1932

Abstract

The northern white rhinoceros (NWR) is functionally extinct, with only two nonreproductive females remaining. However, because of the foresight of scientists, cryopreserved cells and reproductive tissues may aid in the recovery of this species. An ambitious program of natural and artificial gametes and in vitro embryo generation was first outlined in 2015, and many of the proposed steps have been achieved. Multiple induced pluripotent stem cell lines have been established, primordial germ cell–like cells have been generated, oocytes have been collected from the remaining females, blastocysts have been cryopreserved, and the closely related southern white rhinoceros (SWR) is being established as a surrogate. Recently, the first successful embryo transfer in SWR demonstrated that embryos can be generated by in vitro fertilization and cryopreserved. We explore progress to date in using advanced cellular technologies to save the NWR and highlight the necessary next steps to ensure a viable population for reintroduction. We roll out a holistic rescue approach for a charismatic megavertebrate that includes the most advanced cellular technologies, which can provide a blueprint for other critically endangered mammals. We also provide a detailed discussion of the remaining questions in such an upgraded conservation program.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-102158
2025-02-18
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-102158.html?itemId=/content/journals/10.1146/annurev-animal-111523-102158&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015.. Accelerated modern human–induced species losses: entering the sixth mass extinction. . Sci. Adv. 1:(5):e1400253
    [Crossref] [Google Scholar]
  2. 2.
    Ceballos G, Ehrlich PR. 2023.. Mutilation of the tree of life via mass extinction of animal genera. . PNAS 120:(39):e2306987120
    [Crossref] [Google Scholar]
  3. 3.
    Ceballos G, Ehrlich PR. 2018.. The misunderstood sixth mass extinction. . Science 360:(6393):108081
    [Crossref] [Google Scholar]
  4. 4.
    Kolbert E. 2014.. The Sixth Extinction: An Unnatural History. New York:: Henry Holt
    [Google Scholar]
  5. 5.
    Moneron S, Okes N, Rademeyer J. 2017.. Pendants, powder and pathways: a rapid assessment of smuggling routes and techniques used in the illicit trade in African rhino horn. Rep. , TRAFFIC, Cambridge, UK:
    [Google Scholar]
  6. 6.
    Tunstall T, Kock R, Vahala J, Diekhans M, Fiddes I, et al. 2018.. Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells. . Genome Res. 28:(6):78088
    [Crossref] [Google Scholar]
  7. 7.
    Moodley Y, Westbury MV, Russo I-RM, Gopalakrishnan S, Rakotoarivelo A, et al. 2020.. Interspecific gene flow and the evolution of specialization in black and white rhinoceros. . Mol. Biol. Evol. 37:(11):310517
    [Crossref] [Google Scholar]
  8. 8.
    Cumming DHM, Du Toit RF, Stuart SN. 1990.. African Elephants and Rhinos: Status Survey and Conservation Action Plan. Gland, Switz:.: Int. Union Conserv. Nat.
    [Google Scholar]
  9. 9.
    Emslie R. 2012.. Ceratotherium simum. The IUCN Red List of Threatened Species 2012. e.T4185A16980466
    [Google Scholar]
  10. 10.
    Hillman-Smith K, Oylsenzoo M, Smith F. 1986.. A last chance to save the northern white rhino?. Oryx 20:(1):2026
    [Crossref] [Google Scholar]
  11. 11.
    Rookmaaker K. 2000.. The alleged population reduction of the southern white rhinoceros (Ceratotherium simum simum) and the successful recovery. . Säugetierkd. Mitt. 45:(2):5570
    [Google Scholar]
  12. 12.
    Int. Rhino Found. 2023.. State of the rhino 2023. Rep., Int. Rhino Found., Strasburg, VA:
    [Google Scholar]
  13. 13.
    Emslie R. 2020.. Ceratotherium simum. The IUCN Red List of Threatened Species 2020. e.T4185A45813880
    [Google Scholar]
  14. 14.
    Saragusty J, Diecke S, Drukker M, Durrant B, Friedrich Ben-Nun I, et al. 2016.. Rewinding the process of mammalian extinction. . Zoo Biol. 35:(4):28092
    [Crossref] [Google Scholar]
  15. 15.
    Hildebrandt TB, Hermes R, Colleoni S, Diecke S, Holtze S, et al. 2018.. Embryos and embryonic stem cells from the white rhinoceros. . Nat. Commun. 9::2589
    [Crossref] [Google Scholar]
  16. 16.
    Hildebrandt TB, Hermes R, Goeritz F, Appeltant R, Colleoni S, et al. 2021.. The ART of bringing extinction to a freeze—history and future of species conservation, exemplified by rhinos. . Theriogenology 169::7688
    [Crossref] [Google Scholar]
  17. 17.
    Hildebrandt TB, Holtze S, Colleoni S, Hermes R, Stejskal J, et al. 2023.. In vitro fertilization program in white rhinoceros. . Reproduction 166:(6):38399
    [Crossref] [Google Scholar]
  18. 18.
    Korody ML, Ford SM, Nguyen TD, Pivaroff CG, Valiente-Alandi I, et al. 2021.. Rewinding extinction in the northern white rhinoceros: genetically diverse induced pluripotent stem cell bank for genetic rescue. . Stem Cells Dev. 30:(4):17789
    [Crossref] [Google Scholar]
  19. 19.
    Zywitza V, Rusha E, Shaposhnikov D, Ruiz-Orera J, Telugu N, et al. 2022.. Naïve-like pluripotency to pave the way for saving the northern white rhinoceros from extinction. . Sci. Rep. 12::3100
    [Crossref] [Google Scholar]
  20. 20.
    Hayashi M, Zywitza V, Naitou Y, Hamazaki N, Goeritz F, et al. 2022.. Robust induction of primordial germ cells of white rhinoceros on the brink of extinction. . Sci. Adv. 8:(49):eabp9683
    [Crossref] [Google Scholar]
  21. 21.
    Hildebrandt TB, Hermes R, Walzer C, Sós E, Molnar V, et al. 2007.. Artificial insemination in the anoestrous and the postpartum white rhinoceros using GnRH analogue to induce ovulation. . Theriogenology 67:(9):147384
    [Crossref] [Google Scholar]
  22. 22.
    Hermes R, Göritz F, Saragusty J, Sós E, Molnar V, et al. 2009.. First successful artificial insemination with frozen-thawed semen in rhinoceros. . Theriogenology 71:(3):39399
    [Crossref] [Google Scholar]
  23. 23.
    Hildebrandt TB, Schnorrenberg A, Weißmann I. 2018.. Vorrichtung zur Entnahme von Oozyten bei lebenden Tieren, insbesondere bei großen Säugetieren. WEP Patent No. EP3369397A1
    [Google Scholar]
  24. 24.
    Wang G, Korody ML, Brändl B, Hernandez-Toro CJ, Rohrandt C, et al. 2024.. Genomic conservation one step at a time: chromosome-level genome assembly of the functionally extinct northern white rhinoceros (Ceratotherium simum cottoni). . Manuscript under review
  25. 25.
    Houck ML, Ryder OA, Váhala J, Kock RA, Oosterhuis JE. 1994.. Diploid chromosome number and chromosomal variation in the white rhinoceros (Ceratotherium simum). . J. Hered. 85::3034
    [Google Scholar]
  26. 26.
    Houck ML, Ryder OA, Kumamoto AT, Benirschke K. 1995.. Cytogenetics of the Rhinocerotidae. . Verh. Int. Sympos. Erkrank. Zootiere 37::2532
    [Google Scholar]
  27. 27.
    Wilder AP, Steiner CC, Hendricks S, Haller BC, Kim C, et al. 2024.. Genetic load and viability of a future restored northern white rhino population. . Evol. Appl. 17:(4):e13683
    [Crossref] [Google Scholar]
  28. 28.
    Evans MJ, Kaufman MH. 1981.. Establishment in culture of pluripotential cells from mouse embryos. . Nature 292:(5819):15456
    [Crossref] [Google Scholar]
  29. 29.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, et al. 1998.. Embryonic stem cell lines derived from human blastocysts. . Science 282:(5391):114547
    [Crossref] [Google Scholar]
  30. 30.
    Choi K-H, Lee D-K, Kim SW, Woo S-H, Kim D-Y, Lee C-K. 2019.. Chemically defined media can maintain pig pluripotency network in vitro. . Stem Cell Rep. 13:(1):22134
    [Crossref] [Google Scholar]
  31. 31.
    Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, et al. 2018.. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. . PNAS 115:(9):209095
    [Crossref] [Google Scholar]
  32. 32.
    Takahashi K, Yamanaka S. 2006.. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. . Cell 126:(4):66376
    [Crossref] [Google Scholar]
  33. 33.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al. 2007.. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. . Cell 131:(5):86172
    [Crossref] [Google Scholar]
  34. 34.
    Baird AEG, Barsby T, Guest DJ. 2015.. Derivation of canine induced pluripotent stem cells. . Reprod. Domest. Anim. 50:(4):66976
    [Crossref] [Google Scholar]
  35. 35.
    Breton A, Sharma R, Diaz AC, Parham AG, Graham A, et al. 2013.. Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. . Stem Cells Dev. 22:(4):61121
    [Crossref] [Google Scholar]
  36. 36.
    Gao J, Petraki S, Sun X, Brooks LA, Lynch TJ, et al. 2020.. Derivation of induced pluripotent stem cells from ferret somatic cells. . Am. J. Physiol. Lung Cell. Mol. Physiol. 318:(4):L67183
    [Crossref] [Google Scholar]
  37. 37.
    Whitworth DJ, Limnios IJ, Gauthier ME, Weeratunga P, Ovchinnikov DA, et al. 2019.. Platypus induced pluripotent stem cells: the unique pluripotency signature of a monotreme. . Stem Cells Dev. 28:(3):15164
    [Crossref] [Google Scholar]
  38. 38.
    Déjosez M, Marin A, Hughes GM, Morales AE, Godoy-Parejo C, et al. 2023.. Bat pluripotent stem cells reveal unusual entanglement between host and viruses. . Cell 186:(5):95774.e28
    [Crossref] [Google Scholar]
  39. 39.
    Weeratunga P, Shahsavari A, Ovchinnikov DA, Wolvetang EJ, Whitworth DJ. 2018.. Induced pluripotent stem cells from a marsupial, the Tasmanian devil (Sarcophilus harrisii): insight into the evolution of mammalian pluripotency. . Stem Cells Dev. 27:(2):11222
    [Crossref] [Google Scholar]
  40. 40.
    Katayama M, Fukuda T, Kaneko T, Nakagawa Y, Tajima A, et al. 2022.. Induced pluripotent stem cells of endangered avian species. . Commun. Biol. 5::1049
    [Crossref] [Google Scholar]
  41. 41.
    Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, et al. 2015.. A comparison of non-integrating reprogramming methods. . Nat. Biotechnol. 33:(1):5863
    [Crossref] [Google Scholar]
  42. 42.
    Takahashi K, Yamanaka S. 2016.. A decade of transcription factor-mediated reprogramming to pluripotency. . Nat. Rev. Mol. Cell Biol. 17:(3):18393
    [Crossref] [Google Scholar]
  43. 43.
    Endo Y, Kamei KI, Inoue-Murayama M. 2020.. Genetic signatures of evolution of the pluripotency gene regulating network across mammals. . Genome Biol. Evol. 12:(10):180618
    [Crossref] [Google Scholar]
  44. 44.
    Lu Y, West FD, Jordan BJ, Mumaw JL, Jordan ET, et al. 2012.. Avian-induced pluripotent stem cells derived using human reprogramming factors. . Stem Cells Dev. 21:(3):394403
    [Crossref] [Google Scholar]
  45. 45.
    Bressan FF, Bassanezze V, de Figueiredo Pessôa LV, Sacramento CB, Malta TM, et al. 2020.. Generation of induced pluripotent stem cells from large domestic animals. . Stem Cell Res. Ther. 11::247
    [Crossref] [Google Scholar]
  46. 46.
    Ben-Nun IF, Montague SC, Houck ML, Tran HT, Garitaonandia I, et al. 2011.. Induced pluripotent stem cells from highly endangered species. . Nat. Methods 8:(10):82931
    [Crossref] [Google Scholar]
  47. 47.
    Rajamani K, Li Y-S, Hsieh D-K, Lin S-Z, Harn H-J, Chiou T-W. 2014.. Genetic and epigenetic instability of stem cells. . Cell Transplant. 23:(4–5):41733
    [Crossref] [Google Scholar]
  48. 48.
    Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, et al. 2011.. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. . Cell Stem Cell 8:(1):10618
    [Crossref] [Google Scholar]
  49. 49.
    Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, et al. 2008.. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. . Nat. Biotechnol. 26:(7):79597
    [Crossref] [Google Scholar]
  50. 50.
    Maherali N, Hochedlinger K. 2009.. Tgfβ signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. . Curr. Biol. 19:(20):171823
    [Crossref] [Google Scholar]
  51. 51.
    Sheridan SD, Surampudi V, Rao RR. 2012.. Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. . Stem Cells Int. 2012::e738910
    [Crossref] [Google Scholar]
  52. 52.
    Morgani S, Nichols J, Hadjantonakis A-K. 2017.. The many faces of pluripotency: in vitro adaptations of a continuum of in vivo states. . BMC Dev. Biol. 17::7
    [Crossref] [Google Scholar]
  53. 53.
    Wang J, Singh M, Sun C, Besser D, Prigione A, et al. 2016.. Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. . Nat. Protoc. 11:(2):32746
    [Crossref] [Google Scholar]
  54. 54.
    Bredenkamp N, Yang J, Clarke J, Stirparo GG, von Meyenn F, et al. 2019.. Wnt inhibition facilitates RNA-mediated reprogramming of human somatic cells to naive pluripotency. . Stem Cell Rep. 13:(6):108398
    [Crossref] [Google Scholar]
  55. 55.
    Ai Z, Niu B, Yin Y, Xiang L, Shi G, et al. 2023.. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. . Cell Res. 33::66178
    [Crossref] [Google Scholar]
  56. 56.
    Yang Y, Liu B, Xu J, Wang J, Wu J, et al. 2017.. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. . Cell 169:(2):24357.e25
    [Crossref] [Google Scholar]
  57. 57.
    Assou S, Pourret E, Péquignot M, Rigau V, Kalatzis V, et al. 2015.. Cultured cells from the human oocyte cumulus niche are efficient feeders to propagate pluripotent stem cells. . Stem Cells Dev. 24:(19):231727
    [Crossref] [Google Scholar]
  58. 58.
    Garitaonandia I, Amir H, Boscolo FS, Wambua GK, Schultheisz HL, et al. 2015.. Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. . PLOS ONE 10:(2):e0118307
    [Crossref] [Google Scholar]
  59. 59.
    Müller F-J, Schuldt BM, Williams R, Mason D, Altun G, et al. 2011.. A bioinformatic assay for pluripotency in human cells. . Nat. Methods 8:(4):31517
    [Crossref] [Google Scholar]
  60. 60.
    Reik W, Surani MA. Germline and pluripotent stem cells. . Cold Spring Harb. Perspect. Biol. 7:(11):a019422
    [Crossref] [Google Scholar]
  61. 61.
    Hancock GV, Wamaitha SE, Peretz L, Clark AT. 2021.. Mammalian primordial germ cell specification. . Development 148:(6):dev189217
    [Crossref] [Google Scholar]
  62. 62.
    Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA. 2016.. Specification and epigenetic programming of the human germ line. . Nat. Rev. Genet. 17:(10):585600
    [Crossref] [Google Scholar]
  63. 63.
    Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. 2011.. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. . Cell 146:(4):51932
    [Crossref] [Google Scholar]
  64. 64.
    Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, et al. 2016.. Reconstitution in vitro of the entire cycle of the mouse female germ line. . Nature 539:(7628):299303
    [Crossref] [Google Scholar]
  65. 65.
    Ishikura Y, Ohta H, Sato T, Murase Y, Yabuta Y, et al. 2021.. In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells. . Cell Stem Cell 28:(12):216779.e9
    [Crossref] [Google Scholar]
  66. 66.
    Irie N, Weinberger L, Tang WWC, Kobayashi T, Viukov S, et al. 2015.. SOX17 is a critical specifier of human primordial germ cell fate. . Cell 160:(1–2):25368
    [Crossref] [Google Scholar]
  67. 67.
    Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, et al. 2015.. Robust in vitro induction of human germ cell fate from pluripotent stem cells. . Cell Stem Cell 17:(2):17894
    [Crossref] [Google Scholar]
  68. 68.
    Yu L, Wei Y, Sun HX, Mahdi AK, Pinzon Arteaga CA, et al. 2021.. Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. . Cell Stem Cell 28:(3):55067.e12
    [Crossref] [Google Scholar]
  69. 69.
    Oikawa M, Kobayashi H, Sanbo M, Mizuno N, Iwatsuki K, et al. 2022.. Functional primordial germ cell–like cells from pluripotent stem cells in rats. . Science 376:(6589):17679
    [Crossref] [Google Scholar]
  70. 70.
    Kobayashi T, Castillo-Venzor A, Penfold CA, Morgan M, Mizuno N, et al. 2021.. Tracing the emergence of primordial germ cells from bilaminar disc rabbit embryos and pluripotent stem cells. . Cell Rep. 37:(2):109812
    [Crossref] [Google Scholar]
  71. 71.
    Pieri NCG, de Souza AF, Botigelli RC, de Figueiredo Pessôa LV, Recchia K, et al. 2022.. Porcine primordial germ cell–like cells generated from induced pluripotent stem cells under different culture conditions. . Stem Cell Rev. Rep. 18:(5):163956
    [Crossref] [Google Scholar]
  72. 72.
    Sakai Y, Nakamura T, Okamoto I, Gyobu-Motani S, Ohta H, et al. 2020.. Induction of the germ cell fate from pluripotent stem cells in cynomolgus monkeys. . Biol. Reprod. 102:(3):62038
    [Crossref] [Google Scholar]
  73. 73.
    Seita Y, Cheng K, McCarrey JR, Yadu N, Cheeseman IH, et al. 2023.. Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells. . eLife 12::e82263
    [Crossref] [Google Scholar]
  74. 74.
    Kubiura-Ichimaru M, Penfold C, Kojima K, Dollet C, Yabukami H, et al. 2023. mRNA-based generation of marmoset PGCLCs capable of differentiation into gonocyte-like cells. . Stem Cell Rep. 18:(10):19872002
    [Crossref] [Google Scholar]
  75. 75.
    Hayashi K. 2019.. In vitro reconstitution of germ cell development. . Biol. Reprod. 101:(3):56778
    [Crossref] [Google Scholar]
  76. 76.
    Hayashi K, Galli C, Diecke S, Hildebrandt TB. 2021.. Artificially produced gametes in mice, humans and other species. . Reprod. Fertil. Dev. 33:(2):91101
    [Crossref] [Google Scholar]
  77. 77.
    Jo K, Teague S, Chen B, Khan HA, Freeburne E, et al. 2022.. Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling. . eLife 11::e72811
    [Crossref] [Google Scholar]
  78. 78.
    Yokobayashi S, Okita K, Nakagawa M, Nakamura T, Yabuta Y, et al. 2017.. Clonal variation of human induced pluripotent stem cells for induction into the germ cell fate. . Biol. Reprod. 96:(6):115466
    [Crossref] [Google Scholar]
  79. 79.
    Chen D, Liu W, Lukianchikov A, Hancock GV, Zimmerman J, et al. 2017.. Germline competency of human embryonic stem cells depends on eomesodermin. . Biol. Reprod. 97:(6):85061
    [Crossref] [Google Scholar]
  80. 80.
    Castillo-Venzor A, Penfold CA, Morgan MD, Tang WW, Kobayashi T, et al. 2023.. Origin and segregation of the human germline. . Life Sci. Alliance 6:(8):e202201706
    [Crossref] [Google Scholar]
  81. 81.
    Vijayakumar S, Sala R, Kang G, Chen A, Pablo MA, et al. 2023.. Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification. . Nat. Commun. 14::5690
    [Crossref] [Google Scholar]
  82. 82.
    Esfahani SN, Zheng Y, Arabpour A, Irizarry AMR, Kobayashi N, et al. 2024.. Derivation of human primordial germ cell-like cells in an embryonic-like culture. . Nat. Commun. 15::167
    [Crossref] [Google Scholar]
  83. 83.
    Tang WWC, Dietmann S, Irie N, Leitch HG, Floros VI, et al. 2015.. A unique gene regulatory network resets the human germline epigenome for development. . Cell 161:(6):145367
    [Crossref] [Google Scholar]
  84. 84.
    Kurimoto K, Saitou M. 2018.. Epigenome regulation during germ cell specification and development from pluripotent stem cells. . Curr. Opin. Genet. Dev. 52::5764
    [Crossref] [Google Scholar]
  85. 85.
    Yamashiro C, Sasaki K, Yabuta Y, Kojima Y, Nakamura T, et al. 2018.. Generation of human oogonia from induced pluripotent stem cells in vitro. . Science 362:(6412):35660
    [Crossref] [Google Scholar]
  86. 86.
    Yoshino T, Suzuki T, Nagamatsu G, Yabukami H, Ikegaya M, et al. 2021.. Generation of ovarian follicles from mouse pluripotent stem cells. . Science 373:(6552):eabe0237
    [Crossref] [Google Scholar]
  87. 87.
    Sosa E, Mumu SK, Alvarado CC, Wu QY, Roberson I, et al. 2023.. Reconstituted ovaries self-assemble without an ovarian surface epithelium. . Stem Cell Rep. 18:(11):2190202
    [Crossref] [Google Scholar]
  88. 88.
    Pierson Smela MD, Kramme CC, Fortuna PR, Adams JL, Su R, et al. 2023.. Directed differentiation of human iPSCs to functional ovarian granulosa-like cells via transcription factor overexpression. . eLife 12::e83291
    [Crossref] [Google Scholar]
  89. 89.
    Piechota S, Marchante M, Giovannini A, Paulsen B, Potts KS, et al. 2023.. Human-induced pluripotent stem cell-derived ovarian support cell co-culture improves oocyte maturation in vitro after abbreviated gonadotropin stimulation. . Hum. Reprod. 38:(12):245669
    [Crossref] [Google Scholar]
  90. 90.
    Appeltant R, Hermes R, Holtze S, Modina SC, Galli C, et al. 2023.. The neonatal southern white rhinoceros ovary contains oogonia in germ cell nests. . Commun. Biol. 6::1049
    [Crossref] [Google Scholar]
  91. 91.
    Klohonatz K, Durrant B, Ruggeri E. 2023.. Transcriptomic analysis of granulosa cells in growing, dominant, and preovulatory follicles in the southern white rhinoceros (Ceratotherium simum simum). . Reprod. Fertil. Dev. 36:(2):160
    [Crossref] [Google Scholar]
  92. 92.
    Ruggeri E, Klohonatz K, Sirard M-A, Durrant B, Coleman S. 2023.. Genomic insights into southern white rhinoceros (Ceratotherium simum simum) reproduction: revealing granulosa cell gene expression. . Theriogenol. Wild 3::100055
    [Crossref] [Google Scholar]
  93. 93.
    Ruggeri E, Rodriguez J, Fallon L, Orsolini M, Durrant B. 2023.. In vivo gene expression analysis of southern white rhinoceros (Ceratotherium simum simum) granulosa cells collected from growing, dominant, and preovulatory follicles after ovum pickup. . Reprod. Fertil. Dev. 36:(2):162
    [Crossref] [Google Scholar]
  94. 94.
    Ruggeri E, Young C, Ravida N, Sirard MA, Krisher R, et al. 2022.. Glucose consumption and gene expression in granulosa cells collected before and after in vitro oocyte maturation in the southern white rhinoceros (Ceratotherium simum simum). . Reprod. Fertil. Dev. 34:(13):87588
    [Crossref] [Google Scholar]
  95. 95.
    Murakami K, Hamazaki N, Hamada N, Nagamatsu G, Okamoto I, et al. 2023.. Generation of functional oocytes from male mice in vitro. . Nature 615:(7954):9006
    [Crossref] [Google Scholar]
  96. 96.
    Burrell AS, Disotell TR, Bergey CM. 2015.. The use of museum specimens with high-throughput DNA sequencers. . J. Hum. Evol. 79::3544
    [Crossref] [Google Scholar]
  97. 97.
    Le Duc D, Velluva A, Cassatt-Johnstone M, Olsen R-A, Baleka S, et al. 2022.. Genomic basis for skin phenotype and cold adaptation in the extinct Steller's sea cow. . Sci. Adv. 8:(5):eabl6496
    [Crossref] [Google Scholar]
  98. 98.
    Alanis-Lobato G, Zohren J, McCarthy A, Fogarty NME, Kubikova N, et al. 2021.. Frequent loss of heterozygosity in CRISPR-Cas9–edited early human embryos. . PNAS 118:(22):e2004832117
    [Crossref] [Google Scholar]
  99. 99.
    Doudna JA, Charpentier E. 2014.. The new frontier of genome engineering with CRISPR-Cas9. . Science 346:(6213):1258096
    [Crossref] [Google Scholar]
  100. 100.
    Terhune AH, Bok J, Sun S, Fu J. 2022.. Stem cell-based models of early mammalian development. . Development 149:(20):dev201015
    [Crossref] [Google Scholar]
  101. 101.
    Kim Y, Kim I, Shin K. 2023.. A new era of stem cell and developmental biology: from blastoids to synthetic embryos and beyond. . Exp. Mol. Med. 55:(10):212737
    [Crossref] [Google Scholar]
  102. 102.
    Cooke CB, Barrington C, Baillie-Benson P, Nichols J, Moris N. 2023.. Gastruloid-derived primordial germ cell-like cells develop dynamically within integrated tissues. . Development 150:(17):dev201790
    [Crossref] [Google Scholar]
  103. 103.
    Tarazi S, Aguilera-Castrejon A, Joubran C, Ghanem N, Ashouokhi S, et al. 2022.. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. . Cell 185:(18):3290306.e25
    [Crossref] [Google Scholar]
  104. 104.
    Sozen B, Amadei G, Cox A, Wang R, Na E, et al. 2018.. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. . Nat. Cell Biol. 20:(8):97989
    [Crossref] [Google Scholar]
  105. 105.
    Rivron N. 2018.. Formation of blastoids from mouse embryonic and trophoblast stem cells. . Protoc. Exch. https://doi.org/10.1038/protex.2018.051
    [Google Scholar]
  106. 106.
    Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, et al. 2022.. Human blastoids model blastocyst development and implantation. . Nature 601:(7894):6005
    [Crossref] [Google Scholar]
  107. 107.
    Weatherbee BAT, Gantner CW, Iwamoto-Stohl LK, Daza RM, Hamazaki N, et al. 2023.. Pluripotent stem cell-derived model of the post-implantation human embryo. . Nature 622:(7983):58493. Correction . 2023.. Nature 621::E30
    [Google Scholar]
  108. 108.
    Munger C, Kohler TN, Slatery E, Ellermann AL, Bergmann S, et al. 2022.. Microgel culture and spatial identity mapping elucidate the signalling requirements for primate epiblast and amnion formation. . Development 149:(20):dev200263
    [Crossref] [Google Scholar]
  109. 109.
    Pinzón-Arteaga CA, Wang Y, Wei Y, Ribeiro Orsi AE, Li L, et al. 2023.. Bovine blastocyst-like structures derived from stem cell cultures. . Cell Stem Cell 30:(5):61116.e7
    [Crossref] [Google Scholar]
  110. 110.
    Liu L, Oura S, Markham Z, Hamilton JN, Skory RM, et al. 2023.. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. . Cell 186:(18):377692.e16
    [Crossref] [Google Scholar]
  111. 111.
    Novak BJ, Gober P, Bortner R, Garelle D, Wright M, et al. 2024.. First endangered black-footed ferrets, Mustela nigripes, cloned for genetic rescue. . bioRxiv . https://doi.org/10.1101/2024.04.17.589896
  112. 112.
    Novak BJ, Ryder OA, Houck ML, Putnam AS, Walker K, et al. 2024.. Endangered Przewalski's horse, Equus przewalskii, cloned from historically cryopreserved cells. . bioRxiv. https://doi.org/10.1101/2023.12.20.572538
    [Google Scholar]
  113. 113.
    Zywitza V, Frahm S, Krüger N, Weise A, Göritz F, et al. 2022.. Induced pluripotent stem cells and cerebral organoids from the critically endangered Sumatran rhinoceros. . iScience 25:(11):105414
    [Crossref] [Google Scholar]
  114. 114.
    Ishikura Y, Yabuta Y, Ohta H, Hayashi K, Nakamura T, et al. 2016.. In vitro derivation and propagation of spermatogonial stem cell activity from mouse pluripotent stem cells. . Cell Rep. 17:(10):2789804
    [Crossref] [Google Scholar]
  115. 115.
    Olsson PO, Jeong YW, Jeong Y, Kang M, Park GB, et al. 2022.. Insights from one thousand cloned dogs. . Sci. Rep. 12:(1):11209
    [Crossref] [Google Scholar]
  116. 116.
    Young LE, Sinclair KD, Wilmut I. 1998.. Large offspring syndrome in cattle and sheep. . Rev. Reprod. 3:(3):15563
    [Crossref] [Google Scholar]
  117. 117.
    Bai D, Sun J, Chen C, Jia Y, Li Y, et al. 2022.. Aberrant H3K4me3 modification of epiblast genes of extraembryonic tissue causes placental defects and implantation failure in mouse IVF embryos. . Cell Rep. 39:(5):110784
    [Crossref] [Google Scholar]
  118. 118.
    Chen W, Peng Y, Ma X, Kong S, Tan S, et al. 2020.. Integrated multi-omics reveal epigenomic disturbance of assisted reproductive technologies in human offspring. . EBioMedicine 61::103076
    [Crossref] [Google Scholar]
  119. 119.
    Malin K, Witkowska-Piłaszewicz O, Papis K. 2022.. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. . Theriogenology 189::24654
    [Crossref] [Google Scholar]
  120. 120.
    Mastromonaco GF, King WA. 2007.. Cloning in companion animal, non-domestic and endangered species: Can the technology become a practical reality?. Reprod. Fertil. Dev. 19:(6):74861
    [Crossref] [Google Scholar]
  121. 121.
    Matoba S, Zhang Y. 2018.. Somatic cell nuclear transfer reprogramming: mechanisms and applications. . Cell Stem Cell 23:(4):47185
    [Crossref] [Google Scholar]
  122. 122.
    Pennington PM, Marshall KL, Capiro JM, Howard L, Durrant BS. 2020.. Pregnancies following long luteal phases in southern white rhinoceros (Ceratotherium simum simum). . Zoo Biol. 39:(2):14144
    [Crossref] [Google Scholar]
  123. 123.
    Tubbs CW, Durrant BS, Milnes MR. 2017.. Reconsidering the use of soy and alfalfa in southern white rhinoceros diets. . Pachyderm 58::13539
    [Crossref] [Google Scholar]
  124. 124.
    Tubbs CW, Moley LA, Ivy JA, Metrione LC, LaClaire S, et al. 2016.. Estrogenicity of captive southern white rhinoceros diets and their association with fertility. . Gen. Comp. Endocrinol. 238::3238
    [Crossref] [Google Scholar]
  125. 125.
    Williams CL, Ybarra AR, Meredith AN, Durrant BS, Tubbs CW. 2019.. Gut microbiota and phytoestrogen-associated infertility in southern white rhinoceros. . mBio 10:(2):e00311-19
    [Crossref] [Google Scholar]
  126. 126.
    Williams C, Williams C, King S, Shier D. 2023.. Environmental change drives multi-generational shifts in the gut microbiome that mirror changing animal fitness. . bioRxiv. https://doi.org/10.1101/2023.10.24.563854
    [Google Scholar]
  127. 127.
    Kothmann KH, Jons A, Wilhelmi B, Kasozi N, Graham L, et al. 2022.. Non-invasive assessment of fecal glucocorticoid, progesterone, and androgen metabolites and microbiome in free-ranging southern white rhinoceros (Ceratotherium simum simum) in South Africa. . Gen. Comp. Endocrinol. 329::114099
    [Crossref] [Google Scholar]
  128. 128.
    Cromsigt JPGM, te Beest M. 2014.. Restoration of a megaherbivore: landscape-level impacts of white rhinoceros in Kruger National Park, South Africa. . J. Ecol. 102:(3):56675
    [Crossref] [Google Scholar]
  129. 129.
    Waldram M, Bond W, Stock W. 2008.. Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. . Ecosystems 11::10112
    [Crossref] [Google Scholar]
  130. 130.
    Cromsigt JPGM, te Beest M, Kerley GIH, Landman M, le Roux E, Smith FA. 2018.. Trophic rewilding as a climate change mitigation strategy?. Philos. Trans. R. Soc. B 373:(1761):20170440
    [Crossref] [Google Scholar]
  131. 131.
    Guyton JA, Pansu J, Hutchinson MC, Kartzinel TR, Potter AB, et al. 2020.. Trophic rewilding revives biotic resistance to shrub invasion. . Nat. Ecol. Evol. 4:(5):71224
    [Crossref] [Google Scholar]
  132. 132.
    Hoeks S, Huijbregts MAJ, Boonman CCF, Faurby S, Svenning J-C, et al. 2023.. Shifts in ecosystem equilibria following trophic rewilding. . Divers. Distrib. 29:(12):151226
    [Crossref] [Google Scholar]
  133. 133.
    Ryder OA, Friese C, Saragusty J, Greely HT, Sandler R, et al. 2020.. Exploring the limits of saving a subspecies: the ethics and social dynamics of restoring northern white rhinos (Ceratotherium simum cottoni). . Conserv. Sci. Pract. 2:(8):e241
    [Crossref] [Google Scholar]
  134. 134.
    Callender C. 2021.. On the horns of a dilemma: Let the northern white rhino vanish or intervene?. Ethics Policy Environ. 26:(2):31832
    [Crossref] [Google Scholar]
  135. 135.
    Biasetti P, Hildebrandt TB, Göritz F, Hermes R, Holtze S, et al. 2022.. Ethical analysis of the application of assisted reproduction technologies in biodiversity conservation and the case of white rhinoceros (Ceratotherium simum) ovum pick-up procedures. . Front. Vet. Sci. 9::831675
    [Crossref] [Google Scholar]
  136. 136.
    de Mori B, Spiriti MM, Pollastri I, Normando S, Biasetti P, et al. 2021.. An ethical assessment tool (ETHAS) to evaluate the application of assisted reproductive technologies in mammals’ conservation: the case of the northern white rhinoceros (Ceratotherium simum cottoni). . Animals 11:(2):312
    [Crossref] [Google Scholar]
  137. 137.
    de Mori B, Mercugliano E, Biasetti P, Pollastri I, Spiriti MM, et al. 2024.. The ethical assessment of assisted reproductive technologies (ART) in wildlife conservation. . Biol. Conserv. 290::110423
    [Crossref] [Google Scholar]
  138. 138.
    Biasetti P, Hildebrandt TB, Göritz F, Hermes R, Holtze S, et al. 2023.. Application of decision tools to ethical analysis in biodiversity conservation. . Conserv. Biol. 37:(2):e14029
    [Crossref] [Google Scholar]
  139. 139.
    Biasetti P, de Mori B. 2021.. The ethical matrix as a tool for decision-making process in conservation. . Front. Environ. Sci. 9::584636
    [Crossref] [Google Scholar]
  140. 140.
    Hayashi K, Saitou M. 2013.. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. . Nat Protoc. 8:(8):151324
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-102158
Loading
/content/journals/10.1146/annurev-animal-111523-102158
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error