1932

Abstract

Metabolic stress conditions are often characterized by upregulated lipolysis and subsequently increased serum free fatty acid (FFA) concentrations, leading to the uptake of FFAs by non-adipose tissues and impairment of their function. This phenomenon is known as lipotoxicity. The increased serum FFA concentrations are reflected in the ovarian follicular fluid, which can have harmful effects on oocyte development. Several studies using in vitro and in vivo mammalian models showed that altered oocyte metabolism, increased oxidative stress, and mitochondrial dysfunction are crucial mechanisms underlying this detrimental impact. Ultimately, this can impair offspring health through the persistence of defective mitochondria in the embryo, hampering epigenetic reprogramming and early development. In vitro and in vivo treatments to enhance oocyte mitochondrial function are increasingly being developed. This can help to improve pregnancy rates and safeguard offspring health in metabolically compromised individuals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-102249
2025-02-18
2025-06-23
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-102249.html?itemId=/content/journals/10.1146/annurev-animal-111523-102249&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    WHO (World Health Organ.). 2024.. Obesity and overweight. Fact Sheet, WHO, Geneva:. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
    [Google Scholar]
  2. 2.
    Wang L, Wang H, Zhang B, Popkin BM, Du S. 2020.. Elevated fat intake increases body weight and the risk of overweight and obesity among Chinese adults: 1991–2015 trends. . Nutrients 12::3272
    [Crossref] [Google Scholar]
  3. 3.
    Luke B, Brown MB, Stern JE, Missmer SA, Fujimoto VY, et al. 2011.. Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates. . Hum. Reprod. 26::24552
    [Crossref] [Google Scholar]
  4. 4.
    Mambiya M, Shang M, Wang Y, Li Q, Liu S, et al. 2019.. The play of genes and non-genetic factors on type 2 diabetes. . Front. Public Health 7::349
    [Crossref] [Google Scholar]
  5. 5.
    Magliano DJ, Boyko EJ. 2021.. IDF Diabetes Atlas 2021. Brussels:: Int. Diabetes Fed. , 10th ed..
    [Google Scholar]
  6. 6.
    Chang AS, Dale AN, Moley KH. 2005.. Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis. . Endocrinology 146::244553
    [Crossref] [Google Scholar]
  7. 7.
    Brito LF, Bedere N, Douhard F, Oliveira HR, Arnal M, et al. 2021.. Review: genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. . Animal 15:(Suppl. 1):100292
    [Crossref] [Google Scholar]
  8. 8.
    Wathes DC, Fenwick M, Cheng Z, Bourne N, Llewellyn S, et al. 2007.. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. . Theriogenology 68:(Suppl. 1):S23241
    [Crossref] [Google Scholar]
  9. 9.
    Carvalho PD, Souza AH, Amundson MC, Hackbart KS, Fuenzalida MJ, et al. 2014.. Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows. . J. Dairy Sci. 97::366683
    [Crossref] [Google Scholar]
  10. 10.
    Engin AB. 2017.. What is lipotoxicity?. Obes. Lipotoxicity 960::197220
    [Crossref] [Google Scholar]
  11. 11.
    Leroy JLMR, Meulders B, Moorkens K, Xhonneux I, Slootmans J, et al. 2022.. Maternal metabolic health and fertility: We should not only care about but also for the oocyte!. Reprod. Fertil. Dev. 35::118
    [Crossref] [Google Scholar]
  12. 12.
    López-Soldado I, Avella M, Botham KM. 2009.. Differential influence of different dietary fatty acids on very low-density lipoprotein secretion when delivered to hepatocytes in chylomicron remnants. . Metabolism 58::18695
    [Crossref] [Google Scholar]
  13. 13.
    Klop B, Elte JW, Cabezas MC. 2013.. Dyslipidemia in obesity: mechanisms and potential targets. . Nutrients 5::121840
    [Crossref] [Google Scholar]
  14. 14.
    Kim JI, Huh JY, Sohn JH, Choe SS, Lee YS, et al. 2015.. Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. . Mol. Cell. Biol. 35::168699
    [Crossref] [Google Scholar]
  15. 15.
    Cusi K. 2010.. The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes. . Curr. Diabetes Rep. 10::30615
    [Crossref] [Google Scholar]
  16. 16.
    Lipke K, Kubis-Kubiak A, Piwowar A. 2022.. Molecular mechanism of lipotoxicity as an interesting aspect in the development of pathological states—current view of knowledge. . Cells 11::844
    [Crossref] [Google Scholar]
  17. 17.
    Lewis GF, Uffelman KD, Szeto LW, Steiner G. 1993.. Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL ApoB production in normal weight and obese individuals. . Diabetes 42::83342
    [Crossref] [Google Scholar]
  18. 18.
    Vernon RG. 2005.. Lipid metabolism during lactation: a review of adipose tissue-liver interactions and the development of fatty liver. . J. Dairy Res. 72::46069
    [Crossref] [Google Scholar]
  19. 19.
    Hoving LL, Soede NM, Feitsma H, Kemp B. 2012.. Lactation weight loss in primiparous sows: consequences for embryo survival and progesterone and relations with metabolic profiles. . Reprod. Domest. Anim. 47::100916
    [Crossref] [Google Scholar]
  20. 20.
    Leroy JLMR, Valckx SD, Jordaens L, De Bie J, Desmet KL, et al. 2015.. Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. . Reprod. Fertil. Dev. 27::693703
    [Crossref] [Google Scholar]
  21. 21.
    Shi M, Sirard MA. 2022.. Metabolism of fatty acids in follicular cells, oocytes, and blastocysts. . Reprod. Fertil. 3::R96R108
    [Crossref] [Google Scholar]
  22. 22.
    Longo N, Frigeni M, Pasquali M. 2016.. Carnitine transport and fatty acid oxidation. . Biochim. Biophys. Acta 1863::242235
    [Crossref] [Google Scholar]
  23. 23.
    Jernejc K, Perdih A, Cimerman A. 1991.. ATP: citrate lyase and carnitine acetyltransferase activity in a citric-acid-producing Aspergillus niger strain. . Appl. Microbiol. Biotechnol. 36::9295
    [Crossref] [Google Scholar]
  24. 24.
    He L, Kim T, Long Q, Liu J, Wang P, et al. 2012.. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. . Circulation 126::170516
    [Crossref] [Google Scholar]
  25. 25.
    Chandel NS. 2021.. Lipid metabolism. . Cold Spring Harb. Perspect. Biol. 13::a040576
    [Crossref] [Google Scholar]
  26. 26.
    Gehrmann W, Elsner M, Lenzen S. 2010.. Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells. . Diabetes Obes. Metab. 12:(Suppl. 2):14958
    [Crossref] [Google Scholar]
  27. 27.
    Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, et al. 2019.. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. . Oxid. Med. Cell. Longev. 2019::5080843
    [Google Scholar]
  28. 28.
    Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE. 2006.. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. . J. Lipid Res. 47::272637
    [Crossref] [Google Scholar]
  29. 29.
    Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. 2019.. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. . Front. Mol. Biosci. 6::11
    [Crossref] [Google Scholar]
  30. 30.
    Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P. 2013.. Endoplasmic reticulum stress sensing in the unfolded protein response. . Cold Spring Harb. Perspect. Biol. 5::a013169
    [Crossref] [Google Scholar]
  31. 31.
    Marei WFA, Leroy JLMR. 2022.. Cellular stress responses in oocytes: molecular changes and clinical implications. . Adv. Exp. Med. Biol. 1387::17189
    [Crossref] [Google Scholar]
  32. 32.
    Hass DT, Barnstable CJ. 2021.. Uncoupling proteins in the mitochondrial defense against oxidative stress. . Prog. Retin. Eye Res. 83::100941
    [Crossref] [Google Scholar]
  33. 33.
    Runkel ED, Baumeister R, Schulze E. 2014.. Mitochondrial stress: balancing friend and foe. . Exp. Gerontol. 56::194201
    [Crossref] [Google Scholar]
  34. 34.
    Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. 2012.. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. . Science 337::58790
    [Crossref] [Google Scholar]
  35. 35.
    Eiyama A, Okamoto K. 2015.. PINK1/Parkin-mediated mitophagy in mammalian cells. . Curr. Opin. Cell Biol. 33::95101
    [Crossref] [Google Scholar]
  36. 36.
    Hirsch T, Marzo I, Kroemer G. 1997.. Role of the mitochondrial permeability transition pore in apoptosis. . Biosci. Rep. 17::6776
    [Crossref] [Google Scholar]
  37. 37.
    Lair B, Laurens C, Van Den Bosch B, Moro C. 2020.. Novel insights and mechanisms of lipotoxicity-driven insulin resistance. . Int. J. Mol. Sci. 21::6358
    [Crossref] [Google Scholar]
  38. 38.
    Geng YN, Faber KN, de Meijer VE, Blokzijl H, Moshage H. 2021.. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease?. Hepatol. Int. 15::2135
    [Crossref] [Google Scholar]
  39. 39.
    Khin PP, Lee JH, Jun HS. 2023.. Pancreatic β-cell dysfunction in type 2 diabetes. . Eur. J. Inflamm. 21:. https://doi.org/10.1177/1721727X231154152
    [Crossref] [Google Scholar]
  40. 40.
    Tuunanen H, Knuuti J. 2011.. Metabolic remodelling in human heart failure. . Cardiovasc. Res. 90::25157
    [Crossref] [Google Scholar]
  41. 41.
    Bosma M, Kersten S, Hesselink MK, Schrauwen P. 2012.. Re-evaluating lipotoxic triggers in skeletal muscle: relating intramyocellular lipid metabolism to insulin sensitivity. . Prog. Lipid Res. 51::3649
    [Crossref] [Google Scholar]
  42. 42.
    Weinberg JM. 2006.. Lipotoxicity. . Kidney Int. 70::156066
    [Crossref] [Google Scholar]
  43. 43.
    Adibhatla RM, Hatcher JF. 2008.. Altered lipid metabolism in brain injury and disorders. . Subcell. Biochem. 49::24168
    [Crossref] [Google Scholar]
  44. 44.
    Leroy JLMR, Vanholder T, Mateusen B, Christophe A, Opsomer G, et al. 2005.. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. . Reproduction 130::48595
    [Crossref] [Google Scholar]
  45. 45.
    Bellver J, Busso C, Pellicer A, Remohi J, Simon C. 2006.. Obesity and assisted reproductive technology outcomes. . Reprod. Biomed. Online 12::56268
    [Crossref] [Google Scholar]
  46. 46.
    Jungheim ES, Macones GA, Odem RR, Patterson BW, Lanzendorf SE, et al. 2011.. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. . Fertil. Steril. 95::197074
    [Crossref] [Google Scholar]
  47. 47.
    Marei WFA, De Bie J, Xhonneux I, Andries S, Britt JH, Leroy JLMR. 2022.. Metabolic and antioxidant status during transition is associated with changes in the granulosa cell transcriptome in the preovulatory follicle in high-producing dairy cows at the time of breeding. . J. Dairy Sci. 105::695672
    [Crossref] [Google Scholar]
  48. 48.
    Siu MK, Cheng CY. 2012.. The blood-follicle barrier (BFB) in disease and in ovarian function. . Adv. Exp. Med. Biol. 763::18692
    [Crossref] [Google Scholar]
  49. 49.
    Aardema H, Vos P, Gadella BM. 2018.. Cumulus cells protect the oocyte against saturated free fatty acids. . Anim. Reprod. 15::73750
    [Crossref] [Google Scholar]
  50. 50.
    Dunning KR, Russell DL, Robker RL. 2014.. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. . Reproduction 148::R1527
    [Crossref] [Google Scholar]
  51. 51.
    Sanchez-Lazo L, Brisard D, Elis S, Maillard V, Uzbekov R, et al. 2014.. Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine. . Mol. Endocrinol. 28::150221
    [Crossref] [Google Scholar]
  52. 52.
    Aardema H, van Tol HTA, Wubbolts RW, Brouwers J, Gadella BM, Roelen BAJ. 2017.. Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress. . Biol. Reprod. 96::98292
    [Crossref] [Google Scholar]
  53. 53.
    Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, et al. 2013.. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. . Biol. Reprod. 88::164
    [Crossref] [Google Scholar]
  54. 54.
    Del Collado M, da Silveira JC, Sangalli JR, Andrade GM, Sousa L, et al. 2017.. Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during in vitro maturation of bovine oocytes. . Sci. Rep. 7::2645
    [Crossref] [Google Scholar]
  55. 55.
    Jeong WJ, Cho SJ, Lee HS, Deb GK, Lee YS, et al. 2009.. Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. . Theriogenology 72::58489
    [Crossref] [Google Scholar]
  56. 56.
    Sturmey RG, O'Toole PJ, Leese HJ. 2006.. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. . Reproduction 132::82937
    [Crossref] [Google Scholar]
  57. 57.
    McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK. 2000.. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. . J. Reprod. Fertil. 118::16370
    [Crossref] [Google Scholar]
  58. 58.
    Bradley J, Swann K. 2019.. Mitochondria and lipid metabolism in mammalian oocytes and early embryos. . Int. J. Dev. Biol. 63::93103
    [Crossref] [Google Scholar]
  59. 59.
    Paczkowski M, Silva E, Schoolcraft WB, Krisher RL. 2013.. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. . Biol. Reprod. 88::111
    [Crossref] [Google Scholar]
  60. 60.
    Valckx SD, Arias-Alvarez M, De Pauw I, Fievez V, Vlaeminck B, et al. 2014.. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. . Reprod. Biol. Endocrinol. 12::13
    [Crossref] [Google Scholar]
  61. 61.
    Childs S, Hennessy AA, Sreenan JM, Wathes DC, Cheng Z, et al. 2008.. Effect of level of dietary n-3 polyunsaturated fatty acid supplementation on systemic and tissue fatty acid concentrations and on selected reproductive variables in cattle. . Theriogenology 70::595611
    [Crossref] [Google Scholar]
  62. 62.
    O'Gorman A, Wallace M, Cottell E, Gibney MJ, McAuliffe FM, et al. 2013.. Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. . Reproduction 146::38995
    [Crossref] [Google Scholar]
  63. 63.
    Mirabi P, Chaichi MJ, Esmaeilzadeh S, Ali Jorsaraei SG, Bijani A, et al. 2017.. The role of fatty acids on ICSI outcomes: a prospective cohort study. . Lipids Health Dis. 16::18
    [Crossref] [Google Scholar]
  64. 64.
    Shaaker M, Rahimipour A, Nouri M, Khanaki K, Darabi M, et al. 2012.. Fatty acid composition of human follicular fluid phospholipids and fertilization rate in assisted reproductive techniques. . Iran Biomed. J. 16::16268
    [Google Scholar]
  65. 65.
    Leary C, Leese HJ, Sturmey RG. 2015.. Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. . Hum. Reprod. 30::12232
    [Crossref] [Google Scholar]
  66. 66.
    Marei WFA, Smits A, Mohey-Elsaeed O, Pintelon I, Ginneberge D, et al. 2020.. Differential effects of high fat diet-induced obesity on oocyte mitochondrial functions in inbred and outbred mice. . Sci. Rep. 10::9806
    [Crossref] [Google Scholar]
  67. 67.
    Smits A, Marei WFA, Moorkens K, Bols PEJ, De Neubourg D, Leroy JLMR. 2022.. Obese outbred mice only partially benefit from diet normalization or calorie restriction as preconception care interventions to improve metabolic health and oocyte quality. . Hum. Reprod. 37::286784
    [Crossref] [Google Scholar]
  68. 68.
    Boudoures AL, Saben J, Drury A, Scheaffer S, Modi Z, et al. 2017.. Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. . Dev. Biol. 426::12638
    [Crossref] [Google Scholar]
  69. 69.
    Wu LL, Russell DL, Wong SL, Chen M, Tsai TS, et al. 2015.. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. . Development 142::68191
    [Crossref] [Google Scholar]
  70. 70.
    Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, et al. 2010.. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. . PLOS ONE 5::e10074
    [Crossref] [Google Scholar]
  71. 71.
    van der Steeg JW, Steures P, Eijkemans MJ, Habbema JD, Hompes PG, et al. 2008.. Obesity affects spontaneous pregnancy chances in subfertile, ovulatory women. . Hum. Reprod. 23::32428
    [Crossref] [Google Scholar]
  72. 72.
    Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, et al. 2012.. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. . PLOS ONE 7::e49217
    [Crossref] [Google Scholar]
  73. 73.
    Sasson IE, Vitins AP, Mainigi MA, Moley KH, Simmons RA. 2015.. Pre-gestational versus gestational exposure to maternal obesity differentially programs the offspring in mice. . Diabetologia 58::61524
    [Crossref] [Google Scholar]
  74. 74.
    Van Hoeck V, Leroy JLMR, Arias Alvarez M, Rizos D, Gutierrez-Adan A, et al. 2013.. Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights. . Reproduction 145::3344
    [Crossref] [Google Scholar]
  75. 75.
    Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, et al. 2011.. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. . PLOS ONE 6::e23183
    [Crossref] [Google Scholar]
  76. 76.
    Marei WFA, Van Raemdonck G, Baggerman G, Bols PEJ, Leroy JLMR. 2019.. Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells. . Sci. Rep. 9::3673
    [Crossref] [Google Scholar]
  77. 77.
    Desmet KLJ, Marei WFA, Richard C, Sprangers K, Beemster GTS, et al. 2020.. Oocyte maturation under lipotoxic conditions induces carryover transcriptomic and functional alterations during post-hatching development of good-quality blastocysts: novel insights from a bovine embryo-transfer model. . Hum. Reprod. 35::293307
    [Crossref] [Google Scholar]
  78. 78.
    Itami N, Shirasuna K, Kuwayama T, Iwata H. 2018.. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. . Biol. Reprod. 98::64453
    [Crossref] [Google Scholar]
  79. 79.
    Shibahara H, Ishiguro A, Inoue Y, Koumei S, Kuwayama T, Iwata H. 2020.. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. . Theriogenology 141::5461
    [Crossref] [Google Scholar]
  80. 80.
    Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, et al. 2011.. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. . Biol. Reprod. 85::6269
    [Crossref] [Google Scholar]
  81. 81.
    Marei WF, Wathes DC, Fouladi-Nashta AA. 2010.. Impact of linoleic acid on bovine oocyte maturation and embryo development. . Reproduction 139::97988
    [Crossref] [Google Scholar]
  82. 82.
    Marei WFA, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PEJ, Leroy JLMR. 2017.. Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. . Biol. Reprod. 96::118196
    [Crossref] [Google Scholar]
  83. 83.
    Ynsaurralde-Rivolta AE, Suva M, Luchetti CG, Bevacqua RJ, Munilla S, et al. 2020.. DMSO supplementation during in vitro maturation of bovine oocytes improves blastocyst rate and quality. . Theriogenology 148::14048
    [Crossref] [Google Scholar]
  84. 84.
    Sato T, Hamazaki M, Inoue Y, Aoki S, Koshiishi Y, et al. 2023.. Effect of a low ethanol concentration during in vitro maturation of bovine oocytes and subsequent embryo development. . Theriogenology 208::15864
    [Crossref] [Google Scholar]
  85. 85.
    Smitz JE, Cortvrindt RG. 2002.. The earliest stages of folliculogenesis in vitro. . Reproduction 123::185202
    [Crossref] [Google Scholar]
  86. 86.
    Valckx SD, Van Hoeck V, Arias-Alvarez M, Maillo V, Lopez-Cardona AP, et al. 2014.. Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence. . Fertil. Steril. 102::176976.e1
    [Crossref] [Google Scholar]
  87. 87.
    Clarke H. 2017.. Control of mammalian oocyte development by interactions with the maternal follicular environment. . Results Probl. Cell Differ. 63::1741
    [Crossref] [Google Scholar]
  88. 88.
    Fair T. 2003.. Follicular oocyte growth and acquisition of developmental competence. . Anim. Reprod. Sci. 78::20316
    [Crossref] [Google Scholar]
  89. 89.
    Smits A, Marei WFA, De Neubourg D, Leroy JLMR. 2021.. Diet normalization or caloric restriction as a preconception care strategy to improve metabolic health and oocyte quality in obese outbred mice. . Reprod. Biol. Endocrinol. 19::166
    [Crossref] [Google Scholar]
  90. 90.
    El Shourbagy SH, Spikings EC, Freitas M, St John JC. 2006.. Mitochondria directly influence fertilisation outcome in the pig. . Reproduction 131::23345
    [Crossref] [Google Scholar]
  91. 91.
    Motta PM, Nottola SA, Makabe S, Heyn R. 2000.. Mitochondrial morphology in human fetal and adult female germ cells. . Hum. Reprod. 15:(Suppl. 2):12947
    [Crossref] [Google Scholar]
  92. 92.
    Tesarik J, Galán-Lázaro M, Mendoza-Tesarik R. 2021.. Ovarian aging: molecular mechanisms and medical management. . Int. J. Mol. Sci. 22::1371
    [Crossref] [Google Scholar]
  93. 93.
    Babayev E, Seli E. 2015.. Oocyte mitochondrial function and reproduction. . Curr. Opin. Obstet. Gynecol. 27::17581
    [Crossref] [Google Scholar]
  94. 94.
    Pikó L, Matsumoto L. 1976.. Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. . Dev. Biol. 49::110
    [Crossref] [Google Scholar]
  95. 95.
    Santos TA, El Shourbagy S, St John JC. 2006.. Mitochondrial content reflects oocyte variability and fertilization outcome. . Fertil. Steril. 85::58491
    [Crossref] [Google Scholar]
  96. 96.
    Adhikari D, Lee IW, Yuen WS, Carroll J. 2022.. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility. . Biol. Reprod. 106::36677
    [Crossref] [Google Scholar]
  97. 97.
    Van Blerkom J. 2011.. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. . Mitochondrion 11::797813
    [Crossref] [Google Scholar]
  98. 98.
    Nagano M, Katagiri S, Takahashi Y. 2006.. ATP content and maturational/developmental ability of bovine oocytes with various cytoplasmic morphologies. . Zygote 14::299304
    [Crossref] [Google Scholar]
  99. 99.
    Kirillova A, Smitz JEJ, Sukhikh GT, Mazunin I. 2021.. The role of mitochondria in oocyte maturation. . Cells 10::2484
    [Crossref] [Google Scholar]
  100. 100.
    Yang Z, Liu S, Pan X. 2024.. Research progress on mitochondrial damage and repairing in oocytes: a review. . Mitochondrion 75::101845
    [Crossref] [Google Scholar]
  101. 101.
    Boudoures AL, Chi M, Thompson A, Zhang W, Moley KH. 2016.. The effects of voluntary exercise on oocyte quality in a diet-induced obese murine model. . Reproduction 151::26170
    [Crossref] [Google Scholar]
  102. 102.
    Wang Q, Ratchford AM, Chi MM, Schoeller E, Frolova A, et al. 2009.. Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. . Mol. Endocrinol. 23::160312
    [Crossref] [Google Scholar]
  103. 103.
    Marei WF, Wathes DC, Fouladi-Nashta AA. 2012.. Differential effects of linoleic and alpha-linolenic fatty acids on spatial and temporal mitochondrial distribution and activity in bovine oocytes. . Reprod. Fertil. Dev. 24::67990
    [Crossref] [Google Scholar]
  104. 104.
    Marei WFA, Van den Bosch L, Pintelon I, Mohey-Elsaeed O, Bols PEJ, Leroy JLMR. 2019.. Mitochondria-targeted therapy rescues development and quality of embryos derived from oocytes matured under oxidative stress conditions: a bovine in vitro model. . Hum. Reprod. 34::198498
    [Crossref] [Google Scholar]
  105. 105.
    Turner N, Robker RL. 2015.. Developmental programming of obesity and insulin resistance: Does mitochondrial dysfunction in oocytes play a role?. Mol. Hum. Reprod. 21::2330
    [Crossref] [Google Scholar]
  106. 106.
    Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, et al. 2018.. Origins of lifetime health around the time of conception: causes and consequences. . Lancet 391::184252
    [Crossref] [Google Scholar]
  107. 107.
    Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. 2008.. Metabolism of the viable mammalian embryo: quietness revisited. . Mol. Hum. Reprod. 14::66772
    [Crossref] [Google Scholar]
  108. 108.
    Jordaens L, Van Hoeck V, De Bie J, Berth M, Marei WFA, et al. 2017.. Non-esterified fatty acids in early luteal bovine oviduct fluid mirror plasma concentrations: an ex vivo approach. . Reprod. Biol. 17::28184
    [Crossref] [Google Scholar]
  109. 109.
    Marei WFA, Alvarez MA, Van Hoeck V, Gutierrez-Adan A, Bols PEJ, Leroy JLMR. 2017.. Effect of nutritionally induced hyperlipidaemia on in vitro bovine embryo quality depends on the type of major fatty acid in the diet. . Reprod. Fertil. Dev. 29::185667
    [Crossref] [Google Scholar]
  110. 110.
    Moorkens K, Leroy JLMR, Verheyen S, Marei WFA. 2022.. Effects of an obesogenic diet on the oviduct depend on the duration of feeding. . PLOS ONE 17::e0275379
    [Crossref] [Google Scholar]
  111. 111.
    Moorkens K, Leroy JLMR, Quanico J, Baggerman G, Marei WFA. 2023.. How the oviduct lipidomic profile changes over time after the start of an obesogenic diet in an outbred mouse model. . Biology 12::1016
    [Crossref] [Google Scholar]
  112. 112.
    Yousif MD, Calder MD, Du JT, Ruetz KN, Crocker K, et al. 2020.. Oleic acid counters impaired blastocyst development induced by palmitic acid during mouse preimplantation development: understanding obesity-related declines in fertility. . Reprod. Sci. 27::203851
    [Crossref] [Google Scholar]
  113. 113.
    Zhang Y, Wang Q, Wang H, Duan E. 2017.. Uterine fluid in pregnancy: a biological and clinical outlook. . Trends Mol. Med. 23::60414
    [Crossref] [Google Scholar]
  114. 114.
    Johns EC, Denison FC, Reynolds RM. 2020.. The impact of maternal obesity in pregnancy on placental glucocorticoid and macronutrient transport and metabolism. . Biochim. Biophys. Acta Mol. Basis Dis. 1866::165374
    [Crossref] [Google Scholar]
  115. 115.
    Leghi GE, Netting MJ, Middleton PF, Wlodek ME, Geddes DT, Muhlhausler ABS. 2020.. The impact of maternal obesity on human milk macronutrient composition: a systematic review and meta-analysis. . Nutrients 12::934
    [Crossref] [Google Scholar]
  116. 116.
    Vickers MH. 2014.. Developmental programming and transgenerational transmission of obesity. . Ann. Nutr. Metab. 64:(Suppl. 1):2634
    [Crossref] [Google Scholar]
  117. 117.
    Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VW, et al. 2017.. Influence of maternal obesity on the long-term health of offspring. . Lancet Diabetes Endocrinol. 5::5364
    [Crossref] [Google Scholar]
  118. 118.
    Diniz MS, Grilo LF, Tocantins C, Falcao-Pires I, Pereira SP. 2023.. Made in the womb: maternal programming of offspring cardiovascular function by an obesogenic womb. . Metabolites 13::845
    [Crossref] [Google Scholar]
  119. 119.
    Edlow AG. 2017.. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. . Prenat. Diagn. 37::95110
    [Crossref] [Google Scholar]
  120. 120.
    Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, et al. 2008.. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. . Hypertension 51::38392
    [Crossref] [Google Scholar]
  121. 121.
    Volpato AM, Schultz A, Magalhaes-da-Costa E, Correia ML, Aguila MB, Mandarim-de-Lacerda CA. 2012.. Maternal high-fat diet programs for metabolic disturbances in offspring despite leptin sensitivity. . Neuroendocrinology 96::27284
    [Crossref] [Google Scholar]
  122. 122.
    Ojeda DA, Hutton O, Hopkins R, Cagampang F, Smyth NR, et al. 2023.. Preimplantation or gestation/lactation high-fat diet alters adult offspring metabolism and neurogenesis. . Brain Commun. 5::fcad093
    [Crossref] [Google Scholar]
  123. 123.
    Saben JL, Boudoures AL, Asghar Z, Thompson A, Drury A, et al. 2016.. Maternal metabolic syndrome programs mitochondrial dysfunction via germline changes across three generations. . Cell Rep. 16::18
    [Crossref] [Google Scholar]
  124. 124.
    Andreas E, Reid M, Zhang W, Moley KH. 2019.. The effect of maternal high-fat/high-sugar diet on offspring oocytes and early embryo development. . Mol. Hum. Reprod. 25::71728
    [Crossref] [Google Scholar]
  125. 125.
    Garretson A, Dumont BL, Handel MA. 2023.. Reproductive genomics of the mouse: implications for human fertility and infertility. . Development 150::dev201313
    [Crossref] [Google Scholar]
  126. 126.
    Xhonneux I, Marei WFA, Meulders B, Andries S, Leroy JLMR. 2023.. The impact of a maternal and offspring obesogenic diet on daughter's oocyte mitochondrial ultrastructure and bioenergetic responses. Insights from an outbred mouse model. . Front. Physiol. 14::1288472
    [Crossref] [Google Scholar]
  127. 127.
    St John J. 2014.. The control of mtDNA replication during differentiation and development. . Biochim. Biophys. Acta 1840::134554
    [Crossref] [Google Scholar]
  128. 128.
    St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. 2010.. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. . Hum. Reprod. Update 16::488509
    [Crossref] [Google Scholar]
  129. 129.
    Lee HS, Ma H, Juanes RC, Tachibana M, Sparman M, et al. 2012.. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. . Cell Rep. 1::50615
    [Crossref] [Google Scholar]
  130. 130.
    Wai T, Teoli D, Shoubridge EA. 2008.. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. . Nat. Genet. 40::148488
    [Crossref] [Google Scholar]
  131. 131.
    Colnaghi M, Pomiankowski A, Lane N. 2021.. The need for high-quality oocyte mitochondria at extreme ploidy dictates mammalian germline development. . eLife 10::e69344
    [Crossref] [Google Scholar]
  132. 132.
    Morgan HD, Santos F, Green K, Dean W, Reik W. 2005.. Epigenetic reprogramming in mammals. . Hum. Mol. Genet. 14:(Spec. No. 1):R4758
    [Crossref] [Google Scholar]
  133. 133.
    Faulk C, Dolinoy DC. 2011.. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. . Epigenetics 6::79197
    [Crossref] [Google Scholar]
  134. 134.
    Ge Z-J, Sun Q-Y. 2019.. Maternal epigenetic inheritance. . In Transgenerational Epigenetics, ed. TO Tollefsbol , pp. 75105. London:: Academic
    [Google Scholar]
  135. 135.
    Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, et al. 2014.. DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. . Environ. Health Perspect. 122::15964
    [Crossref] [Google Scholar]
  136. 136.
    Hou YJ, Zhu CC, Duan X, Liu HL, Wang Q, Sun SC. 2016.. Both diet and gene mutation induced obesity affect oocyte quality in mice. . Sci. Rep. 6::18858
    [Crossref] [Google Scholar]
  137. 137.
    Castegna A, Iacobazzi V, Infantino V. 2015.. The mitochondrial side of epigenetics. . Physiol. Genom. 47::299307
    [Crossref] [Google Scholar]
  138. 138.
    Donohoe DR, Bultman SJ. 2012.. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. . J. Cell. Physiol. 227::316977
    [Crossref] [Google Scholar]
  139. 139.
    Meulders B, Marei WFA, Xhonneux I, Bols PEJ, Leroy JLMR. 2023.. Effect of lipotoxicity on mitochondrial function and epigenetic programming during bovine in vitro embryo production. . Sci. Rep. 13::21664
    [Crossref] [Google Scholar]
  140. 140.
    Meulders B, Leroy JLMR, Xhonneux I, Bols PEJ, Marei WFA. 2024.. In vitro reduction of bovine oocyte ATP production with oligomycin affects embryo epigenome. . Reproduction 167::e230271
    [Google Scholar]
  141. 141.
    Han L, Chen Y, Li L, Ren C, Wang H, et al. 2022.. Increased mtDNA mutation frequency in oocytes causes epigenetic alterations and embryonic defects. . Natl. Sci. Rev. 9::nwac136
    [Crossref] [Google Scholar]
  142. 142.
    Adhikari D, Lee IW, Al-Zubaidi U, Liu J, Zhang QH, et al. 2022.. Depletion of oocyte dynamin-related protein 1 shows maternal-effect abnormalities in embryonic development. . Sci. Adv. 8::eabl8070
    [Crossref] [Google Scholar]
  143. 143.
    Comas-Armangue G, Makharadze L, Gomez-Velazquez M, Teperino R. 2022.. The legacy of parental obesity: mechanisms of non-genetic transmission and reversibility. . Biomedicines 10::2461
    [Crossref] [Google Scholar]
  144. 144.
    Skinner MK. 2011.. Role of epigenetics in developmental biology and transgenerational inheritance. . Birth Defects Res. C 93::5155
    [Crossref] [Google Scholar]
  145. 145.
    Sales VM, Ferguson-Smith AC, Patti ME. 2017.. Epigenetic mechanisms of transmission of metabolic disease across generations. . Cell Metab. 25::55971
    [Crossref] [Google Scholar]
  146. 146.
    Xhonneux I, Marei WFA, Meulders B, Andries S, Leroy JLMR. 2024.. The interplay of maternal and offspring obesogenic diets: the impact on offspring metabolism and muscle mitochondria in an outbred mouse model. . Front. Physiol. 15::1354327
    [Crossref] [Google Scholar]
  147. 147.
    Simon C. 2019.. Introduction: preconceptional care: Do we have to care?. Fertil. Steril. 112::61112
    [Crossref] [Google Scholar]
  148. 148.
    Wu LL, Russell DL, Norman RJ, Robker RL. 2012.. Endoplasmic reticulum (ER) stress in cumulus-oocyte complexes impairs pentraxin-3 secretion, mitochondrial membrane potential (Δψm), and embryo development. . Mol. Endocrinol. 26::56273
    [Crossref] [Google Scholar]
  149. 149.
    Catandi GD, Cheng MH, Chicco AJ, Chen T, Carnevale EM. 2023.. L-carnitine enhances developmental potential of bovine oocytes matured under high lipid concentrations in vitro. . Anim. Reprod. Sci. 252::107249
    [Crossref] [Google Scholar]
  150. 150.
    Dalvit G, Llanes SP, Descalzo A, Insani M, Beconi M, Cetica P. 2005.. Effect of alpha-tocopherol and ascorbic acid on bovine oocyte in vitro maturation. . Reprod. Domest. Anim. 40::9397
    [Crossref] [Google Scholar]
  151. 151.
    Marques A, Santos P, Antunes G, Chaveiro A, da Silva FM. 2008.. Effect of α-tocopherol on in vitro maturation of bovine cumulus-oocyte complexes. . Can. J. Anim. Sci. 88::46367
    [Crossref] [Google Scholar]
  152. 152.
    Smits A, Leroy JLMR, Bols PEJ, De Bie J, Marei WFA. 2020.. Rescue potential of supportive embryo culture conditions on bovine embryos derived from metabolically compromised oocytes. . Int. J. Mol. Sci. 21::8206
    [Crossref] [Google Scholar]
  153. 153.
    De Bie J, Smits A, Marei WFA, Leroy JLMR. 2021.. Capacity of Trolox to improve the development and quality of metabolically compromised bovine oocytes and embryos in vitro during different windows of development. . Reprod. Fertil. Dev. 33::291304
    [Crossref] [Google Scholar]
  154. 154.
    Feillet-Coudray C, Fouret G, Ebabe Elle R, Rieusset J, Bonafos B, et al. 2014.. The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol. . Free Radic. Res. 48::123246
    [Crossref] [Google Scholar]
  155. 155.
    Marei WFA, Mohey-Elsaeed O, Pintelon I, Leroy JLMR. 2023.. Risks of using mitoquinone during in vitro maturation and its potential protective effects against lipotoxicity-induced oocyte mitochondrial stress. . J. Assist. Reprod. Genet. 41::37183
    [Crossref] [Google Scholar]
  156. 156.
    Jungheim ES, Moley KH. 2010.. Current knowledge of obesity's effects in the pre- and periconceptional periods and avenues for future research. . Am. J. Obstet. Gynecol. 203::52530
    [Crossref] [Google Scholar]
  157. 157.
    Lassi ZS, Dean SV, Mallick D, Bhutta ZA. 2014.. Preconception care: delivery strategies and packages for care. . Reprod. Health 11:(Suppl. 3):S7
    [Crossref] [Google Scholar]
  158. 158.
    Mutsaerts MA, van Oers AM, Groen H, Burggraaff JM, Kuchenbecker WK, et al. 2016.. Randomized trial of a lifestyle program in obese infertile women. . N. Engl. J. Med. 374::194253
    [Crossref] [Google Scholar]
  159. 159.
    Einarsson S, Bergh C, Friberg B, Pinborg A, Klajnbard A, et al. 2017.. Weight reduction intervention for obese infertile women prior to IVF: a randomized controlled trial. . Hum. Reprod. 32::162130
    [Crossref] [Google Scholar]
  160. 160.
    Sim KA, Partridge SR, Sainsbury A. 2014.. Does weight loss in overweight or obese women improve fertility treatment outcomes? A systematic review. . Obes. Rev. 15::83950
    [Crossref] [Google Scholar]
  161. 161.
    Norman RJ, Mol BJ. 2018.. Successful weight loss interventions before in vitro fertilization: Fat chance?. Fertil. Steril. 110::58186
    [Crossref] [Google Scholar]
  162. 162.
    Barletta RV, Maturana M, Carvalho PD, Del Valle TA, Netto AS, et al. 2017.. Association of changes among body condition score during the transition period with NEFA and BHBA concentrations, milk production, fertility, and health of Holstein cows. . Theriogenology 104::3036
    [Crossref] [Google Scholar]
  163. 163.
    Reynolds KA, Boudoures AL, Chi MM, Wang Q, Moley KH. 2015.. Adverse effects of obesity and/or high-fat diet on oocyte quality and metabolism are not reversible with resumption of regular diet in mice. . Reprod. Fertil. Dev. 27::71624
    [Crossref] [Google Scholar]
  164. 164.
    Meulders B, Marei WFA, Xhonneux I, Loier L, Smits A, Leroy JLMR. 2024.. Preconception diet interventions in obese outbred mice and the impact on female offspring metabolic health and oocyte quality. . Int. J. Mol. Sci. 25::2236
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-102249
Loading
/content/journals/10.1146/annurev-animal-111523-102249
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error