezu A, Jenkins CN, Labruna MB. 2011.. Effect of forest fragmentation on tick infestations of birds and tick infection rates by rickettsia in the Atlantic forest of Brazil. . EcoHealth 8:(3):32031
    [Crossref] [Google Scholar]
  15. 15.
    Aeby GS, Williams GJ, Franklin EC, Kenyon J, Cox EF, et al. 2011.. Patterns of coral disease across the Hawaiian archipelago: relating disease to environment. . PLOS ONE 6:(5):e20370
    [Crossref] [Google Scholar]
  16. 16.
    Wood CL, Sandin SA, Zgliczynski B, Guerra AS, Micheli F. 2014.. Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance. . Ecology 95:(7):192946
    [Crossref] [Google Scholar]
  17. 17.
    Strona G, Galli P, Fattorini S. 2013.. Fish parasites resolve the paradox of missing coextinctions. . Nat. Commun. 4::1718
    [Crossref] [Google Scholar]
  18. 18.
    Strona G. 2015.. Past, present and future of host-parasite co-extinctions. . Int. J. Parasitol. 4:(3):43141
    [Google Scholar]
  19. 19.
    Strona G. 2022.. Hidden Pathways to Extinction. Cham, Switz.:: Springer Nat.
    [Google Scholar]
  20. 20.
    Wood CL, Vanhove MPM. 2023.. Is the world wormier than it used to be? We'll never know without natural history collections. . J. Anim. Ecol. 92:(2):25062
    [Crossref] [Google Scholar]
  21. 21.
    Sures B, Nachev M, Schwelm J, Grabner D, Selbach C. 2023.. Environmental parasitology: stressor effects on aquatic parasites. . Trends Parasitol. 39:(6):46174
    [Crossref] [Google Scholar]
  22. 22.
    Sures B, Nachev M. 2022.. Effects of multiple stressors in fish: how parasites and contaminants interact. . Parasitology 149:(14):182228
    [Crossref] [Google Scholar]
  23. 23.
    Vidal-Martínez VM, Pech D, Sures B, Purucker ST, Poulin R. 2010.. Can parasites really reveal environmental impact?. Trends Parasitol. 26:(1):4451
    [Crossref] [Google Scholar]
  24. 24.
    Lafferty KD. 1997.. Environmental parasitology: What can parasites tell us about human impacts on the environment?. Parasitol. Today 13:(7):25155
    [Crossref] [Google Scholar]
  25. 25.
    McKenzie VJ, Townsend AR. 2007.. Parasitic and infectious disease responses to changing global nutrient cycles. . EcoHealth 4:(4):38496
    [Crossref] [Google Scholar]
  26. 26.
    Johnson PTJ, Carpenter SR. 2010.. Influence of eutrophication on disease in aquatic ecosystems: patterns, processes, and predictions. . In Infectious Disease Ecology, ed. RS Ostfeld, F Keesing, VT Eviner , pp. 7199. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  27. 27.
    Wood CL, Baum JK, Reddy SMW, Trebilco R, Sandin SA, et al. 2015.. Productivity and fishing pressure drive variability in fish parasite assemblages of the Line Islands, equatorial Pacific. . Ecology 96:(5):138398
    [Crossref] [Google Scholar]
  28. 28.
    Heard MJ, Smith KF, Ripp K, Berger M, Chen J, et al. 2013.. The threat of disease increases as species move toward extinction. . Conserv. Biol. 27:(6):137888
    [Crossref] [Google Scholar]
  29. 29.
    Kat PW, Alexander KA, Smith JS, Munson L. 1995.. Rabies and African wild dogs in Kenya. . Proc. Biol. Sci. 262:(1364):22933
    [Crossref] [Google Scholar]
  30. 30.
    Fereidouni S, Freimanis GL, Orynbayev M, Ribeca P, Flannery J, et al. 2019.. Mass die-off of saiga antelopes, Kazakhstan, 2015. . Emerg. Infect. Dis. 25:(6):116976
    [Crossref] [Google Scholar]
  31. 31.
    O'Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, et al. 2018.. Recent Asian origin of chytrid fungi causing global amphibian declines. . Science 360:(6389):62127
    [Crossref] [Google Scholar]
  32. 32.
    Hewson I, Ritchie IT, Evans JS, Altera A, Behringer D, et al. 2023.. A scuticociliate causes mass mortality of in the Caribbean Sea. . Sci. Adv. 9:(16):eadg3200
    [Crossref] [Google Scholar]
  33. 33.
    Kleindorfer S, Custance G, Peters KJ, Sulloway FJ. 2019.. Introduced parasite changes host phenotype, mating signal and hybridization risk: Philornis downsi effects on Darwin's finch song. . Proc. Biol. Sci. 286:(1904):20190461
    [Google Scholar]
  34. 34.
    Altizer S, Nunn CL, Lindenfors P. 2007.. Do threatened hosts have fewer parasites? A comparative study in primates. . J. Anim. Ecol. 76:(2):30414
    [Crossref] [Google Scholar]
  35. 35.
    Frias L, MacIntosh AJJ. 2019.. Threatened hosts, threatened parasites?. In Primate Research and Conservation in the Anthropocene, ed. AM Behie, JA Teichroeb, N Malone , pp. 14164. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  36. 36.
    Kamiya T, O'Dwyer K, Nakagawa S, Poulin R. 2014.. What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. . Biol. Rev. Cambridge Philos. Soc. 89:(1):12334
    [Crossref] [Google Scholar]
  37. 37.
    Nikc K, Albery GF, Becker DJ, Eskew EA, Fagre AC, et al. 2022.. Viral diversity and zoonotic risk in endangered species. . bioRxiv 497730. https://doi.org/10.1101/2022.06.27.497730
  38. 38.
    Martins de Camargo M, Caetano AR, Ferreira de Miranda Santos IK. 2022.. Evolutionary pressures rendered by animal husbandry practices for avian influenza viruses to adapt to humans. . iScience 25:(4):104005
    [Crossref] [Google Scholar]
  39. 39.
    Pereira HM, Martins IS, Rosa IMD, Kim H, Leadley P, et al. 2024.. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. . Science 384:(6694):45865
    [Crossref] [Google Scholar]
  40. 40.
    Wood CL, Lafferty KD. 2013.. Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. . Trends Ecol. Evol. 28:(4):23947
    [Crossref] [Google Scholar]
  41. 41.
    Lafferty KD, Wood CL. 2013.. It's a myth that protection against disease is a strong and general service of biodiversity conservation: response to Ostfeld and Keesing. . Trends Ecol. Evol. 28:(9):5034
    [Crossref] [Google Scholar]
  42. 42.
    Randolph SE, Dobson ADM. 2012.. Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. . Parasitology 139:(7):84763
    [Crossref] [Google Scholar]
  43. 43.
    Salkeld DJ, Padgett KA, Jones JH. 2013.. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. . Ecol. Lett. 16:(5):67986
    [Crossref] [Google Scholar]
  44. 44.
    Wood CL, McInturff A, Young HS, Kim D, Lafferty KD. 2017.. Human infectious disease burdens decrease with urbanization but not with biodiversity. . Philos. Trans. R. Soc. Lond. B 372:(1722):20160122
    [Crossref] [Google Scholar]
  45. 45.
    Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. 2014.. Defaunation in the Anthropocene. . Science 345:(6195):4016
    [Crossref] [Google Scholar]
  46. 46.
    Young HS, Dirzo R, Helgen KM, McCauley DJ, Billeter SA, et al. 2014.. Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa. . PNAS 111:(19):703641
    [Crossref] [Google Scholar]
  47. 47.
    Young HS, McCauley DJ, Dirzo R, Nunn CL, Campana MG, et al. 2017.. Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. . Philos. Trans. R. Soc. Lond. B 372:(1722):20160116
    [Crossref] [Google Scholar]
  48. 48.
    Titcomb G, Allan BF, Ainsworth T, Henson L, Hedlund T, et al. 2017.. Interacting effects of wildlife loss and climate on ticks and tick-borne disease. . Proc. Biol. Sci. 284:(1862):20170475
    [Google Scholar]
  49. 49.
    Weinstein S, Titcomb G, Agwanda B, Riginos C, Young H. 2017.. Parasite responses to large mammal loss in an African savanna. . Ecology 98:(7):183948
    [Crossref] [Google Scholar]
  50. 50.
    Johnson PTJ, Preston DL, Hoverman JT, Richgels KLD. 2013.. Biodiversity decreases disease through predictable changes in host community competence. . Nature 494:(7436):23033
    [Crossref] [Google Scholar]
  51. 51.
    Johnson PTJ, Rohr JR, Hoverman JT, Kellermanns E, Bowerman J, Lunde KB. 2012.. Living fast and dying of infection: Host life history drives interspecific variation in infection and disease risk. . Ecol. Lett. 15:(3):23542
    [Crossref] [Google Scholar]
  52. 52.
    Johnson PTJ, Preston DL, Hoverman JT, Henderson JS, Paull SH, et al. 2012.. Species diversity reduces parasite infection through cross-generational effects on host abundance. . Ecology 93:(1):5664
    [Crossref] [Google Scholar]
  53. 53.
    Johnson PTJ, Hartson RB, Larson DJ, Sutherland DR. 2008.. Diversity and disease: Community structure drives parasite transmission and host fitness. . Ecol. Lett. 11:(10):101726
    [Crossref] [Google Scholar]
  54. 54.
    Johnson PTJ, Stewart Merrill TE, Dean AD, Fenton A. 2024.. Diverging effects of host density and richness across biological scales drive diversity-disease outcomes. . Nat. Commun. 15::1937
    [Crossref] [Google Scholar]
  55. 55.
    Johnson PTJ, Calhoun DM, Riepe T, McDevitt-Galles T, Koprivnikar J. 2019.. Community disassembly and disease: Realistic—but not randomized—biodiversity losses enhance parasite transmission. . Proc. Biol. Sci. 286:(1902):20190260
    [Google Scholar]
  56. 56.
    Wood CL, Summerside M, Johnson PTJ. 2020.. How host diversity and abundance affect parasite infections: results from a whole-ecosystem manipulation of bird activity. . Biol. Conserv. 248::108683
    [Crossref] [Google Scholar]
  57. 57.
    Claar DC, Wood CL. 2020.. Pulse heat stress and parasitism in a warming world. . Trends Ecol. Evol. 35:(8):70415
    [Crossref] [Google Scholar]
  58. 58.
    Lafferty KD. 2009.. The ecology of climate change and infectious diseases. . Ecology 90:(4):888900
    [Crossref] [Google Scholar]
  59. 59.
    Mills JN, Gage KL, Khan AS. 2010.. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. . Environ. Health Perspect. 118:(11):150714
    [Crossref] [Google Scholar]
  60. 60.
    Byers JE. 2020.. Effects of climate change on parasites and disease in estuarine and nearshore environments. . PLOS Biol. 18:(11):e3000743
    [Crossref] [Google Scholar]
  61. 61.
    Parola P, Socolovschi C, Jeanjean L, Bitam I, Fournier P-E, et al. 2008.. Warmer weather linked to tick attack and emergence of severe rickettsioses. . PLOS Negl. Trop. Dis. 2:(11):e338
    [Crossref] [Google Scholar]
  62. 62.
    Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, et al. 2002.. Climate warming and disease risks for terrestrial and marine biota. . Science 296:(5576):215862
    [Crossref] [Google Scholar]
  63. 63.
    Casadevall A, Damman C. 2020.. Updating the fungal infection-mammalian selection hypothesis at the end of the Cretaceous Period. . PLOS Pathog. 16:(7):e1008451
    [Crossref] [Google Scholar]
  64. 64.
    Lafferty KD. 2012.. Biodiversity loss decreases parasite diversity: theory and patterns. . Philos. Trans. R. Soc. Lond. B 367:(1604):281427
    [Crossref] [Google Scholar]
  65. 65.
    Quinn J, Lee S, Greeley D, Gehman A, Kuris AM, Wood CL. 2021.. Long-term change in the parasite burden of shore crabs (Hemigrapsus oregonensis and Hemigrapsus nudus) on the northwestern Pacific coast of North America. . Proc. Biol. Sci. 2881945::20203036
    [Google Scholar]
  66. 66.
    Fiorenza EA, Wendt CA, Dobkowski KA, King TL, Pappaionou M, et al. 2020.. It's a wormy world: Meta-analysis reveals several decades of change in the global abundance of the parasitic nematodes Anisakis spp. and Pseudoterranova spp. in marine fishes and invertebrates. . Glob. Change Biol. 26:(5):285466
    [Crossref] [Google Scholar]
  67. 67.
    Tracy AM, Pielmeier ML, Yoshioka RM, Heron SF, Harvell CD. 2019.. Increases and decreases in marine disease reports in an era of global change. . Proc. Biol. Sci. 286:(1912):20191718
    [Google Scholar]
  68. 68.
    Keas BE, Blankespoor HD. 1997.. The prevalence of cercariae from Stagnicola emarginata (Lymnaeidae) over 50 years in northern Michigan. . J. Parasitol. 83:(3):53640
    [Crossref] [Google Scholar]
  69. 69.
    Egizi A, Maestas LP. 2022.. Where have all the grouse ticks gone? Apparent decline in collections of Packard. . Int. J. Parasitol. Parasites Wildl. 19::32329
    [Crossref] [Google Scholar]
  70. 70.
    Pauly D. 1995.. Anecdotes and the shifting baseline syndrome of fisheries. . Trends Ecol. Evol. 10:(10):430
    [Crossref] [Google Scholar]
  71. 71.
    Jackson JBC, Alexander KE, Sala E. 2012.. Shifting Baselines: The Past and the Future of Ocean Fisheries. Washington, DC:: Island
    [Google Scholar]
  72. 72.
    Pauly D. 2019.. Vanishing Fish: Shifting Baselines and the Future of Global Fisheries. Vancouver, Can:.: Greystone Books Ltd.
    [Google Scholar]
  73. 73.
    Fitzgerald E, Ryan D, Scarponi D, Huntley JW. 2024.. A sea of change: tracing parasitic dynamics through the past millennia in the northern Adriatic, Italy. . Geology 52:(8):61014
    [Crossref] [Google Scholar]
  74. 74.
    Wibowo MC, Yang Z, Borry M, Hübner A, Huang KD, et al. 2021.. Reconstruction of ancient microbial genomes from the human gut. . Nature 594:(7862):23439
    [Crossref] [Google Scholar]
  75. 75.
    Tito RY, Knights D, Metcalf J, Obregon-Tito AJ, Cleeland L, et al. 2012.. Insights from characterizing extinct human gut microbiomes. . PLOS ONE 7:(12):e51146
    [Crossref] [Google Scholar]
  76. 76.
    Tett A, Huang KD, Asnicar F, Fehlner-Peach H, Pasolli E, et al. 2019.. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. . Cell Host Microbe 26:(5):66679.e7
    [Crossref] [Google Scholar]
  77. 77.
    Blaser MJ. 2014.. Missing Microbes: How the Overuse of Antibiotics Is Fueling Our Modern Plagues. New York:: Macmillan
    [Google Scholar]
  78. 78.
    Boast AP, Weyrich LS, Wood JR, Metcalf JL, Knight R, Cooper A. 2018.. Coprolites reveal ecological interactions lost with the extinction of New Zealand birds. . PNAS 115:(7):154651
    [Crossref] [Google Scholar]
  79. 79.
    Perry GLW, Wheeler AB, Wood JR, Wilmshurst JM. 2014.. A high-precision chronology for the rapid extinction of New Zealand moa (Aves, Dinornithiformes). . Quat. Sci. Rev. 105::12635
    [Crossref] [Google Scholar]
  80. 80.
    Petrigh RS, Martínez JG, Mondini M, Fugassa MH. 2019.. Ancient parasitic DNA reveals Toxascaris leonina presence in Final Pleistocene of South America. . Parasitology 146:(10):128488
    [Crossref] [Google Scholar]
  81. 81.
    Raxworthy CJ, Smith BT. 2021.. Mining museums for historical DNA: advances and challenges in museomics. . Trends Ecol. Evol. 36:(11):104960
    [Crossref] [Google Scholar]
  82. 82.
    Nelder MP, Schats R, Poinar HN, Cooke A, Brickley MB. 2024.. Pathogen prospecting of museums: reconstructing malaria epidemiology. . PNAS 121:(15):e2310859121
    [Crossref] [Google Scholar]
  83. 83.
    Marshall WF 3rd, Telford SR 3rd, Rys PN, Rutledge BJ, Mathiesen D, et al. 1994.. Detection of Borrelia burgdorferi DNA in museum specimens of Peromyscus leucopus. . J. Infect. Dis. 170:(4):102732
    [Crossref] [Google Scholar]
  84. 84.
    Lycett SJ, Duchatel F, Digard P. 2019.. A brief history of bird flu. . Philos. Trans. R. Soc. Lond. B 374:(1775):20180257
    [Crossref] [Google Scholar]
  85. 85.
    Hoen AG, Margos G, Bent SJ, Diuk-Wasser MA, Barbour A, et al. 2009.. Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. . PNAS 106:(35):1501318
    [Crossref] [Google Scholar]
  86. 86.
    Margos G, Tsao JI, Castillo-Ramírez S, Girard YA, Hamer SA, et al. 2012.. Two boundaries separate Borrelia burgdorferi populations in North America. . Appl. Environ. Microbiol. 78:(17):605967
    [Crossref] [Google Scholar]
  87. 87.
    Walter KS, Carpi G, Caccone A, Diuk-Wasser MA. 2017.. Genomic insights into the ancient spread of Lyme disease across North America. . Nat. Ecol. Evol. 1:(10):156976
    [Crossref] [Google Scholar]
  88. 88.
    Vogels CBF, Brackney DE, Dupuis AP 2nd, Robich RM, Fauver JR, et al. 2023.. Phylogeographic reconstruction of the emergence and spread of Powassan virus in the northeastern United States. . PNAS 120:(16):e2218012120
    [Crossref] [Google Scholar]
  89. 89.
    Qiu W-G, Dykhuizen DE, Acosta MS, Luft BJ. 2002.. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the Northeastern United States. . Genetics 160:(3):83349
    [Crossref] [Google Scholar]
  90. 90.
    Do H, Dobrovic A. 2015.. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. . Clin. Chem. 61:(1):6471
    [Crossref] [Google Scholar]
  91. 91.
    Wood JR. 2018.. DNA barcoding of ancient parasites. . Parasitology 145:(5):64655
    [Crossref] [Google Scholar]
  92. 92.
    Carlson CJ, Dallas TA, Alexander LW, Phelan AL, Phillips AJ. 2020.. What would it take to describe the global diversity of parasites?. Proc. Biol. Sci. 2871939::20201841
    [Google Scholar]
  93. 93.
    Bograd SJ, Mendelssohn R, Schwing FB, Miller AJ. 2005.. Spatial heterogeneity of sea surface temperature trends in the Gulf of Alaska. . Atmosphere-Ocean 43:(3):24147
    [Crossref] [Google Scholar]
  94. 94.
    Wood CL, Leslie KL, Claar D, Mastick N, Preisser W, et al. 2023.. How to use natural history collections to resurrect information on historical parasite abundances. . J. Helminthol. 97::e6
    [Crossref] [Google Scholar]
  95. 95.
    Harmon A, Littlewood DTJ, Wood CL. 2019.. Parasites lost: using natural history collections to track disease change across deep time. . Front. Ecol. Environ. 17:(3):15766
    [Crossref] [Google Scholar]
  96. 96.
    Marcogliese DJ. 2023.. Major drivers of biodiversity loss and their impacts on helminth parasite populations and communities. . J. Helminthol. 97::e34
    [Crossref] [Google Scholar]
  97. 97.
    Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, et al. 2006.. Depletion, degradation, and recovery potential of estuaries and coastal seas. . Science 312:(5781):18069
    [Crossref] [Google Scholar]
  98. 98.
    Carlson CJ, Burgio KR, Dougherty ER, Phillips AJ, Bueno VM, et al. 2017.. Parasite biodiversity faces extinction and redistribution in a changing climate. . Sci. Adv. 3:(9):e1602422
    [Crossref] [Google Scholar]
  99. 99.
    Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS. 2009.. The sixth mass coextinction: Are most endangered species parasites and mutualists?. Proc. Biol. Sci. 276:(1670):303745
    [Google Scholar]
  100. 100.
    Colwell RK, Dunn RR, Harris NC. 2012.. Coextinction and persistence of dependent species in a changing world. . Annu. Rev. Ecol. Evol. Syst. 43::183203
    [Crossref] [Google Scholar]
  101. 101.
    Koh LP, Dunn RR, Sodhi NS, Colwell RK, Proctor HC, Smith VS. 2004.. Species coextinctions and the biodiversity crisis. . Science 305:(5690):163234
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-102039
Loading
/content/journals/10.1146/annurev-animal-111523-102039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error