1932

Abstract

Challenges in livestock production in developing countries are often linked to a high disease prevalence and may be related to poor husbandry, feeding, and nutrition practices, as well as to inadequate access to preventive veterinary care. Structural barriers including chronic poverty, gender roles, inadequate supply chains, and limitations in surveillance infrastructure further complicate progress. Despite many challenges, the livestock sector substantially contributes to agricultural GDP, and reducing livestock disease prevalence is a goal for many countries. One Health initiatives that work across disciplines and sectors to reduce livestock diseases are underway around the world and use integrated approaches that consider the connections between humans, animals, and their shared environments. The growing recognition of the role livestock play in sustainability and livelihoods, as well as their involvement in zoonotic disease transmission and global health security, has highlighted the need for disease reduction strategies as described in this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-102133
2025-02-18
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-102133.html?itemId=/content/journals/10.1146/annurev-animal-111523-102133&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    FAOSTAT. 2024.. Crops and livestock products. FAOSTAT, accessed Febr. 15, 2024. https://www.fao.org/faostat/en/#data/QCL
    [Google Scholar]
  2. 2.
    Valin H, Sands RD, Van der Mensbrugghe D, Nelson GC, Ahammad H, et al. 2014.. The future of food demand: understanding differences in global economic models. . Agric. Econ. 45:(1):5167
    [Crossref] [Google Scholar]
  3. 3.
    Baltenweck I, Enahoro D, Frija A, Tarawali S. 2020.. Why is production of animal source foods important for economic development in Africa and Asia?. Anim. Front. 10:(4):2229
    [Crossref] [Google Scholar]
  4. 4.
    Herrero M, Grace D, Njuki J, Johnson N, Enahoro D, et al. 2013.. The roles of livestock in developing countries. . Animal 7:(Suppl. 1):318
    [Crossref] [Google Scholar]
  5. 5.
    Iannotti LL. 2018.. The benefits of animal products for child nutrition in developing countries. . Rev. Sci. Tech. 37:(1):3746
    [Crossref] [Google Scholar]
  6. 6.
    Grace D, Lindahl J, Wanyoike F, Bett B, Randolph T, Rich KM. 2017.. Poor livestock keepers: ecosystem–poverty–health interactions. . Philos. Trans. R. Soc. B 372:(1725):20160166
    [Crossref] [Google Scholar]
  7. 7.
    Rushton J, Uggla A, Magnusson U. 2017.. Animal health in development—its role for poverty reduction and human welfare. Rep. , Exp. Group Aid Stud., Stockholm:
    [Google Scholar]
  8. 8.
    Rushton J, Bruce M, Bellet C, Torgerson P, Shaw A, et al. 2018.. Initiation of global burden of animal diseases programme. . Lancet 392:(10147):53840
    [Crossref] [Google Scholar]
  9. 9.
    Jayne TS, Fox L, Fuglie K, Adelaja A. 2021.. Agricultural productivity growth, resilience, and economic transformation in sub-Saharan Africa. Rep. , Assoc. Public Land-Grant Univ., Washington, DC:. https://www.usaid.gov/sites/default/files/2022-05/BIFAD_Agricultural_Productivity_Growth_Resilience_and_Economic_Transformation_in_SSA_Final_Report_4.20.21_2_2.pdf
    [Google Scholar]
  10. 10.
    Schrobback P, Dennis G, Li Y, Mayberry D, Shaw A, et al. 2023.. Approximating the global economic (market) value of farmed animals. . Glob. Food Secur. 39::100722
    [Crossref] [Google Scholar]
  11. 11.
    Salmon G. 2018.. Fact check 2: livestock and economy. Livest. Fact Check, Livest. Data Decis., Midlothian, UK:. http://hdl.handle.net/1842/30115
    [Google Scholar]
  12. 12.
    Mehrabi Z, Gill M, Wijk MV, Herrero M, Ramankutty N. 2020.. Livestock policy for sustainable development. . Nat. Food 1:(3):16065
    [Crossref] [Google Scholar]
  13. 13.
    Schwabe CW. 1974.. Veterinary Medicine and Human Health. Baltimore:: Williams & Wilkins
    [Google Scholar]
  14. 14.
    Osofsky SA, Kock RA, Kock MD, Kalema-Zikusoka G, Grahn R, et al. 2005.. Building support for protected areas using a “One Health” perspective. . In Friends for Life: New Partners in Support of Protected Areas, pp. 6579. Gland, Switz:.: Int. Union Conserv. Nat.
    [Google Scholar]
  15. 15.
    Mackenzie JS, Jeggo M. 2019.. The One Health approach—why is it so important?. Trop. Med. Infect. Dis. 4:(2):88
    [Crossref] [Google Scholar]
  16. 16.
    One Health High-Level Expert Panel, Adisasmito WB, Almuhairi S, Behravesh CB, Bilivogui P, Bukachi SA, et al. 2022.. One Health: a new definition for a sustainable and healthy future. . PLOS Pathog. 18:(6):e1010537
    [Crossref] [Google Scholar]
  17. 17.
    Salyer SJ, Silver R, Simone K, Behravesh CB. 2017.. Prioritizing zoonoses for global health capacity building—themes from One Health zoonotic disease workshops in 7 countries, 2014–2016. . Emerg. Infect. Dis. 23:(Suppl. 1):S55
    [Google Scholar]
  18. 18.
    Mpouam SE, Mingoas JPK, Mouiche MMM, Kameni Feussom JM, Saegerman C. 2021.. Critical systematic review of zoonoses and transboundary animal diseases’ prioritization in Africa. . Pathogens 10::976
    [Crossref] [Google Scholar]
  19. 19.
    Elton L, Haider N, Kock R, Thomason MJ, Tembo J, et al. 2021.. Zoonotic disease preparedness in sub-Saharan African countries. . One Health Outlook 3::5
    [Crossref] [Google Scholar]
  20. 20.
    Food Agric. Organ., UN Environ. Progr., World Health Organ., World Organ. Anim. Health . 2022.. One Health Joint Plan of Action (20222026). Working Together for the Health of Humans, Animals, Plants and the Environment. Rome:: Food Agric. Organ.
    [Google Scholar]
  21. 21.
    Godfroid J. 2018.. Brucella spp. at the wildlife-livestock interface: An evolutionary trajectory through a livestock-to-wildlife “host jump”?. Vet. Sci. 5:(3):81
    [Crossref] [Google Scholar]
  22. 22.
    Jones K, Patel N, Levy M, Storeygard A, Balk D, et al. 2008.. Global trends in emerging infectious diseases. . Nature 451::99093
    [Crossref] [Google Scholar]
  23. 23.
    Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, et al. 2004.. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. . Environ. Health Perspect. 112::109298
    [Crossref] [Google Scholar]
  24. 24.
    Gottdenker NL, Streicker DG, Faust CL, Carroll CR. 2014.. Anthropogenic land use change and infectious diseases: a review of the evidence. . EcoHealth 11::61932
    [Crossref] [Google Scholar]
  25. 25.
    Plowright RK, Reaser JK, Locke H, Woodley SJ, Patz JA, et al. 2021.. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. . Lancet Planet. Health 5:(4):E23745
    [Crossref] [Google Scholar]
  26. 26.
    Franc K, Krecek R, Häsler B, Arenas-Gamboa A. 2018.. Brucellosis remains a neglected disease in the developing world: a call for interdisciplinary action. . BMC Public Health 18:(1):125
    [Crossref] [Google Scholar]
  27. 27.
    McDermott J, Grace D, Zinsstag J. 2013.. Economics of brucellosis impact and control in low-income countries. . Rev. Sci. Tech. 32:(1):24961
    [Crossref] [Google Scholar]
  28. 28.
    Godfroid J, Garin-Bastuji B, Saegerman C, Blasco J. 2013.. Brucellosis in terrestrial wildlife. . Rev. Sci. Tech. 32:(1):2742
    [Crossref] [Google Scholar]
  29. 29.
    Whatmore AM, Dawson C, Muchowski J, Perrett LL, Stubberfield E, et al. 2017.. Characterisation of North American Brucella isolates from marine mammals. . PLOS ONE 12:(9):e0184758
    [Crossref] [Google Scholar]
  30. 30.
    Simpson G, Thompson PN, Saegerman C, Marcotty T, Letesson J-J, et al. 2021.. Brucellosis in wildlife in Africa: a systematic review and meta-analysis. . Sci. Rep. 11:(1):5960
    [Crossref] [Google Scholar]
  31. 31.
    Whatmore AM, Davison N, Cloeckaert A, Al Dahouk S, Zygmunt MS, et al. 2014.. Brucella papionis sp. nov., isolated from baboons (Papio spp.). . Int. J. Syst. Evol. Microbiol. 64:(12):412028
    [Crossref] [Google Scholar]
  32. 32.
    Aguilar XF, Nymo IH, Beckmen K, Dresvyanikova S, Egorova I, Kutz S. 2022.. Brucellosis in the Arctic and Northern Regions. . In Arctic One Health: Challenges for Northern Animals and People, ed. M Tryland , pp. 22767. Cham, Switz:.: Springer
    [Google Scholar]
  33. 33.
    Dadar M, Tiwari R, Sharun K, Dhama K. 2021.. Importance of brucellosis control programs of livestock on the improvement of one health. . Vet. Q. 41:(1):13751
    [Crossref] [Google Scholar]
  34. 34.
    Kamath PL, Foster JT, Drees KP, Luikart G, Quance C, et al. 2016.. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. . Nat. Commun. 7::11448
    [Crossref] [Google Scholar]
  35. 35.
    Samadi A, Amiri M, Hailat N. 2024.. The reasons behind long-term endemicity of brucellosis in low and middle-income countries: challenges and future perspectives. . Curr. Microbiol. 81::82
    [Crossref] [Google Scholar]
  36. 36.
    Chen H, Li Y, Li Z, Shi J, Shinya K, et al. 2006.. Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. . J. Virol. 80::597683
    [Crossref] [Google Scholar]
  37. 37.
    Cui P, Shi J, Wang C, Zhang Y, Xing X, et al. 2022.. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. . Emerg. Microbes Infect. 11:(1):1693704
    [Crossref] [Google Scholar]
  38. 38.
    Chen H, Smith GJ, Zhang SY, Qin K, Wang J, et al. 2005.. H5N1 virus outbreak in migratory waterfowl. . Nature 436::19192
    [Crossref] [Google Scholar]
  39. 39.
    Ip HS, Torchetti MK, Crespo R, Kohrs P, DeBruyn P, et al. 2015.. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014. . Emerg. Infect. Dis. 21::88690
    [Crossref] [Google Scholar]
  40. 40.
    Bevins SN, Shriner SA, Cumbee JC Jr., Dilione KE, Douglass KE, et al. 2022.. Intercontinental movement of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4 virus to the United States, 2021. . Emerg. Infect. Dis. 28:(5):100611
    [Crossref] [Google Scholar]
  41. 41.
    Ruiz-Saenz J, Martinez-Gutierrez M, Pujol FH. 2023.. Multiple introductions of highly pathogenic avian influenza H5N1 clade 2.3.4.4b into South America. . Travel. Med. Infect. Dis. 53::102591
    [Crossref] [Google Scholar]
  42. 42.
    Xie R, Edwards KM, Wille M, Wei X, Wong S-S, et al. 2023.. The episodic resurgence of highly pathogenic avian influenza H5 virus. . Nature 622::81017
    [Crossref] [Google Scholar]
  43. 43.
    WOAH (World Organ. Anim. Health). 2024.. Wildlife under threat as avian influenza reaches Antarctica. Statem., WOAH, Paris:. https://www.woah.org/en/wildlife-under-threat-as-avian-influenza-reaches-antarctica
    [Google Scholar]
  44. 44.
    Charostad J, Zadeh Rukerd MR, Mahmoudvand S, Bashash D, Hashemi SMA, et al. 2023.. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: an imminent threat at doorstep. . Travel Med. Infect. Dis. 55::102638
    [Crossref] [Google Scholar]
  45. 45.
    Puryear W, Sawatzki K, Hill N, Foss A, Stone JJ, et al. 2023.. Highly pathogenic avian influenza A(H5N1) virus outbreak in New England seals, United States. . Emerg. Infect. Dis. 29:(4):78691
    [Crossref] [Google Scholar]
  46. 46.
    US Dep. Agric. 2023.. Highly pathogenic avian influenza emergency response. US Dep. Agric., Washington, DC:. https://www.aphis.usda.gov/animal-emergencies/hpai
    [Google Scholar]
  47. 47.
    Plaza PI, Gamarra-Toledo V, Euguí JR, Lambertucci SA. 2024.. Recent changes in patterns of mammal infection with highly pathogenic avian influenza A(H5N1) virus worldwide. . Emerg. Infect. Dis. 30:(3):44452
    [Crossref] [Google Scholar]
  48. 48.
    World Health Organ. 2024.. HPAI North America. . Disease Outbreak News, April 9. https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON512
    [Google Scholar]
  49. 49.
    Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus AD, Fouchier RA. 2006.. Global patterns of influenza A virus in wild birds. . Science 312::38488
    [Crossref] [Google Scholar]
  50. 50.
    ASEAN. 2023.. Post-2020 avian influenza control framework in ASEAN. Framew., ASEAN, Jakarta:. https://asean.org/wp-content/uploads/2023/10/2.-Post-2020-Avian-Influenza-Control-Framework-in-ASEAN.pdf
    [Google Scholar]
  51. 51.
    Ramey AM, Hill NJ, DeLiberto TJ, Gibbs SEJ, Hopkins MC, et al. 2022.. Highly pathogenic avian influenza is an emerging disease threat to wild birds in North America. . J. Wildl. Manag. 86::e22171
    [Crossref] [Google Scholar]
  52. 52.
    Lambert S, Bauzile B, Mugnier A, Durand B, Vergne T, Paul MC. 2023.. A systematic review of mechanistic models used to study avian influenza virus transmission and control. . Vet. Res. 54::96
    [Crossref] [Google Scholar]
  53. 53.
    Belkhiria J, Hijmans RJ, Boyce W, Crossley BM, Martínez-López B. 2018.. Identification of high risk areas for avian influenza outbreaks in California using disease distribution models. . PLOS ONE 13::e0190824
    [Crossref] [Google Scholar]
  54. 54.
    Gilbert M, Pfeiffer DU. 2012.. Risk factor modelling of the spatio-temporal patterns of highly pathogenic avian influenza (HPAIV) H5N1: a review. . Spat. Spatiotemporal Epidemiol. 3::17383
    [Crossref] [Google Scholar]
  55. 55.
    Si Y, de Boer WF, Gong P. 2013.. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds. . PLOS ONE 8::e53362
    [Crossref] [Google Scholar]
  56. 56.
    Schreuder J, de Knegt HJ, Velkers FC, Elbers ARW, Stahl J, et al. 2022.. Wild bird densities and landscape variables predict spatial patterns in HPAI outbreak risk across The Netherlands. . Pathogens 11::549
    [Crossref] [Google Scholar]
  57. 57.
    Harvey JA, Mullinax JM, Runge MC, Prosser DJ. 2023.. The changing dynamics of highly pathogenic avian influenza H5N1: next steps for management & science in North America. . Biol. Conserv. 282::110041
    [Crossref] [Google Scholar]
  58. 58.
    Tex. Health Hum. Serv. 2024.. DSHS reports first human case of avian influenza in Texas. News Release, April 1. https://www.dshs.texas.gov/news-alerts/dshs-reports-first-human-case-avian-influenza-texas
    [Google Scholar]
  59. 59.
    Coffin JL, Monje F, Asiimwe-Karimu G, Amuguni HJ, Odoch T. 2015.. A One Health, participatory epidemiology assessment of anthrax (Bacillus anthracis) management in Western Uganda. . Soc. Sci. Med. 129::4450
    [Crossref] [Google Scholar]
  60. 60.
    Ebata A, MacGregor H, Loevinsohn M, Win KS, Tucker AW. 2020.. Value chain governance, power and negative externalities: What influences efforts to control pig diseases in Myanmar?. Eur. J. Dev. Res. 32::75980
    [Crossref] [Google Scholar]
  61. 61.
    Tasker A. 2020.. Exploring power and participation through informal livestock knowledge networks. . Prev. Vet. Med. 181::105058
    [Crossref] [Google Scholar]
  62. 62.
    Patel J, Nielsen F, Badiani A, Assi S, Unadkat V, et al. 2020.. Poverty, inequality and COVID-19: the forgotten vulnerable. . Public Health 183::11011
    [Crossref] [Google Scholar]
  63. 63.
    EFSA Panel Anim. Health Welf., Nielsen SS, Alvarez J, Bicout D, Calistri P, et al. 2019.. Risk assessment of African swine fever in the south-eastern countries of Europe. . EFSA J. 17::e05861
    [Google Scholar]
  64. 64.
    Roca A, Afolabi MO, Saidu Y, Kampmann B. 2015.. Ebola: a holistic approach is required to achieve effective management and control. . J. Allergy Clin. Immunol. 135::85667
    [Crossref] [Google Scholar]
  65. 65.
    Chenais E, Fischer K. 2018.. Increasing the local relevance of epidemiological research: situated knowledge of cattle disease among Basongora pastoralists in Uganda. . Front. Vet. Sci. 5::119
    [Crossref] [Google Scholar]
  66. 66.
    Aliro T, Chenais E, Odongo W, Okello DM, Masembe C, Ståhl K. 2022.. Prevention and control of African swine fever in the smallholder pig value chain in Northern Uganda: thematic analysis of stakeholders’ perceptions. . Front. Vet. Sci. 13::707819
    [Crossref] [Google Scholar]
  67. 67.
    Penrith M-L, van Heerden J, Pfeiffer DU, Oļševskis E, Depner K, Chenais E. 2023.. Innovative research offers new hope for managing African swine fever better in resource-limited smallholder farming settings: a timely update. . Pathogens 12::355
    [Crossref] [Google Scholar]
  68. 68.
    Perry B, Grace D. 2009.. The impacts of livestock diseases and their control on growth and development processes that are pro-poor. . Philos. Trans. R. Soc. Lond. B 364::264355
    [Crossref] [Google Scholar]
  69. 69.
    Ebata A, MacGregor H, Loevinsohn M, Win KS. 2020.. Why behaviours do not change: structural constraints that influence household decisions to control pig diseases in Myanmar. . Prev. Vet. Med. 183::105138
    [Crossref] [Google Scholar]
  70. 70.
    Rich KM, Perry BD. 2011.. The economic and poverty impacts of animal diseases in developing countries: new roles, new demands for economics and epidemiology. . Prev. Vet. Med. 101::13347
    [Crossref] [Google Scholar]
  71. 71.
    Chenais E, Wennström P, Kartskhia N, Fischer K, Risatti G, et al. 2021.. Perceptions of pastoralist problems: a participatory study on animal management, disease spectrum and animal health priorities of small ruminant pastoralists in Georgia. . Prev. Vet. Med. 193::105412
    [Crossref] [Google Scholar]
  72. 72.
    Ebata A, Hodge C, Braam D, Waldman L, Sharp J, et al. 2020.. Power, participation and their problems: a consideration of power dynamics in the use of participatory epidemiology for One Health and zoonoses research. . Prev. Vet. Med. 177::104940
    [Crossref] [Google Scholar]
  73. 73.
    Berends J, Bendita da Costa Jong J, Cooper TL, Dizyee K, Morais O, et al. 2021.. Investigating the socio-economic and livelihoods impacts of African Swine Fever in Timor-Leste: an application of Spatial Group Model Building. . Front. Vet. Sci. 8::687708
    [Crossref] [Google Scholar]
  74. 74.
    Catley A, Leyland T. 2001.. Community participation and the delivery of veterinary services in Africa. . Prev. Vet. Med. 49:(1–2):95113
    [Crossref] [Google Scholar]
  75. 75.
    Msoffe PL, Bunn D, Muhairwa AP, Mtambo MMA, Mwamhehe H, et al. 2010.. Implementing poultry vaccination and biosecurity at the village level in Tanzania: a social strategy to promote health in free-range poultry populations. . Trop. Anim. Health Prod. 42::25363
    [Crossref] [Google Scholar]
  76. 76.
    Garcia SN, Mpatswenumugabo JPM, Ntampaka P, Nandi S, Cullor JS. 2023.. A One Health framework to advance food safety and security: an on-farm case study in the Rwandan dairy sector. . One Health 16::100531
    [Crossref] [Google Scholar]
  77. 77.
    Bikaako W, Kabahango P, Mugabi K, Yawe A, Stallon K, et al. 2022.. Breaking institutional barriers to enhance women's participation in and benefit from the Peste des Petits Ruminants and Newcastle disease vaccine value chains for Sembabule district of Uganda. . PLOS ONE 17:(10):e0270518
    [Crossref] [Google Scholar]
  78. 78.
    Serra R, Ludgate N, Fiorillo Dowhaniuk K, McKune SL, Russo S. 2022.. Beyond the gender of the livestock holder: learnings from intersectional analyses of PPR vaccine value chains in Nepal, Senegal, and Uganda. . Animals 12:(3):241
    [Crossref] [Google Scholar]
  79. 79.
    Babo SA, Fokou G, Yapi RB, Mathew C, Dayoro AK, et al. 2022.. Gendered asymmetry of access to knowledge for brucellosis control among pastoral communities in north-west Côte d'Ivoire. . Pastoralism 12::28
    [Crossref] [Google Scholar]
  80. 80.
    McKune S, Serra R, Touré A. 2021.. Gender and intersectional analysis of livestock vaccine value chains in Kaffrine, Senegal. . PLOS ONE 16:(7):e0252045
    [Crossref] [Google Scholar]
  81. 81.
    Plowright W, Thomson GR, Neser JA. 1994.. African swine fever. . In Infectious Diseases in Livestock with Special Reference to Southern Africa, ed. JAW Coetzer, GR Thomson, RC Tustin , pp. 56792. Cape Town:: Oxford Univ. Press
    [Google Scholar]
  82. 82.
    Dixon LK, Stahl K, Jori F, Vial L, Pfeiffer DU. 2020.. African swine fever epidemiology and control. . Annu. Rev. Anim. Biosci. 8::22146
    [Crossref] [Google Scholar]
  83. 83.
    Barnes TS, Morais O, Cargill C, Parke CR, Urlings A. 2020.. First steps in managing the challenge of African swine fever in Timor-Leste. . One Health 10::100151
    [Crossref] [Google Scholar]
  84. 84.
    Hunter CL, Millar J, Toribio J-ALML. 2021.. More than meat: the role of pigs in Timorese culture and the household economy. . Int. J. Agric. Sustain. 20::18498
    [Crossref] [Google Scholar]
  85. 85.
    Penrith M-L. 2020.. Current status of African swine fever. . CABI Agric. Biosci. 1::11
    [Crossref] [Google Scholar]
  86. 86.
    Chenais E, Depner K, Ebata A, Penrith M-L, Pfeiffer DU, et al. 2022.. Exploring the hurdles that remain for control of African swine fever in smallholder farming settings. . Transbound. Emerg. Dis. 69:(5):e337078
    [Crossref] [Google Scholar]
  87. 87.
    Montgomery E. 1921.. On a form of swine fever occurring in British East Africa (Kenya colony). . J. Comp. Pathol. Ther. 24::15991
    [Crossref] [Google Scholar]
  88. 88.
    Penrith M-L, Kivaria FM, Masembe C. 2021.. One hundred years of African swine fever: a tribute to R. Eustace Montgomery. . Transbound. Emerg. Dis. 68::264042
    [Crossref] [Google Scholar]
  89. 89.
    Cappai S, Rolesu S, Coccollone A, Laddomada A, Loi F. 2018.. Evaluation of biological and socio-economic factors related to persistence of African swine fever in Sardinia. . Prev. Vet. Med. 152::111
    [Crossref] [Google Scholar]
  90. 90.
    Chenais E, Depner K, Guberti V, Dietze K, Viltrop A, Stahl K. 2019.. Epidemiological considerations on African swine fever in Europe 2014–2018. . Porcine Health Manag. 5::6
    [Crossref] [Google Scholar]
  91. 91.
    Penrith M-L, Bastos AD, Etter EM, Beltrán-Alcrudo D. 2019.. Epidemiology of African swine fever in Africa today: sylvatic cycle versus socio-economic imperatives. . Transbound. Emerg. Dis. 66::67286
    [Crossref] [Google Scholar]
  92. 92.
    Dione MM, Ouma EA, Roesel K, Kungu J, Lule P, Pezo D. 2014.. Participatory assessment of animal health and husbandry practices in smallholder pig production systems in three high poverty districts in Uganda. . Prev. Vet. Med. 117::56576
    [Crossref] [Google Scholar]
  93. 93.
    Nantima N, Ocaido M, Ouma E, Davies J, Dione M, et al. 2015.. Risk factors associated with occurrence of African swine fever outbreaks in smallholder pig farms in four districts along the Uganda-Kenya border. . Trop. Anim. Health Prod. 47::58995
    [Crossref] [Google Scholar]
  94. 94.
    Chenais E, Boqvist S, Sternberg-Lewerin S, Emanuelson U, Ouma E, et al. 2017.. Knowledge, attitudes and practices related to African swine fever within smallholder pig production in Northern Uganda. . Transbound. Emerg. Dis. 64::10115
    [Crossref] [Google Scholar]
  95. 95.
    Omowon A, Daodu O, Omowon A, Bello I. 2019.. Knowledge, attitude and practices of pig farmers post African swine fever outbreaks in Ogun and Oyo states of Nigeria. . Sokoto J. Vet. Sci. 17::1424
    [Crossref] [Google Scholar]
  96. 96.
    Thys S, Mwape KE, Lefèvre P, Dorny P, Phiri AM, et al. 2016.. Why pigs are free-roaming: communities’ perceptions, knowledge and practices regarding pig management and taeniosis/cysticercosis in a Taenia solium endemic rural area in Eastern Zambia. . Vet. Parasitol. 225::3342
    [Crossref] [Google Scholar]
  97. 97.
    MacGregor H, Waldman L. 2017.. Views from many worlds: unsettling categories in interdisciplinary research on endemic zoonotic diseases. . Philos. Trans. R. Soc. B 372::20160170
    [Crossref] [Google Scholar]
  98. 98.
    Zvonareva O, Odermatt P, Golovach EA, Fedotova MM, Kovshirina YV, et al. 2018.. Life by the river: neglected worm infection in Western Siberia and pitfalls of a one-size-fits-all control approach. . Crit. Public Health 28::53445
    [Crossref] [Google Scholar]
  99. 99.
    Dione MM, Dohoo I, Ndiwa N, Poole J, Ouma E, et al. 2020.. Impact of participatory training of smallholder pig farmers on knowledge, attitudes and practices regarding biosecurity for the control of African swine fever in Uganda. . Transbound. Emerg. Dis. 67::248293
    [Crossref] [Google Scholar]
  100. 100.
    Arvidsson A, Fischer K, Hansen K, Sternberg-Lewerin S, Chenais E. 2022.. Diverging discourses: animal health challenges and veterinary care in Northern Uganda. . Front. Vet. Sci. 9::773903
    [Crossref] [Google Scholar]
  101. 101.
    Arvidsson A, Fischer K, Hansen K, Kiguli J. 2022.. Pigs as a shortcut to money? Social traps in smallholder pig production in northern Uganda. . J. Rural Stud. 94::31925
    [Crossref] [Google Scholar]
  102. 102.
    Ouma E, Dione M, Birungi R, Lule P, Mayega L, Dizyee K. 2018.. African swine fever control and market integration in Ugandan peri-urban smallholder pig value chains: an ex-ante impact assessment of interventions and their interaction. . Prev. Vet. Med. 151::2939
    [Crossref] [Google Scholar]
  103. 103.
    Chenais E, Fischer K, Aliro T, Ståhl K, Lewerin SS. 2023.. Co-created community contracts support biosecurity changes in a region where African swine fever is endemic—part II: implementation of biosecurity measures. . Prev. Vet. Med. 214::105902
    [Crossref] [Google Scholar]
  104. 104.
    Chenais E, Sternberg-Lewerin S, Aliro T, Ståhl K, Fischer K. 2023.. Co-created community contracts support biosecurity changes in a region where African swine fever is endemic—part I: the methodology. . Prev. Vet. Med. 212::105840
    [Crossref] [Google Scholar]
  105. 105.
    Sharma R, Ganguly S. 2016.. Gastrointestinal nematodiasis in small ruminants and anthelmintic resistance: a review. . J. Immunol. Immunopathol. 18:(2):1004
    [Crossref] [Google Scholar]
  106. 106.
    El-Ashram S, Al Nasr I, Mehmood R, Hu M, He L, Suo X. 2017.. Haemonchus contortus and ovine host: a retrospective review. . Int. J. Adv. Res. 5:(3):97299
    [Crossref] [Google Scholar]
  107. 107.
    Gilleard JS. 2013.. Haemonchus contortus as a paradigm and model to study anthelmintic drug resistance. . Parasitology 140:(12):150622
    [Crossref] [Google Scholar]
  108. 108.
    Kotze AC, Prichard RK. 2016.. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. . Adv. Parasitol. 93::397428
    [Crossref] [Google Scholar]
  109. 109.
    Woodward-Greene MJ, Kinser JM, Huson HJ, Sonstegard TS, Soelkner J, et al. 2023.. Using the community-based breeding program (CBBP) model as a collaborative platform to develop the African Goat Improvement Network-Image collection protocol (AGIN-ICP) with mobile technology for data collection and management of livestock phenotypes. . Front. Genet. 14::1200770
    [Crossref] [Google Scholar]
  110. 110.
    Akash Hoque M, Mondal S, Adusumilli S. 2022.. Sustainable livestock production and food security. . In Emerging Issues in Climate Smart Livestock Production: Biological Tools and Techniques, ed. S Mondal, RL Singh , pp. 7190. London:: Academic
    [Google Scholar]
  111. 111.
    Malan FS, Van Wyk JA, Wessels CD. 2001.. Clinical evaluation of anaemia in sheep: early trials. . Onderstepoort J. Vet. Res. 68:(3):16574
    [Google Scholar]
  112. 112.
    van Wyk JA, Bath GF. 2002.. The FAMACHA system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. . Vet. Res. 33:(5):50929
    [Crossref] [Google Scholar]
  113. 113.
    Bath GF, Malan FS, van Wyk JA. 1996.. The “FAMACHA” ovine anaemia guide to assist with the control of haemonchosis. . In Proceedings of the 7th Annual Congress of the Livestock Health and Production Group of the South African Veterinary Association, Port Elizabeth, S. Afr., June 5–7, 1996 , p. 5
    [Google Scholar]
  114. 114.
    Kaplan RM, Burke JM, Terrill TH, Miller JE, Getz WR, et al. 2004.. Validation of the FAMACHA© eye color chart for detecting clinical anemia in sheep and goats on farms in the southern United States. . Vet. Parasitol. 123::10520
    [Crossref] [Google Scholar]
  115. 115.
    Ejlertsen M, Githigia SM, Otieno RO, Thamsborg SM. 2006.. Accuracy of an anaemia scoring chart applied on goats in sub-humid Kenya and its potential for control of Haemonchus contortus infections. . Vet. Parasitol. 141::291301
    [Crossref] [Google Scholar]
  116. 116.
    Idika IK, Iheagwam CN, Nwobi LG, Nwosu CO. 2012.. Evaluation of anaemia in Nigerian goats using FAMACHA© eye colour chart: a preliminary study. . Comp. Clin. Pathol. 22::62730
    [Crossref] [Google Scholar]
  117. 117.
    Sotomaior CS, Rosalinski-Moraes F, da Costa ARB, Maia D, Monteiro ALG, van Wyk JA. 2012.. Sensitivity and specificity of the FAMACHA© system in Suffolk sheep and crossbred Boer goats. . Vet. Parasitol. 190::11419
    [Crossref] [Google Scholar]
  118. 118.
    Burke JM, Kaplan RM, Miller JE, Terrill TH, Getz WR, et al. 2007.. Accuracy of the FAMACHA system for on-farm use by sheep and goat producers in the southeastern United States. . Vet. Parasitol. 147:(1–2):8995
    [Crossref] [Google Scholar]
  119. 119.
    Taylor WE, Gibbs EPJ, Bandyopadhyay SK, Pastoret P-P, Atang P. 2022.. Rinderpest and its eradication. Publ., Off. Int. Epizoot., Food Agric. Organ., Paris:. https://doi.org/10.20506/9789295115606
    [Google Scholar]
  120. 120.
    Youde J. 2013.. Cattle scourge no more: the eradication of rinderpest and its lessons for global health campaigns. . Politics Life Sci. 32:(1):4357
    [Crossref] [Google Scholar]
  121. 121.
    WOAH (World Organ. Anim. Health). 2021.. Rinderpest eradication. Bull. 2011–2 , WOAH, Paris:. https://www.woah.org/app/uploads/2021/03/bull-2011-2-eng.pdf
    [Google Scholar]
  122. 122.
    Roeder P, Rich K. 2009.. The global effort to eradicate rinderpest. IFPRI Discuss. Pap. 00923 , Int. Food Policy Res. Inst., Washington, DC:. http://www.ifpri.org/publication/global-effort-eradicate-rinderpest
    [Google Scholar]
  123. 123.
    FAO (Food Agric. Organ.). 2019.. The Future of Livestock in Ethiopia. Opportunities and Challenges in the Face of Uncertainty. FAO:: Rome
    [Google Scholar]
  124. 124.
    Cent. Stat. Agency. 2021.. Report on livestock and livestock characteristics. Stat. Bull. 589 , Cent. Stat. Agency, Addis Ababa:
    [Google Scholar]
  125. 125.
    Bachewe FN, Minten B, Tadesse F, Taffesse AS. 2018.. The evolving livestock sector in Ethiopia: growth by heads, not by productivity. ESSP Work. Pap. 112 , Int. Food Policy Res. Inst., Washington, DC:
    [Google Scholar]
  126. 126.
    Shapiro BI, Gebru G, Desta S, Negassa A, Negussie K, et al. 2015.. Ethiopia livestock master plan. ILRI Proj. Rep., Int. Livest. Res. Inst., Nairobi, Kenya:
    [Google Scholar]
  127. 127.
    Bartelt LA, Bolick DT, Guerrant RL. 2019.. Disentangling microbial mediators of malnutrition: modeling environmental enteric dysfunction. . Cell. Mol. Gastroenterol. Hepatol. 7:(3):692707
    [Crossref] [Google Scholar]
  128. 128.
    Delahoy MJ, Omore R, Ayers TL, Schilling KA, Blackstock AJ, et al. 2018.. Clinical, environmental, and behavioral characteristics associated with Cryptosporidium infection among children with moderate-to-severe diarrhea in rural western Kenya, 2008–2012: the Global Enteric Multicenter Study (GEMS). . PLOS Negl. Trop. Dis. 12:(7):e0006640
    [Crossref] [Google Scholar]
  129. 129.
    Asmare AA, Kiros WA. 2016.. Dairy calf morbidity and mortality and associated risk factors in Sodo town and its suburbs, Wolaita zone, Ethiopia. . Slovak J. Anim. Sci. 49:(1):4456
    [Google Scholar]
  130. 130.
    Eshetu G. 2014.. Major causes of calf mortality in intensive dairy farms, central Ethiopia: a cohort study. . Int. J. Livest. Res. 4:(3):916
    [Crossref] [Google Scholar]
  131. 131.
    Fentie T, Guta S, Mekonen G, Temesgen W, Melaku A, et al. 2020.. Assessment of major causes of calf mortality in urban and periurban dairy production system of Ethiopia. . Vet. Med. Int. 2020::3075429
    [Crossref] [Google Scholar]
  132. 132.
    Kifleyohannes T, Nødtvedt A, Debenham JJ, Terefe G, Robertson LJ. 2022.. Cryptosporidium and Giardia in livestock in Tigray, Northern Ethiopia and associated risk factors for infection: a cross-sectional study. . Front. Vet. Sci. 8::825940
    [Crossref] [Google Scholar]
  133. 133.
    Wong JT, Lane JK, Allan FK, Vidal G, Vance C, et al. 2022.. Reducing calf mortality in Ethiopia. . Animals 12:(16):2126
    [Crossref] [Google Scholar]
  134. 134.
    Alemayehu G, Berhe T, Gelan E, Mokria M, Jaldessa J, et al. 2022.. Animal welfare knowledge, attitudes, and practices among livestock holders in Ethiopia. . Front. Vet. Sci. 9::1006505
    [Crossref] [Google Scholar]
  135. 135.
    Banerjee A, Duflo E, Goldberg N, Karlan D, Osei R, et al. 2015.. A multifaceted program causes lasting progress for the very poor: evidence from six countries. . Science 348::772800
    [Google Scholar]
  136. 136.
    Stringer AP, Bell CE, Christley RM, Gebreab F, Tefera G, et al. 2011.. A cluster-randomised controlled trial to compare the effectiveness of different knowledge-transfer interventions for rural working equid users in Ethiopia. . Prev. Vet. Med. 100:(2):9099
    [Crossref] [Google Scholar]
  137. 137.
    Bell CE, French NP, Karimuribo E, Ogden NH, Bryant MJ, et al. 2005.. The effects of different knowledge-dissemination interventions on the mastitis knowledge of Tanzanian smallholder dairy farmers. . Prev. Vet. Med. 72:(3–4):23751
    [Crossref] [Google Scholar]
  138. 138.
    Grace D, Randolph T, Diall O, Clausen PH. 2008.. Training farmers in rational drug-use improves their management of cattle trypanosomosis: a cluster-randomised trial in south Mali. . Prev. Vet. Med. 83:(1):8397
    [Crossref] [Google Scholar]
  139. 139.
    Madsen H, Thien PC, Nga HTN, Clausen JH, Dalsgaard A, Murrell KD. 2015.. Two-year intervention trial to control of fish-borne zoonotic trematodes in giant gourami (Osphronemus goramy) and striped catfish (Pangasianodon hypophthalmus) in nursery ponds in the Mekong Delta, Vietnam. . Acta Trop. 152::2017
    [Crossref] [Google Scholar]
  140. 140.
    Henning J, Morton J, Pym R, Hla T, Meers J. 2009.. Evaluation of strategies to improve village chicken production: controlled field trials to assess effects of Newcastle disease vaccination and altered chick rearing in Myanmar. . Prev. Vet. Med. 90:(1–2):1730
    [Crossref] [Google Scholar]
  141. 141.
    Ergano Gunte K. 2015.. Understanding factors affecting technology adoption in smallholder livestock production systems in Ethiopia: the role of farm resources and the enabling environment. PhD Diss. , Wageningen Univ., Wageningen, Neth:.
    [Google Scholar]
  142. 142.
    Ruel MT, Quisumbing AR, Balagamwala M. 2018.. Nutrition-sensitive agriculture: What have we learned so far?. Glob. Food Secur. 17::12853
    [Crossref] [Google Scholar]
  143. 143.
    Collishaw A, Janzen S, Mullally C, Camilli H. 2023.. A review of livestock development interventions’ impacts on household welfare in low- and middle-income countries. . Glob. Food Secur. 38::100704
    [Crossref] [Google Scholar]
  144. 144.
    Mazet JA, Clifford DL, Coppolillo PB, Deolalikar AB, Erickson JD, Kazwala RR. 2009.. A “One Health” approach to address emerging zoonoses: the HALI project in Tanzania. . PLOS Med. 6:(12):e1000190
    [Crossref] [Google Scholar]
  145. 145.
    Mwatondo A, Rahman-Shepherd A, Hollmann L, Chiossi S, Maina J, et al. 2023.. A global analysis of One Health Networks and the proliferation of One Health collaborations. . Lancet 401:(10376):60516
    [Crossref] [Google Scholar]
  146. 146.
    Lombard M, Pastoret PP, Moulin AM. 2007.. A brief history of vaccines and vaccination. . Rev. Sci. Tech. 26:(1):2948
    [Crossref] [Google Scholar]
  147. 147.
    Jesty R, Williams G. 2011.. Who invented vaccination?. Malta Med. J. 23:(2):2932
    [Google Scholar]
  148. 148.
    Roth JA. 2011.. Veterinary vaccines and their importance to animal health and public health. . Proc. Vaccinol. 5::12736
    [Crossref] [Google Scholar]
  149. 149.
    Schelling E, Bechir M, Ahmed MA, Wyss K, Randolph TF, Zinsstag J. 2007.. Human and animal vaccination delivery to remote nomadic families, Chad. . Emerg. Infect. Dis. 13:(3):37379
    [Crossref] [Google Scholar]
  150. 150.
    Bomoi IM, Waziri NE, Nguku P, Tsofo A. 2016.. Integrated human and animal vaccination delivery to nomadic Fulani communities in northern Nigeria 2015. . Int. J. Infect. Dis. 45::22
    [Crossref] [Google Scholar]
  151. 151.
    Griffith EF, Kipkemoi JR, Robbins AH, et al. 2020.. A One Health framework for integrated service delivery in Turkana County, Kenya. . Pastoralism 10::7
    [Crossref] [Google Scholar]
  152. 152.
    Nanyingi MO, Munyua P, Kiama SG, Muchemi GM, Thumbi SM, et al. 2015.. A systematic review of Rift Valley Fever epidemiology 1931–2014. . Infect. Ecol. Epidemiol. 5:(1):28024
    [Google Scholar]
  153. 153.
    Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J. 2010.. Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. . Vet. Res. 41:(6):61
    [Crossref] [Google Scholar]
  154. 154.
    Bird BH, Ksiazek TG, Nichol ST, MacLachlan NJ. 2009.. Rift Valley fever virus. . J. Am. Vet. Med. Assoc. 234:(7):88393
    [Crossref] [Google Scholar]
  155. 155.
    Linthicum KJ, Bailey CL, Davies FG, Kairo A, Logan TM. 1988.. The horizontal distribution of Aedes pupae and their subsequent adults within a flooded dambo in Kenya: implications for Rift Valley fever virus control. . J. Am. Mosq. Control Assoc. 4::55154
    [Google Scholar]
  156. 156.
    Swanepoel R, Coetzer JAW. 1994.. Rift Valley fever. . In Infectious Diseases of Livestock with Special Reference to Southern Africa, Vol. 1, ed. JAW Coetzer, GR Thomson, RC Tustin , pp. 688717. Cape Town:: Oxford Univ. Press
    [Google Scholar]
  157. 157.
    World Health Organ. 2018.. Rift Valley fever—Kenya. . Disease Outbreak News, June 18. https://www.who.int/emergencies/disease-outbreak-news/item/18-june-2018-rift-valley-fever-kenya-en
    [Google Scholar]
  158. 158.
    Archer BN, Thomas J, Weyer J, Cengimbo A, Landoh DE, et al. 2013.. Epidemiologic investigations into outbreaks of Rift Valley fever in humans, South Africa, 2008–2011. . Emerg. Infect. Dis. 19:(12):1918
    [Crossref] [Google Scholar]
  159. 159.
    Bird BH, Githinji JW, Macharia JM, Kasiiti JL, Muriithi RM, et al. 2008.. Multiple virus lineages sharing recent common ancestry were associated with a large Rift Valley fever outbreak among livestock in Kenya during 2006–2007. . J. Virol. 82:(22):1115266
    [Crossref] [Google Scholar]
  160. 160.
    Bird BH, Nichol ST. 2012.. Breaking the chain: Rift Valley fever virus control via livestock vaccination. . Curr. Opin. Virol. 2:(3):31523
    [Crossref] [Google Scholar]
  161. 161.
    Kortekaas J. 2014.. One Health approach to Rift Valley fever vaccine development. . Antivir. Res. 106::2432
    [Crossref] [Google Scholar]
  162. 162.
    Wichgers Schreur PJ, Bird BH, Ikegami T, Bermúdez-Méndez E, Kortekaas J. 2023.. Perspectives of next-generation live-attenuated Rift Valley fever vaccines for animal and human use. . Vaccines 11:(3):707
    [Crossref] [Google Scholar]
  163. 163.
    Wong JT, de Bruyn J, Bagnol B, Grieve H, Li M, et al. 2017.. Small-scale poultry and food security in resource-poor settings: a review. . Glob. Food Secur. 15::4352
    [Crossref] [Google Scholar]
  164. 164.
    Kaleta EF, Baldauf C. 1988.. Newcastle disease in free-living and pet birds. . In Newcastle Disease, ed. DJ Alexander , pp. 197246. Boston:: Kluwer Acad. Publ.
    [Google Scholar]
  165. 165.
    Absalón AE, Cortés-Espinosa DV, Lucio E, Miller PJ, Afonso CL. 2019.. Epidemiology, control, and prevention of Newcastle disease in endemic regions: Latin America. . Trop. Anim. Health Prod. 51::103348
    [Crossref] [Google Scholar]
  166. 166.
    Miller PJ, Decanini EL, Afonso CL. 2010.. Newcastle disease: evolution of genotypes and the related diagnostic challenges. . Infect. Genet. Evol. 10:(1):2635
    [Crossref] [Google Scholar]
  167. 167.
    Gardner E, Alders R. 2014.. Livestock risks and opportunities: Newcastle disease and avian influenza in Africa. . Planet@Risk 2:(4):20811
    [Google Scholar]
  168. 168.
    Msoffe PL, Chiwanga GH, Cardona CJ, Miller PJ, Suarez DL. 2019.. Isolation and characterization of Newcastle disease virus from live bird markets in Tanzania. . Avian Dis. 63::63440
    [Crossref] [Google Scholar]
  169. 169.
    Alders R, Spradbrow P. 2001.. Controlling Newcastle disease in village chickens: a field manual. Doc., Aust. Cent. Int. Agric. Res., Bruce, Aust:.
    [Google Scholar]
  170. 170.
    Bagnol B. 1998., 2001. The social impact of Newcastle disease control. . ACIAR Proc. 103::6975
    [Google Scholar]
  171. 171.
    Alders R, Aongola A, Bagnol B, De Bruyn J, Kimboka S, et al. 2014.. Using a One Health approach to promote food and nutrition security in Tanzania and Zambia. . Planet@Risk 2:(3):18790
    [Google Scholar]
  172. 172.
    Jasper J, Ngowi A, Vaidyanathan M, Catley A, Kutka A, et al. 2024.. Studying the effect of Newcastle Disease Vaccine adoption on the livelihoods of poultry farmers in Tanzania. Rep. , Oxford Policy Manag., Oxford, UK:. https://www.opml.co.uk/projects/studying-the-effect-of-newcastle-disease-vaccine-adoption-on-the-livelihoods-of-poultry-farmers-in-tanzania
    [Google Scholar]
  173. 173.
    Walugembe M, Naazie A, Mushi JS, Akwoviah GA, Mollel E, et al. 2022.. Genetic analyses of response of local Ghanaian and Tanzanian chicken ecotypes to a natural challenge with velogenic Newcastle disease virus. . Animals 12::2755
    [Crossref] [Google Scholar]
  174. 174.
    Walugembe M, Amuzu-Aweh EN, Botchway PK, Naazie A, Aning G, et al. 2020.. Genetic basis of response of Ghanaian local chickens to infection with a lentogenic Newcastle disease virus. . Front. Genet. 11::739
    [Crossref] [Google Scholar]
  175. 175.
    Walugembe M, Mushi JR, Amuzu-Aweh EN, Chiwanga GH, Msoffe PL, et al. 2019.. Genetic analyses of Tanzanian local chicken ecotypes challenged with Newcastle disease virus. . Genes 10:(7):546
    [Crossref] [Google Scholar]
  176. 176.
    Zhou H, Baltenweck I, Dekkers JCM, Gallardo R, Kayang BB, et al. 2024.. Feed the Future Innovation Lab for Genomics to Improve Poultry: a holistic approach to improve indigenous chicken production focusing on resilience to Newcastle disease. . World's Poult. Sci. J. 80::27397
    [Crossref] [Google Scholar]
  177. 177.
    Sokolow SH, Nova N, Pepin KM, Peel AJ, Pulliam JR, et al. 2019.. Ecological interventions to prevent and manage zoonotic pathogen spillover. . Philos. Trans. R. Soc. B 374:(1782):20180342
    [Crossref] [Google Scholar]
  178. 178.
    Breed MF, Cross AT, Wallace K, Bradby K, Flies E, et al. 2021.. Ecosystem restoration: a public health intervention. . EcoHealth 18::26971
    [Crossref] [Google Scholar]
  179. 179.
    Plowright RK, Ahmed AN, Coulson T, Crowther TW, Ejotre I, et al. 2024.. Ecological countermeasures to prevent pathogen spillover and subsequent pandemics. . Nat. Commun. 15::2577
    [Crossref] [Google Scholar]
  180. 180.
    Reaser JK, Chitale RA, Tabor GM, Hudson PJ, Plowright RK. 2024.. Looking left: ecologically based biosecurity to prevent pandemics. . Health Secur. 22:(1):7481
    [Crossref] [Google Scholar]
  181. 181.
    Alimi Y, Bernstein A, Epstein J, Espinal M, Kakkar M, et al. 2021.. Report of the Scientific Task Force on Preventing Pandemics. Rep. , Harvard Glob. Health Inst., Harvard Univ., Cambridge, MA:
    [Google Scholar]
  182. 182.
    Pulliam JRC, Epstein JH, Dushoff J, Rahman SA, Bunning M, et al. 2012.. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. . J. R. Soc. Interface 9::89101
    [Crossref] [Google Scholar]
  183. 183.
    Eby P, Peel AJ, Hoegh A, Madden W, Giles JR, et al. 2023.. Pathogen spillover driven by rapid changes in bat ecology. . Nature 613:(7943):34044
    [Crossref] [Google Scholar]
  184. 184.
    Sokolow SH, Wood CL, Jones IJ, Swartz SJ, Lopez M, et al. 2016.. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best. . PLOS Negl. Trop. Dis. 10:(7):e0004794
    [Crossref] [Google Scholar]
  185. 185.
    Wu T, Perrings C, Shang C, Collins JP, Daszak P, et al. 2019.. Protection of wetlands as a strategy for reducing the spread of avian influenza from migratory waterfowl. . Ambio 49::93949
    [Crossref] [Google Scholar]
  186. 186.
    Nagamori Y, Scimeca R, Hall-Sedlak R, Blagburn B, Starkey LA, et al. 2024.. Multicenter evaluation of the Vetscan Imagyst system using Ocus 40 and EasyScan One scanners to detect gastrointestinal parasites in feces of dogs and cats. . J. Vet. Diagnost. Investig. 36:(1):3240
    [Crossref] [Google Scholar]
  187. 187.
    Machuve D, Nwankwo E, Mduma N, Mbelwa J. 2022.. Poultry diseases diagnostics models using deep learning. . Front. Artif. Intell. 5::733345
    [Crossref] [Google Scholar]
  188. 188.
    Okinda C, Lu M, Liu L, Nyalala I, Muneri C, et al. 2019.. A machine vision system for early detection and prediction of sick birds: a broiler chicken model. . Biosyst. Eng. 188::22942
    [Crossref] [Google Scholar]
  189. 189.
    Häsler B, Gilbert W, Jones BA, Pfeiffer DU, Rushton J, Otte MJ. 2013.. The economic value of One Health in relation to the mitigation of zoonotic disease risks. . In One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Diseases: The Concept and Examples of a One Health Approach, ed. JS Mackenzi, M Jeggo, P Daszak, JA Richt , pp. 12751. Berlin:: Springer
    [Google Scholar]
  190. 190.
    Hu RS, Hesham AEL, Zou Q. 2022.. Machine learning and its applications for protozoal pathogens and protozoal infectious diseases. . Front. Cell. Infect. Microbiol. 12::882995
    [Crossref] [Google Scholar]
  191. 191.
    Ayalew W, Wu XY, Tarekegn GM, Min CHU, Liang CN, et al. 2023.. Signatures of positive selection for local adaptation of African Native Cattle populations: a review. . J. Integr. Agric. 22:(7):196784
    [Crossref] [Google Scholar]
  192. 192.
    Neethirajan S. 2020.. The role of sensors, big data and machine learning in modern animal farming. . Sens. Bio-Sens. Res. 29::100367
    [Crossref] [Google Scholar]
  193. 193.
    Lindahl JF, Mutua F, Grace D. 2020.. Evaluating farm-level livestock interventions in low-income countries: a scoping review of what works, how, and why. . Anim. Health Res. Rev. 21::10821
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-102133
Loading
/content/journals/10.1146/annurev-animal-111523-102133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error