1932

Abstract

Nutrition security is challenging in regions where resources are limited and food production is naturally constrained. In low- and middle-income countries (LMICs), undernutrition is high for many reasons, including lack of nutritional diversity and low high-quality protein content. Interest in the role of animal-source food (ASF) in reducing nutrition insecurity is increasing, as evidence from LMICs suggests that consumption of ASF is strongly associated with reduction in stunting, improved diet quality, and overall nutrition, particularly in early stages of life. We review the strengths and limitations of ASF consumption in terms of accessibility, safety, and nutritional benefits compared to non-ASF sources. We present a critical discussion on existing barriers to ASF consumption and its future directions in LMICs. Understanding the role of ASF in improving nutrition security in LMICs is crucial to optimizing public health, designing appropriate interventions, and implementing effective policy in resource-poor settings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-102149
2025-02-18
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-102149.html?itemId=/content/journals/10.1146/annurev-animal-111523-102149&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Shapiro MJ, Downs SM, Swartz HJ, Parker M, Quelhas D, et al. 2019.. A systematic review investigating the relation between animal-source food consumption and stunting in children aged 6–60 months in low and middle-income countries. . Adv. Nutr. 10:(5):82747
    [Crossref] [Google Scholar]
  2. 2.
    Victora CG, Christian P, Vidaletti LP, Gatica-Domínguez G, Menon P, Black RE. 2021.. Revisiting maternal and child undernutrition in low-income and middle-income countries: variable progress towards an unfinished agenda. . Lancet 397:(10282):138899
    [Crossref] [Google Scholar]
  3. 3.
    Food Agric. Organ., Int. Fund Agric. Dev., UNICEF, World Food Progr., World Health Organ. 2023.. The state of food security and nutrition in the world 2023. Rep. , Food Agric. Organ., Rome:. http://www.fao.org/documents/card/en/c/cc3017en
    [Google Scholar]
  4. 4.
    UNICEF. 2020.. Nutrition, for every child: UNICEF nutrition strategy 2020–2030. Rep. , UNICEF, New York:. https://www.unicef.org/reports/nutrition-strategy-2020-2030
    [Google Scholar]
  5. 5.
    Habtu M, Agena AG, Umugwaneza M, Mochama M, Munyanshongore C. 2022.. Effect of integrated nutrition-sensitive and nutrition-specific intervention package on maternal malnutrition among pregnant women in Rwanda. . Matern. Child Nutr. 18:(3):e13367
    [Crossref] [Google Scholar]
  6. 6.
    Mutsindashyaka T, Nshimyiryo A, Beck K, Kirk CM, Wilson K, et al. 2020.. High burden of undernutrition among at-risk children in neonatal follow-up clinic in Rwanda. . Ann. Glob. Health 86:(1):125
    [Crossref] [Google Scholar]
  7. 7.
    Weatherspoon DD, Miller S, Ngabitsinze JC, Weatherspoon LJ, Oehmke JF. 2019.. Stunting, food security, markets and food policy in Rwanda. . BMC Public Health 19:(1):882
    [Crossref] [Google Scholar]
  8. 8.
    Chilanga E, Chilanga M. 2023.. Predisposing and reinforcing factors of undernutrition among 0- to 59-months-old children in rural communities of central Malawi. . Soc. Sci. Human. Open 8:(1):100629
    [Google Scholar]
  9. 9.
    Ramokolo V, Wright CY, Sanders D, Zembe-Mkabile W. 2023.. Undernutrition and its social determinants. . In Reference Module in Biomedical Sciences, ed. 31929. Amsterdam:: Elsevier. https://www.sciencedirect.com/science/article/pii/B9780323999670001393
    [Google Scholar]
  10. 10.
    Rahman M, Sarkar P, Islam MJ, Adam IF, Duc NHC, Al-Sobaihi S. 2024.. Factors mediating the association between recurring floods and child chronic undernutrition in northern Bangladesh. . Nutrition 119::112300
    [Crossref] [Google Scholar]
  11. 11.
    Kavle JA, Landry M. 2018.. Addressing barriers to maternal nutrition in low- and middle-income countries: a review of the evidence and programme implications. . Mater. Child Nutr. 14:(1):e12508
    [Crossref] [Google Scholar]
  12. 12.
    Khan MI, Sameen A, eds. 2019.. Animal Sourced Foods for Developing Economies: Preservation, Nutrition, and Safety. World Food Pres. Cent. Ser. Boca Raton, FL:: Taylor & Francis. , 1st ed.. https://www.taylorfrancis.com/books/9780429676529
    [Google Scholar]
  13. 13.
    Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, et al. 2017.. Climate change and global food systems: potential impacts on food security and undernutrition. . Annu. Rev. Public Health 38::25977
    [Crossref] [Google Scholar]
  14. 14.
    Semakula HM, Liang S, McKune SL, Mukwaya PI, Mugagga F, et al. 2024.. Integrated modelling of the determinants of household food insecurity during the 2020–2021 COVID-19 lockdown in Uganda. . Agric. Food Secur. 13::10
    [Crossref] [Google Scholar]
  15. 15.
    Parikh P, Semba R, Manary M, Swaminathan S, Udomkesmalee E, et al. 2022.. Animal source foods, rich in essential amino acids, are important for linear growth and development of young children in low- and middle-income countries. . Matern. Child Nutr. 18:(1):e13264
    [Crossref] [Google Scholar]
  16. 16.
    Adesogan AT. 2023.. Benefits of animal-source foods in developing countries. . Anim. Sci. Proc. 14:(2):41213
    [Crossref] [Google Scholar]
  17. 17.
    Prache S, Adamiec C, Astruc T, Baéza-Campone E, Bouillot PE, et al. 2022.. Review: quality of animal-source foods. . Animal 16::100376
    [Crossref] [Google Scholar]
  18. 18.
    Tiwari C, Balehegn M, Adesogan AT, McKune SL. 2023.. Benefits, perceived and actual risks and barriers to egg consumption in low- and middle-income countries. . Front. Anim. Sci. 4::1270588
    [Crossref] [Google Scholar]
  19. 19.
    Gatica-Domínguez G, Neves PAR, Barros AJD, Victora CG. 2021.. Complementary feeding practices in 80 low- and middle-income countries: prevalence of and socioeconomic inequalities in dietary diversity, meal frequency, and dietary adequacy. . J. Nutr. 151:(7):195664
    [Crossref] [Google Scholar]
  20. 20.
    Drewnowski A. 2023.. Perspective: alternative proteins in low- and middle-income countries (LMIC) face a questionable future: Will technology negate Bennett's law?. Curr. Dev. Nutr. 8:(Suppl. 1):101994
    [Google Scholar]
  21. 21.
    Iannotti LL, Lutter CK, Stewart CP, Gallegos Riofrío CA, Malo C, et al. 2017.. Eggs in early complementary feeding and child growth: a randomized controlled trial. . Pediatrics 140:(1):e20163459
    [Crossref] [Google Scholar]
  22. 22.
    Iannotti LL, Blackmore I, Cohn R, Chen F, Gyimah EA, et al. 2022.. Aquatic animal foods for nutrition security and child health. . Food Nutr. Bull. 43:(2):12747
    [Crossref] [Google Scholar]
  23. 23.
    Headey D, Hirvonen K, Hoddinott J. 2018.. Animal sourced foods and child stunting. . Am. J. Agri. Econ. 100:(5):130219
    [Crossref] [Google Scholar]
  24. 24.
    Krasevec J, An X, Kumapley R, Bégin F, Frongillo EA. 2017.. Diet quality and risk of stunting among infants and young children in low- and middle-income countries. . Matern. Child Nutr. 13:(S2):e12430
    [Crossref] [Google Scholar]
  25. 25.
    Beal T, Gardner CD, Herrero M, Iannotti LL, Merbold L, et al. 2023.. Friend or foe? The role of animal-source foods in healthy and environmentally sustainable diets. . J. Nutr. 153:(2):40925
    [Crossref] [Google Scholar]
  26. 26.
    Comerford KB, Miller GD, Reinhardt Kapsak W, Brown KA. 2021.. The complementary roles for plant-source and animal-source foods in sustainable healthy diets. . Nutrients 13:(10):3469
    [Crossref] [Google Scholar]
  27. 27.
    Ahmed T, Hossain M, Sanin KI. 2012.. Global burden of maternal and child undernutrition and micronutrient deficiencies. . Ann. Nutr. Metab. 61:(Suppl. 1):817
    [Crossref] [Google Scholar]
  28. 28.
    Black RE, Allen LH, Bhutta ZA, Caulfield LE, De Onis M, et al. 2008.. Maternal and child undernutrition: global and regional exposures and health consequences. . Lancet 371:(9608):24360
    [Crossref] [Google Scholar]
  29. 29.
    Likhar A, Patil MS. 2022.. Importance of maternal nutrition in the first 1,000 days of life and its effects on child development: a narrative review. . Cureus 14:(10):e30083
    [Google Scholar]
  30. 30.
    Tso R, Forde CG. 2021.. Unintended consequences: nutritional impact and potential pitfalls of switching from animal- to plant-based foods. . Nutrients 13:(8):2527
    [Crossref] [Google Scholar]
  31. 31.
    Adesogan AT, Havelaar AH, McKune SL, Eilittä M, Dahl GE. 2020.. Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. . Glob. Food Secur. 25::100325
    [Crossref] [Google Scholar]
  32. 32.
    Hilborn R, Banobi J, Hall SJ, Pucylowski T, Walsworth TE. 2018.. The environmental cost of animal source foods. . Front. Ecol. Environ. 16:(6):32935
    [Crossref] [Google Scholar]
  33. 33.
    Beal T, Ortenzi F, Fanzo J. 2023.. Estimated micronutrient shortfalls of the EAT-Lancet planetary health diet. . Lancet Planet. Health. 7:(3):e23337
    [Crossref] [Google Scholar]
  34. 34.
    McKune SL, Mechlowitz K, Miller LC. 2022.. Dietary animal source food across the lifespan in LMIC. . Glob. Food Secur. 35::100656
    [Crossref] [Google Scholar]
  35. 35.
    Kurpad AV. 2013.. Protein: quality and sources. . In Encyclopedia of Human Nutrition, ed. B Caballero , pp. 12330. Amsterdam:: Elsevier
    [Google Scholar]
  36. 36.
    Murphy SP, Allen LH. 2003.. Nutritional importance of animal source foods. . J. Nutr. 133:(11):3932S35S
    [Crossref] [Google Scholar]
  37. 37.
    Gebretsadik GG, Tadesse Z, Ambese TY, Mulugeta A. 2023.. Trends in and predictors of animal source food consumption among 6–23 months age children in Tigrai, Northern Ethiopia: evidence from three consecutive Ethiopian demographic and health surveys, EDHS 2005–2016. . BMC Nutr. 9:(1):43
    [Crossref] [Google Scholar]
  38. 38.
    Zhang Q, Liu Y, He C, Zhu R, Li M, et al. 2023.. Nutritional assessment of plant-based meat products available on Hong Kong market: a cross-sectional survey. . Nutrients 15:(17):3684
    [Crossref] [Google Scholar]
  39. 39.
    Nguyen PH, Scott S, Headey D, Singh N, Tran LM, et al. 2021.. The double burden of malnutrition in India: trends and inequalities (2006–2016). . PLOS ONE 16:(2):e0247856
    [Crossref] [Google Scholar]
  40. 40.
    Asare H, Rosi A, Faber M, Smuts CM, Ricci C. 2022.. Animal-source foods as a suitable complementary food for improved physical growth in 6 to 24-month-old children in low- and middle-income countries: a systematic review and meta-analysis of randomised controlled trials. . Br. J. Nutr. 128:(12):245363
    [Crossref] [Google Scholar]
  41. 41.
    Mosites E, Aol G, Otiang E, Bigogo G, Munyua P, et al. 2017.. Child height gain is associated with consumption of animal-source foods in livestock-owning households in Western Kenya. . Public Health Nutr. 20:(2):33645
    [Crossref] [Google Scholar]
  42. 42.
    McKune SL, Stark H, Sapp AC, Yang Y, Slanzi CM, et al. 2020.. Behavior change, egg consumption, and child nutrition: a cluster randomized controlled trial. . Pediatrics 146:(6):e2020007930
    [Crossref] [Google Scholar]
  43. 43.
    Krebs NF, Mazariegos M, Tshefu A, Bose C, Sami N, et al. 2011.. Meat consumption is associated with less stunting among toddlers in four diverse low-income settings. . Food Nutr. Bull. 32:(3):18591
    [Crossref] [Google Scholar]
  44. 44.
    Jiang H, Gallier S, Feng L, Han J, Liu W. 2022.. Development of the digestive system in early infancy and nutritional management of digestive problems in breastfed and formula-fed infants. . Food Funct. 13::106277
    [Crossref] [Google Scholar]
  45. 45.
    Lassi ZS, Rahim KA, Harrison L, Oh C, Charbonneaue K, et al. n.d.. WHO systematic review for complementary feeding for ASF. Rev. , World Health Organ., Geneva:
    [Google Scholar]
  46. 46.
    Day L, Cakebread JA, Loveday SM. 2022.. Food proteins from animals and plants: differences in the nutritional and functional properties. . Trends Food Sci. Technol. 119::42842
    [Crossref] [Google Scholar]
  47. 47.
    World Health Organ. 2023.. WHO Guideline for complementary feeding of infants and young children 6–23 months of age. Guidel., World Health Organ., Geneva:
    [Google Scholar]
  48. 48.
    Werner ER, Arnold CD, Caswell BL, Iannotti LL, Maleta KM, Stewart CP. 2024.. Associations of fish and meat intake with iron and anaemia in Malawian children. . Matern. Child Nutr. 20::e13622
    [Crossref] [Google Scholar]
  49. 49.
    Headey DD, Alderman H, Hoddinott J, Narayanan S. 2024.. The glass of milk half-empty? Dairy development and nutrition in low and middle income countries. . Food Policy 122::102585
    [Crossref] [Google Scholar]
  50. 50.
    Herber C, Bogler L, Subramanian SV, Vollmer S. 2020.. Association between milk consumption and child growth for children aged 6–59 months. . Sci. Rep. 10:(1):6730
    [Crossref] [Google Scholar]
  51. 51.
    Eaton JC, Rothpletz-Puglia P, Dreker MR, Iannotti L, Lutter C, et al. 2019.. Effectiveness of provision of animal-source foods for supporting optimal growth and development in children 6 to 59 months of age. . Cochrane Database Syst. Rev. 2:(2):CD012818
    [Google Scholar]
  52. 52.
    Pimpin L, Kranz S, Liu E, Shulkin M, Karageorgou D, et al. 2019.. Effects of animal protein supplementation of mothers, preterm infants, and term infants on growth outcomes in childhood: a systematic review and meta-analysis of randomized trials. . Am. J. Clin. Nutr. 110:(2):41029
    [Crossref] [Google Scholar]
  53. 53.
    Hulett JL, Weiss RE, Bwibo NO, Galal OM, Drorbaugh N, Neumann CG. 2014.. Animal source foods have a positive impact on the primary school test scores of Kenyan schoolchildren in a cluster-randomised, controlled feeding intervention trial. . Br. J. Nutr. 111:(5):87586
    [Crossref] [Google Scholar]
  54. 54.
    Omer A, Hailu D, Whiting SJ. 2022.. Effect of a child-owned poultry intervention providing eggs on nutrition status and motor skills of young children in southern Ethiopia: a cluster randomized and controlled community trial. . Int. J. Environ. Res. Public Health 19:(22):15305
    [Crossref] [Google Scholar]
  55. 55.
    Allen LH. 2005.. Multiple micronutrients in pregnancy and lactation: an overview. . Am. J. Clin. Nutr. 81:(5):1206S12S
    [Crossref] [Google Scholar]
  56. 56.
    Andrews C, Olson I, North K, Ahmed S, Rahman S, et al. 2022.. Consumption of animal source foods is associated with differences in breastmilk energy and macronutrient composition in rural Bangladesh. . Curr. Dev. Nutr. 6::618
    [Crossref] [Google Scholar]
  57. 57.
    Andrews C, Shrestha R, Ghosh S, Appel K, Gurung S, et al. 2022.. Consumption of animal source foods, especially fish, is associated with better nutritional status among women of reproductive age in rural Bangladesh. . Matern. Child Nutr. 18:(1):e13287
    [Crossref] [Google Scholar]
  58. 58.
    Consalez F, Ahern M, Andersen P, Kjellevold M. 2022.. The effect of the meat factor in animal-source foods on micronutrient absorption: a scoping review. . Adv. Nutr. 13:(6):230515
    [Crossref] [Google Scholar]
  59. 59.
    Fite MB, Tura AK, Yadeta TA, Oljira L, Roba KT. 2022.. Consumption of animal source food and associated factors among pregnant women in eastern Ethiopia: a community-based study. . PLOS ONE 17:(6):e0270250
    [Crossref] [Google Scholar]
  60. 60.
    Hetherington JB, Wiethoelter AK, Negin J, Mor SM. 2017.. Livestock ownership, animal source foods and child nutritional outcomes in seven rural village clusters in sub-Saharan Africa. . Agric. Food Secur. 6::9
    [Crossref] [Google Scholar]
  61. 61.
    Kim SS, Nguyen PH, Tran LM, Abebe Y, Asrat Y, et al. 2019.. Maternal behavioural determinants and livestock ownership are associated with animal source food consumption among young children during fasting in rural Ethiopia. . Matern. Child Nutr. 15:(2):e12695
    [Crossref] [Google Scholar]
  62. 62.
    Azzarri C, Zezza A, Haile B, Cross E. 2015.. Does livestock ownership affect animal source foods consumption and child nutritional status? Evidence from rural Uganda. . J. Dev. Stud. 51:(8):103459
    [Crossref] [Google Scholar]
  63. 63.
    Jin M, Iannotti LL. 2014.. Livestock production, animal source food intake, and young child growth: the role of gender for ensuring nutrition impacts. . Soc. Sci. Med. 105::1621
    [Crossref] [Google Scholar]
  64. 64.
    Njuki EJ, Sanginga PC, eds. 2013.. Women, Livestock Ownership and Markets: Bridging the Gender Gap in Eastern and Southern Africa. Abingdon, UK:: Routledge
    [Google Scholar]
  65. 65.
    Inst. Med. Food Forum. 2010.. Nutrition concerns for aging populations. . In Providing Healthy and Safe Foods As We Age: Workshop Summary. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  66. 66.
    Food Agric. Organ. 2023.. Contribution of terrestrial animal source food to healthy diets for improved nutrition and health outcomes. Rep. , Food Agric. Organ., Rome:. http://www.fao.org/documents/card/en/c/cc3912en
    [Google Scholar]
  67. 67.
    Granic A, Dismore L, Hurst C, Robinson SM, Sayer AA. 2020.. Myoprotective whole foods, muscle health and sarcopenia: a systematic review of observational and intervention studies in older adults. . Nutrients 12:(8):2257
    [Crossref] [Google Scholar]
  68. 68.
    Battaglia Richi E, Baumer B, Conrad B, Darioli R, Schmid A, Keller U. 2015.. Health risks associated with meat consumption: a review of epidemiological studies. . Int. J. Vitam. Nutr. Res. 85:(1–2):7078
    [Crossref] [Google Scholar]
  69. 69.
    Struijk EA, Fung TT, Sotos-Prieto M, Rodriguez-Artalejo F, Willett WC, et al. 2022.. Red meat consumption and risk of frailty in older women. . J. Cachexia Sarcopenia Muscle 13:(1):21019
    [Crossref] [Google Scholar]
  70. 70.
    Pellinen T, Päivärinta E, Isotalo J, Lehtovirta M, Itkonen ST, et al. 2022.. Replacing dietary animal-source proteins with plant-source proteins changes dietary intake and status of vitamins and minerals in healthy adults: a 12-week randomized controlled trial. . Eur. J. Nutr. 61:(3):1391404
    [Crossref] [Google Scholar]
  71. 71.
    Eckart A, Bhochhibhoya A, Stavitz J, Sharma Ghimire P, Mathieson K. 2023.. Associations of animal source foods, cardiovascular disease history, and health behaviors from the national health and nutrition examination survey: 2013–2016. . Glob. Epidemiol. 5::100112
    [Crossref] [Google Scholar]
  72. 72.
    Ko GJ, Rhee CM, Kalantar-Zadeh K, Joshi S. 2020.. The effects of high-protein diets on kidney health and longevity. . J. Am. Soc. Nephrol. 31:(8):166779
    [Crossref] [Google Scholar]
  73. 73.
    Miller V, Reedy J, Cudhea F, Zhang J, Shi P, et al. 1990.. Global, regional, and national consumption of animal-source foods between 1990 and 2018: findings from the Global Dietary Database. . Lancet Planet. Health 6(3):e24356
    [Google Scholar]
  74. 74.
    Delgado CL. 2003.. Rising consumption of meat and milk in developing countries has created a new food revolution. . J. Nutr. 133:(11):3907S10S
    [Crossref] [Google Scholar]
  75. 75.
    Latino LR, Pica-Ciamarra U, Wisser D. 2020.. Africa: The livestock revolution urbanizes. . Glob. Food Secur. 26::100399
    [Crossref] [Google Scholar]
  76. 76.
    OECD-FAO (Organ. Econ. Co-op. Dev.–Food Agric. Organ.). 2023.. OECD-FAO agricultural outlook 2023–2032. Rep. , OECD, Paris:. https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2023-2032_08801ab7-en.html
    [Google Scholar]
  77. 77.
    Anik AI, Chowdhury MRK, Khan HTA, Mondal MNI, Perera NKP, Kader M. 2021.. Urban-rural differences in the associated factors of severe under-5 child undernutrition based on the composite index of severe anthropometric failure (CISAF) in Bangladesh. . BMC Public Health 21:(1):2147
    [Crossref] [Google Scholar]
  78. 78.
    Scudiero L, Tak M, Alarcón P, Shankar B. 2023.. Understanding household and food system determinants of chicken and egg consumption in India. . Food Secur. 15:(5):123154
    [Crossref] [Google Scholar]
  79. 79.
    Miller V, Webb P, Cudhea F, Zhang J, Reedy J, et al. 2023.. Children's and adolescents’ rising animal-source food intakes in 1990–2018 were impacted by age, region, parental education and urbanicity. . Nat. Food 4:(4):30519
    [Crossref] [Google Scholar]
  80. 80.
    Parlasca MC, Qaim M. 2022.. Meat consumption and sustainability. . Annu. Rev. Resour. Econ. 14:(1):1741
    [Crossref] [Google Scholar]
  81. 81.
    Bonis-Profumo G, Stacey N, Brimblecombe J. 2021.. Maternal diets matter for children's dietary quality: Seasonal dietary diversity and animal-source foods consumption in rural Timor-Leste. . Matern. Child Nutr. 17:(1):e13071
    [Crossref] [Google Scholar]
  82. 82.
    Kerfua SD, Railey AF, Marsh TL. 2023.. Household production and consumption impacts of foot and mouth disease at the Uganda-Tanzania border. . Front. Vet. Sci. 10::1156458
    [Crossref] [Google Scholar]
  83. 83.
    Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA. 2017.. Climate change and livestock: impacts, adaptation, and mitigation. . Clim. Risk Manag. 16::14563
    [Crossref] [Google Scholar]
  84. 84.
    Nawathe DR, Lamorde AG. 1984.. Socio-economic impact of rinderpest in Nigeria. . Rev. Sci. Tech. 3:(3):57581
    [Crossref] [Google Scholar]
  85. 85.
    de Diego-Cordero R, Rivilla-Garcia E, Diaz-Jimenez D, Lucchetti G, Badanta B. 2021.. The role of cultural beliefs on eating patterns and food practices among pregnant women: a systematic review. . Nutr. Rev. 79:(9):94563
    [Crossref] [Google Scholar]
  86. 86.
    Dominguez-Salas P, Kauffmann D, Breyne C, Alarcon P. 2019.. Leveraging human nutrition through livestock interventions: perceptions, knowledge, barriers and opportunities in the Sahel. . Food Secur. 11:(4):77796
    [Crossref] [Google Scholar]
  87. 87.
    Chanchani D. 2017.. Maternal and child nutrition in rural Chhattisgarh: the role of health beliefs and practices. . Anthropol. Med. 26:(2):14258
    [Crossref] [Google Scholar]
  88. 88.
    A.kheiri S, Kunna A, Mustafa Ls, Shaaeldin Ma, Alsammani MA. 2017.. Superstitious food beliefs and traditional customs among ladies attending the antenatal clinic at Omdurman Maternity Hospital (OMH), Omdurman, Sudan. . Ann. Med. Health Sci. Res. 7::21821
    [Google Scholar]
  89. 89.
    Riang'a RM, Broerse J, Nangulu AK. 2017.. Food beliefs and practices among the Kalenjin pregnant women in rural Uasin Gishu County, Kenya. . J. Ethnobiol. Ethnomed. 13:(1):29
    [Crossref] [Google Scholar]
  90. 90.
    Ekwochi U, Osuorah CDI, Ndu IK, Ifediora C, Asinobi IN, Eke CB. 2016.. Food taboos and myths in South Eastern Nigeria: the belief and practice of mothers in the region. . J. Ethnobiol. Ethnomed. 12:(1):7
    [Crossref] [Google Scholar]
  91. 91.
    Farouk MM, Regenstein JM, Pirie MR, Najm R, Bekhit AED, Knowles SO. 2015.. Spiritual aspects of meat and nutritional security: perspectives and responsibilities of the Abrahamic faiths. . Food Res. Int. 76::88295
    [Crossref] [Google Scholar]
  92. 92.
    D'Haene E, Vandevelde S, Minten B. 2021.. Fasting, food and farming: value chains and food taboos in Ethiopia. . PLOS ONE 16:(12):e0259982
    [Crossref] [Google Scholar]
  93. 93.
    Meyer-Rochow VB. 2009.. Food taboos: their origins and purposes. . J. Ethnobiol. Ethnomed. 5:(1):18
    [Crossref] [Google Scholar]
  94. 94.
    Iradukunda F. 2020.. Food taboos during pregnancy. . Health Care Women Int. 41:(2):15968
    [Crossref] [Google Scholar]
  95. 95.
    Köhler R, Lambert C, Biesalski HK. 2019.. Animal-based food taboos during pregnancy and the postpartum period of Southeast Asian women—a review of literature. . Food Res. Int. 115::48086
    [Crossref] [Google Scholar]
  96. 96.
    Tobing VY, Afiyanti Y, Rachmawati IN. 2019.. Following the cultural norms as an effort to protect the mother and the baby during the perinatal period: an ethnographic study of women's food choices. . Enferm. Clin. 29::83136
    [Crossref] [Google Scholar]
  97. 97.
    Vasilevski V, Carolan-Olah M. 2016.. Food taboos and nutrition-related pregnancy concerns among Ethiopian women. . J. Clin. Nurs. 25:(19–20):306975
    [Crossref] [Google Scholar]
  98. 98.
    Kumera G, Tsedal E, Ayana M. 2018.. Dietary diversity and associated factors among children of Orthodox Christian mothers/caregivers during the fasting season in Dejen District, North West Ethiopia. . Nutr. Metab. 15:(1):16
    [Crossref] [Google Scholar]
  99. 99.
    D'Haene E, Desiere S, D'Haese M, Verbeke W, Schoors K. 2019.. Religion, food choices, and demand seasonality: evidence from the Ethiopian milk market. . Foods 8:(5):167
    [Crossref] [Google Scholar]
  100. 100.
    Haileselassie M, Redae G, Berhe G, Henry CJ, Nickerson MT, et al. 2020.. Why are animal source foods rarely consumed by 6–23 months old children in rural communities of Northern Ethiopia? A qualitative study. . PLOS ONE 15:(1):e0225707
    [Crossref] [Google Scholar]
  101. 101.
    Moore EV, Wood E, Stark H, Wereme N Diaye A, McKune SL. 2023.. Sustainability and scalability of egg consumption in Burkina Faso for infant and young child feeding. . Front. Nutr. 9::1096256
    [Crossref] [Google Scholar]
  102. 102.
    Alderman H, Headey DD. 2017.. How important is parental education for child nutrition?. World Dev. 94::44864
    [Crossref] [Google Scholar]
  103. 103.
    Omer A, Mulualem D, Classen H, Vatanparast H, Whiting SJ. 2018.. A community poultry intervention to promote egg and eggshell powder consumption by young children in Halaba Special Woreda, SNNPR, Ethiopia. . J. Agric. Sci. 10:(5):p1
    [Google Scholar]
  104. 104.
    Ghatak D, Sahoo S, Sarkar S, Sharma V. 2023.. Who eats last? Intra-household gender inequality in food allocation among children in educationally backward areas of India. . Popul. Stud. 78:(1):6377
    [Crossref] [Google Scholar]
  105. 105.
    Lentz EC, Narayanan S, De A. 2019.. Last and least: findings on intrahousehold undernutrition from participatory research in South Asia. . Soc. Sci. Med. 232::31623
    [Crossref] [Google Scholar]
  106. 106.
    Ipe M, Basu S. 2015.. Nutrition insecurity for women in the marginal agro-ecosystems of the Indian Himalayas. . Int. J. Agric. Res. Gov. Ecol. 11:(3–4):280310
    [Google Scholar]
  107. 107.
    Madjdian D. 2018.. Gender, intra-household food allocation and social change in two Himalayan communities in Nepal. . In Diversity and Change in Food Wellbeing: Cases from Southeast Asia and Nepal, ed. A Niehof, HN Gartaula, M Quetulio-Navarra , pp. 15375. Wageningen, Neth:.: Wageningen Acad. Publ.
    [Google Scholar]
  108. 108.
    Blum LS, Swartz H, Olisenekwu G, Erhabor I, Gonzalez W. 2023.. Social and economic factors influencing intrahousehold food allocation and egg consumption of children in Kaduna State, Nigeria. . Matern. Child Nutr. 19:(1):e13442
    [Crossref] [Google Scholar]
  109. 109.
    Coates J, Patenaude BN, Rogers BL, Roba AC, Woldetensay YK, et al. 2018.. Intra-household nutrient inequity in rural Ethiopia. . Food Policy 81::8294
    [Crossref] [Google Scholar]
  110. 110.
    Harris-Fry H, Shrestha N, Costello A, Saville NM. 2017.. Determinants of intra-household food allocation between adults in South Asia - a systematic review. . Int. J. Equity Health 16::107
    [Crossref] [Google Scholar]
  111. 111.
    Daba AK, Murimi M, Abegaz K, Hailu D. 2021.. Determinants and constraints to household-level animal source food consumption in rural communities of Ethiopia. . J. Nutr. Sci. 10::e58
    [Crossref] [Google Scholar]
  112. 112.
    Kalam MA, Asif CAA, Stormer A, Bishop T, Jackson-deGraffenried M, Talukder A. 2023.. Use of designing for behaviour change framework in identifying and addressing barriers to and enablers of animal source feeding to children ages 8–23 months in Bandarban Hill District in Bangladesh: Implications for a nutrition-sensitive agriculture programme. . Matern. Child Nutr. 19:(2):e13472
    [Crossref] [Google Scholar]
  113. 113.
    Wong JT, Bagnol B, Grieve H, Da Costa Jong JB, Li M, Alders RG. 2018.. Factors influencing animal-source food consumption in Timor-Leste. . Food Sec. 10:(3):74162
    [Crossref] [Google Scholar]
  114. 114.
    Bachewe FN, Minten B, Yimer F. 2017.. The rising costs of animal-source foods in Ethiopia: evidence and implications. Work. Pap., Int. Food Policy Res. Inst., Addis Ababa:
    [Google Scholar]
  115. 115.
    Negassa N, Bachewe FN, Taffesse AS, Dereje M. 2017.. An assessment of the livestock economy in mixed crop-livestock production systems in Ethiopia. Work. Pap. 101 , Int. Food Policy Res. Inst., Addis Ababa:
    [Google Scholar]
  116. 116.
    Headey DD, Alderman HH. 2019.. The relative caloric prices of healthy and unhealthy foods differ systematically across income levels and continents. . J. Nutr. 149:(11):202033
    [Crossref] [Google Scholar]
  117. 117.
    Hirvonen K, Bai Y, Headey D, Masters WA. 2020.. Affordability of the EAT–Lancet reference diet: a global analysis. . Lancet Glob. Health 8:(1):e5966
    [Crossref] [Google Scholar]
  118. 118.
    Affleck W, Pelto G. 2012.. Caregivers’ responses to an intervention to improve young child feeding behaviors in rural Bangladesh: a mixed method study of the facilitators and barriers to change. . Soc. Sci. Med. 75:(4):65158
    [Crossref] [Google Scholar]
  119. 119.
    Mukta US, Chakraborty B, Sayka U, Haque MR, Mia MMU, et al. 2015.. Identified factors behind low consumption of animal foods among the children of 6–23 months old in Alive and Thrive intervention areas in Bangladesh. . Open Access Libr. J. 2(6). https://doi.org/10.4236/oalib.1101452
    [Google Scholar]
  120. 120.
    Thorne-Lyman AL, Valpiani N, Akter R, Baten MA, Genschick S, et al. 2017.. Fish and meat are often withheld from the diets of infants 6 to 12 months in fish-farming households in rural Bangladesh. . Food Nutr. Bull. 38:(3):35468
    [Crossref] [Google Scholar]
  121. 121.
    Cornelsen L, Alarcon P, Häsler B, Amendah DD, Ferguson E, et al. 2016.. Cross-sectional study of drivers of animal-source food consumption in low-income urban areas of Nairobi, Kenya. . BMC Nutr. 2:(1):70
    [Crossref] [Google Scholar]
  122. 122.
    BEAM Exch. 2020.. The enabling environment for animal source food market system success. Doc., Beam Exch., New York:. https://beamexchange.org/resources/1378/
    [Google Scholar]
  123. 123.
    Gupta S, Sunder N, Pingali PL. 2020.. Market access, production diversity, and diet diversity: evidence from India. . Food Nutr. Bull. 41:(2):16785
    [Crossref] [Google Scholar]
  124. 124.
    Nandi R, Nedumaran S, Ravula P. 2021.. The interplay between food market access and farm household dietary diversity in low and middle income countries: a systematic review of literature. . Glob. Food Secur. 28::100484
    [Crossref] [Google Scholar]
  125. 125.
    Muñoz-Ulecia E, Rodríguez Gómez M, Bernués Jal A, Benhamou Prat A, Martín-Collado D. 2022.. Do animal source foods always ensure healthy, sustainable, and ethical diets?. Animal 16:(10):100643
    [Crossref] [Google Scholar]
  126. 126.
    Gržinić G, Piotrowicz-Cieślak A, Klimkowicz-Pawlas A, Górny RL, Ławniczek-Wałczyk A, et al. 2023.. Intensive poultry farming: a review of the impact on the environment and human health. . Sci. Total Environ. 858::160014
    [Crossref] [Google Scholar]
  127. 127.
    Grout L, Baker MG, French N, Hales S. 2020.. A review of potential public health impacts associated with the global dairy sector. . GeoHealth 4:(2):e2019GH000213
    [Crossref] [Google Scholar]
  128. 128.
    Koch BJ, Hungate BA, Price LB. 2017.. Food-animal production and the spread of antibiotic resistance: the role of ecology. . Front. Ecol. Environ. 15:(6):30918
    [Crossref] [Google Scholar]
  129. 129.
    Grace D. 2015.. Review of evidence on antimicrobial resistance and animal agriculture in developing countries. Lit. Rev., Dep. Int. Dev., London:. https://www.gov.uk/dfid-research-outputs/review-of-evidence-on-antimicrobial-resistance-and-animal-agriculture-in-developing-countries-201309
    [Google Scholar]
  130. 130.
    Keusch GT, Rosenberg IH, Denno DM, Duggan C, Guerrant RL, et al. 2013.. Implications of acquired environmental enteric dysfunction for growth and stunting in infants and children living in low- and middle-income countries. . Food Nutr. Bull. 34:(3):35764
    [Crossref] [Google Scholar]
  131. 131.
    Chen D, Mechlowitz K, Li X, Schaefer N, Havelaar AH, McKune SL. 2021.. Benefits and risks of smallholder livestock production on child nutrition in low- and middle-income countries. . Front. Nutr. 8::751686
    [Crossref] [Google Scholar]
  132. 132.
    Terefe Y, Deblais L, Ghanem M, Helmy YA, Mummed B, et al. 2020.. Co-occurrence of Campylobacter species in children from eastern Ethiopia, and their association with environmental enteric dysfunction, diarrhea, and host microbiome. . Front. Public Health 8::99
    [Crossref] [Google Scholar]
  133. 133.
    Abri R, Javadi A, Asghari R, Razavilar V, Salehi T, et al. 2019.. Surveillance for enterotoxigenic & enteropathogenic Escherichia coli isolates from animal source foods in Northwest Iran. . Indian J. Med. Res. 150:(1):8791
    [Crossref] [Google Scholar]
  134. 134.
    Anyanwu OA, Folta SC, Zhang FF, Chui K, Chomitz VR, et al. 2023.. Fish—to eat or not to eat? A mixed-methods investigation of the conundrum of fish consumption in the context of marine pollution in Indonesia. . Int. J. Environ. Res. Public Health 20:(8):5582
    [Crossref] [Google Scholar]
  135. 135.
    Espinosa-Marrón A, Adams K, Sinno L, Cantu-Aldana A, Tamez M, et al. 2022.. Environmental impact of animal-based food production and the feasibility of a shift toward sustainable plant-based diets in the United States. . Front. Sustain. 3::841106
    [Crossref] [Google Scholar]
  136. 136.
    Rayne N, Aula L. 2020.. Livestock manure and the impacts on soil health: a review. . Soil Syst. 4:(4):64
    [Crossref] [Google Scholar]
  137. 137.
    Verma BC, Kumar M, Mawlong LG, Roy S, Banarjee A, Prasad SM. 2020.. Livestock and soil health. . Biot. Res. Today 2::47879
    [Google Scholar]
  138. 138.
    Mitroi R, Stoian O, Covaliu CI, Manea D. 2021.. Pollutants resulting from intensive poultry farming activities and their impact on the environment. . E3S Web Conf. 286::03018
    [Crossref] [Google Scholar]
  139. 139.
    Chatti W, Majeed MT. 2024.. Meat production, technological advances, and environmental protection: evidence from a dynamic panel data model. . Environ. Dev. Sustain. In press
    [Google Scholar]
  140. 140.
    Willett W, Rockström J, Loken B, Springmann M, Lang T, et al. 2019.. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. . Lancet 393:(10170):44792
    [Crossref] [Google Scholar]
  141. 141.
    Grossi G, Goglio P, Vitali A, Williams AG. 2019.. Livestock and climate change: impact of livestock on climate and mitigation strategies. . Anim. Front. 9:(1):6976
    [Crossref] [Google Scholar]
  142. 142.
    Vibart R, De Klein C, Jonker A, Van Der Weerden T, Bannink A, et al. 2021.. Challenges and opportunities to capture dietary effects in on-farm greenhouse gas emissions models of ruminant systems. . Sci. Total Environ. 769::144989
    [Crossref] [Google Scholar]
  143. 143.
    Veeramani A, Dias GM, Kirkpatrick SI. 2017.. Carbon footprint of dietary patterns in Ontario, Canada: a case study based on actual food consumption. . J. Clean. Prod. 162::1398406
    [Crossref] [Google Scholar]
  144. 144.
    Ridoutt B, Baird D, Hendrie GA. 2021.. Diets within environmental limits: the climate impact of current and recommended Australian diets. . Nutrients 13:(4):1122
    [Crossref] [Google Scholar]
  145. 145.
    Caro D, LoPresti A, Davis SJ, Bastianoni S, Caldeira K. 2014.. CH4 and N2O emissions embodied in international trade of meat. . Environ. Res. Lett. 9:(11):114005
    [Crossref] [Google Scholar]
  146. 146.
    O'Mara FP. 2011.. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. . Anim. Feed Sci. Technol. 16667:715
    [Google Scholar]
  147. 147.
    Rushton J, Bruce M, Bellet C, Torgerson P, Shaw A, et al. 2018.. Initiation of Global Burden of Animal Diseases Programme. . Lancet 392:(10147):53840
    [Crossref] [Google Scholar]
  148. 148.
    [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-102149
Loading
/content/journals/10.1146/annurev-animal-111523-102149
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error