1932

Abstract

The decline in human reproductive and metabolic health over the past 50 years is associated with exposure to complex mixtures of anthropogenic environmental chemicals (ECs). Real-life EC exposure has varied over time and differs across geographical locations. Health-related issues include declining sperm quality, advanced puberty onset, premature ovarian insufficiency, cancer, obesity, and metabolic syndrome. Prospective animal studies with individual and limited EC mixtures support these observations and provide a means to investigate underlying physiological and molecular mechanisms. The greatest impacts of EC exposure are through programming of the developing embryo and/or fetus, with additional placental effects reported in eutherian mammals. Single-chemical effects and mechanistic studies, including transgenerational epigenetic inheritance, have been undertaken in rodents. Important translational models of human exposure are provided by companion animals, due to a shared environment, and sheep exposed to anthropogenic chemical mixtures present in pastures treated with sewage sludge (biosolids). Future animal research should prioritize EC mixtures that extend beyond a single developmental stage and/or generation. This would provide a more representative platform to investigate genetic and underlying mechanisms that explain sexually dimorphic and individual effects that could facilitate mitigation strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-102259
2025-02-18
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-102259.html?itemId=/content/journals/10.1146/annurev-animal-111523-102259&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. 2017.. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. . Environ. Toxicol. Pharmacol. 51::5670
    [Crossref] [Google Scholar]
  2. 2.
    Nadal A, Quesada I, Tuduri E, Nogueiras R, Alonso-Magdalena P. 2017.. Endocrine-disrupting chemicals and the regulation of energy balance. . Nat. Rev. Endocrinol. 13:(9):53646
    [Crossref] [Google Scholar]
  3. 3.
    Hung H, Katsoyiannis AA, Guardans R. 2016.. Ten years of global monitoring under the Stockholm Convention on Persistent Organic Pollutants (POPs): trends, sources and transport modelling. . Environ. Pollut. 217::13
    [Crossref] [Google Scholar]
  4. [Google Scholar]
  5. 5.
    McFarland VA, Clarke JU. 1989.. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis. . Environ. Health Perspect. 81::22539
    [Crossref] [Google Scholar]
  6. 6.
    Wilkinson JL, Boxall ABA, Kolpin DW, Leung KMY, Lai RWS, et al. 2022.. Pharmaceutical pollution of the world's rivers. . PNAS 119:(8):e2113947119
    [Crossref] [Google Scholar]
  7. 7.
    Aris AZ, Shamsuddin AS, Praveena SM. 2014.. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. . Environ. Int. 69::10419
    [Crossref] [Google Scholar]
  8. 8.
    Arcand-Hoy L, Nimrod A, Benson W. 1998.. Endocrine-modulating substances in the environment: estrogenic effects of pharmaceutical products. . Int. J. Toxicol. 17:(2):13958
    [Crossref] [Google Scholar]
  9. 9.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, et al. 2014.. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. . Lancet 384:(9945):76681
    [Crossref] [Google Scholar]
  10. 10.
    Elcombe CS, Evans NP, Bellingham M. 2022.. Critical review and analysis of literature on low dose exposure to chemical mixtures in mammalian in vivo systems. . Crit. Rev. Toxicol. 52:(3):22138
    [Crossref] [Google Scholar]
  11. 11.
    Arroyo-Johnson C, Mincey KD. 2016.. Obesity epidemiology worldwide. Gastroenterol. . Clin. N. Am. 45:(4):57179
    [Google Scholar]
  12. 12.
    Saklayen MG. 2018.. The global epidemic of the metabolic syndrome. . Curr. Hypertens. Rep. 20:(2):12
    [Crossref] [Google Scholar]
  13. 13.
    Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. 2015.. Prevalence of the metabolic syndrome in the United States, 2003–2012. . JAMA 313:(19):197374
    [Crossref] [Google Scholar]
  14. 14.
    NCD Risk Factor Collab. 2016.. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. . Lancet 387:(10027):151330
    [Crossref] [Google Scholar]
  15. 15.
    NCD Risk Factor Collab. 2016.. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. . Lancet 387:(10026):137796
    [Crossref] [Google Scholar]
  16. 16.
    Cent. Dis. Control. 2020.. National diabetes statistics report. Rep., Cent. Dis. Control, Atlanta:. https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf
    [Google Scholar]
  17. 17.
    Grundy SM, Brewer HB Jr., Cleeman JI, Smith SC Jr., Lenfant C. 2004.. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. . Arterioscler. Thromb. Vasc. Biol. 24:(2):e1318
    [Google Scholar]
  18. 18.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, et al. 2009.. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. . Circulation 120:(16):164045
    [Crossref] [Google Scholar]
  19. 19.
    Woodruff TJ. 2011.. Bridging epidemiology and model organisms to increase understanding of endocrine disrupting chemicals and human health effects. . J. Steroid Biochem. Mol. Biol. 127:(1–2):10817
    [Crossref] [Google Scholar]
  20. 20.
    Blomberg Jensen M, Priskorn L, Jensen TK, Juul A, Skakkebaek NE. 2015.. Temporal trends in fertility rates: a nationwide registry based study from 1901 to 2014. . PLOS ONE 10:(12):e0143722
    [Crossref] [Google Scholar]
  21. 21.
    Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, et al. 2017.. Temporal trends in sperm count: a systematic review and meta-regression analysis. . Hum. Reprod. Update 23:(6):64659
    [Crossref] [Google Scholar]
  22. 22.
    UN Dep. Econ. Soc. Aff. 2022.. World population prospects 2022: summary of results. Rep. , UN Dep. Econ. Soc. Aff., New York:. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
    [Google Scholar]
  23. 23.
    Rutstein M, Shah I. 2004.. Infecundity, infertility, and childlessness in developing countries. DHS Compar. Rep. , ORC Macro, Calverton, MD:
    [Google Scholar]
  24. 24.
    Chandra A, Copen CE, Stephen EH. 2014.. Infertility service use in the United States: data from the National Survey of Family Growth, 1982–2010. . Natl. Health Stat. Rep. 2014:(73):121
    [Google Scholar]
  25. 25.
    Kumar N, Singh AK. 2015.. Trends of male factor infertility, an important cause of infertility: a review of literature. . J. Hum. Reprod. Sci. 8:(4):19196
    [Crossref] [Google Scholar]
  26. 26.
    Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J. 2017.. Environmental influences on ovarian dysgenesis—developmental windows sensitive to chemical exposures. . Nat. Rev. Endocrinol. 13:(7):40014
    [Crossref] [Google Scholar]
  27. 27.
    Buck Louis GM, Cooney MA, Peterson CM. 2011.. The ovarian dysgenesis syndrome. . J. Dev. Orig. Health Dis. 2:(1):2535
    [Crossref] [Google Scholar]
  28. 28.
    Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. 1992.. Evidence for decreasing quality of semen during past 50 years. . BMJ 305:(6854):60913
    [Crossref] [Google Scholar]
  29. 29.
    Swan SH, Elkin EP, Fenster L. 2000.. The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996. . Environ. Health Perspect. 108:(10):96166
    [Crossref] [Google Scholar]
  30. 30.
    Virtanen HE, Jorgensen N, Toppari J. 2017.. Semen quality in the 21st century. . Nat. Rev. Urol. 14:(2):12030
    [Crossref] [Google Scholar]
  31. 31.
    Rodprasert W, Virtanen HE, Sadov S, Perheentupa A, Skakkebaek NE, et al. 2019.. An update on semen quality among young Finnish men and comparison with Danish data. . Andrology 7:(1):1523
    [Crossref] [Google Scholar]
  32. 32.
    World Health Organ. 2024.. Obesity and overweight. Fact Sheet, World Health Organ., Geneva:. http://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight
    [Google Scholar]
  33. 33.
    OECD (Organ. Econ. Co-op. Dev.). 2017.. SF2.3: Age of mothers at childbirth and age-specific fertility. Fam. Database, OECD, Paris:, updated March 31, 2017. https://www.oecd.org/content/dam/oecd/en/data/datasets/family-database/sf_2_3_age_mothers_childbirth.pdf
    [Google Scholar]
  34. 34.
    Goulis DG, Tarlatzis BC. 2008.. Metabolic syndrome and reproduction: I. Testicular function. . Gynecol. Endocrinol. 24:(1):3339
    [Crossref] [Google Scholar]
  35. 35.
    Al Awlaqi A, Alkhayat K, Hammadeh ME. 2016.. Metabolic syndrome and infertility in women. . Int. J. Womens Health Reprod. Sci. 4:(3):8995
    [Crossref] [Google Scholar]
  36. 36.
    Madani T, Hosseini R, Ramezanali F, Khalili G, Jahangiri N, et al. 2016.. Metabolic syndrome in infertile women with polycystic ovarian syndrome. . Arch. Endocrinol. Metab. 60:(3):199204
    [Crossref] [Google Scholar]
  37. 37.
    Vryonidou A, Paschou SA, Muscogiuri G, Orio F, Goulis DG. 2015.. Mechanisms in endocrinology: metabolic syndrome through the female life cycle. . Eur. J. Endocrinol. 173:(5):R15363
    [Crossref] [Google Scholar]
  38. 38.
    Baillie-Hamilton PF. 2002.. Chemical toxins: a hypothesis to explain the global obesity epidemic. . J. Altern. Complement. Med. 8:(2):18592
    [Crossref] [Google Scholar]
  39. 39.
    Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, et al. 2017.. Metabolism disrupting chemicals and metabolic disorders. . Reprod. Toxicol. 68::333
    [Crossref] [Google Scholar]
  40. 40.
    Heindel JJ, vom Saal FS, Blumberg B, Bovolin P, Calamandrei G, et al. 2015.. Parma consensus statement on metabolic disruptors. . Environ. Health 14::54
    [Crossref] [Google Scholar]
  41. 41.
    Grun F, Blumberg B. 2006.. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. . Endocrinology 147:(6 Suppl.):S5055
    [Crossref] [Google Scholar]
  42. 42.
    Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, et al. 2015.. EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. . Endocr. Rev. 36:(6):E1E150
    [Crossref] [Google Scholar]
  43. 43.
    Lee D-H, Lee I-K, Porta M, Steffes M, Jacobs D. 2007.. Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. . Diabetologia 50::184151
    [Crossref] [Google Scholar]
  44. 44.
    Gasull M, Pumarega J, Téllez-Plaza M, Castell C, Tresserras R, et al. 2012.. Blood concentrations of persistent organic pollutants and prediabetes and diabetes in the general population of Catalonia. . Environ. Sci. Technol. 46:(14):7799810
    [Crossref] [Google Scholar]
  45. 45.
    Roos V, Ronn M, Salihovic S, Lind L, van Bavel B, et al. 2013.. Circulating levels of persistent organic pollutants in relation to visceral and subcutaneous adipose tissue by abdominal MRI. . Obesity 21:(2):41318
    [Crossref] [Google Scholar]
  46. 46.
    Wang T, Li M, Chen B, Xu M, Xu Y, et al. 2012.. Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. . J. Clin. Endocrinol. Metab. 97:(2):E223E27
    [Crossref] [Google Scholar]
  47. 47.
    Sangwan S, Bhattacharyya R, Banerjee D. 2024.. Plastic compounds and liver diseases: whether bisphenol A is the only culprit. . Liver Int. 44:(5):1093105
    [Crossref] [Google Scholar]
  48. 48.
    Stahlhut RW, Van Wijngaarden E, Dye TD, Cook S, Swan SH. 2007.. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult US males. . Environ. Health Perspect. 115:(6):87682
    [Crossref] [Google Scholar]
  49. 49.
    Kim JH, Park HY, Bae S, Lim Y-H, Hong Y-C. 2013.. Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: a panel study. . PLOS ONE 8:(8):e71392
    [Crossref] [Google Scholar]
  50. 50.
    Perez-Diaz C, Uriz-Martínez M, Ortega-Rico C, Leno-Duran E, Barrios-Rodríguez R, et al. 2024.. Phthalate exposure and risk of metabolic syndrome components: a systematic review. . Environ. Pollut. 340:(1):122714
    [Crossref] [Google Scholar]
  51. 51.
    Lind PM, Lind L. 2011.. Circulating levels of bisphenol A and phthalates are related to carotid atherosclerosis in the elderly. . Atherosclerosis 218:(1):20713
    [Crossref] [Google Scholar]
  52. 52.
    Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, et al. 2008.. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. . JAMA 300:(11):130310
    [Crossref] [Google Scholar]
  53. 53.
    Lind PM, van Bavel B, Salihovic S, Lind L. 2012.. Circulating levels of persistent organic pollutants (POPs) and carotid atherosclerosis in the elderly. . Environ. Health Perspect. 120:(1):3843
    [Crossref] [Google Scholar]
  54. 54.
    Schillemans T, Donat-Vargas C, Åkesson A. 2024.. Per- and polyfluoroalkyl substances and cardiometabolic diseases: a review. . Basic Clin. Pharmacol. Toxicol. 134:(1):14152
    [Crossref] [Google Scholar]
  55. 55.
    Mohammadkhani MA, Shahrzad S, Haghighi M, Ghanbari R, Mohamadkhani A. 2023.. Insights into organochlorine pesticides exposure in the development of cardiovascular diseases: a systematic review. . Arch. Iran. Med. 26:(10):59299
    [Crossref] [Google Scholar]
  56. 56.
    Bonanni LJ, Wittkopp S, Long C, Aleman JO, Newman JD. 2024.. A review of air pollution as a driver of cardiovascular disease risk across the diabetes spectrum. . Front. Endocrinol. 15::1321323
    [Crossref] [Google Scholar]
  57. 57.
    Kutlar Joss M, Boogaard H, Samoli E, Patton AP, Atkinson R, et al. 2023.. Long-term exposure to traffic-related air pollution and diabetes: a systematic review and meta-analysis. . Int. J. Public Health 68::1605718
    [Crossref] [Google Scholar]
  58. 58.
    Hassan S, Thacharodi A, Priya A, Meenatchi R, Hegde TA, et al. 2024.. Endocrine disruptors: unravelling the link between chemical exposure and women's reproductive health. . Environ. Res. 241::117385
    [Crossref] [Google Scholar]
  59. 59.
    Vabre P, Gatimel N, Moreau J, Gayrard V, Picard-Hagen N, et al. 2017.. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. . Environ. Health 16::37
    [Crossref] [Google Scholar]
  60. 60.
    Vandenberg LN. 2021.. Endocrine disrupting chemicals and the mammary gland. . Adv. Pharmacol. 92::23777
    [Crossref] [Google Scholar]
  61. 61.
    Liu G, Cai W, Liu H, Jiang H, Bi Y, Wang H. 2021.. The association of bisphenol A and phthalates with risk of breast cancer: a meta-analysis. . Int. J. Environ. Res. Public Health 18:(5):2375
    [Crossref] [Google Scholar]
  62. 62.
    Cong X, Liu Q, Li W, Wang L, Feng Y, et al. 2023.. Systematic review and meta-analysis of breast cancer risks in relation to 2,3,7,8-tetrachlorodibenzo-p-dioxin and per- and polyfluoroalkyl substances. . Environ. Sci. Pollut. Res. Int. 30:(37):8654055
    [Crossref] [Google Scholar]
  63. 63.
    Rochester JR. 2013.. Bisphenol A and human health: a review of the literature. . Reprod. Toxicol. 42::13255
    [Crossref] [Google Scholar]
  64. 64.
    Coiplet E, Courbiere B, Agostini A, Boubli L, Bretelle F, Netter A. 2022.. Endometriosis and environmental factors: a critical review. . J. Gynecol. Obstet. Hum. Reprod. 51:(7):102418
    [Crossref] [Google Scholar]
  65. 65.
    Campbell S, Raza M, Pollack AZ. 2016.. Perfluoroalkyl substances and endometriosis in US women in NHANES 2003–2006. . Reprod. Toxicol. 65::23035
    [Crossref] [Google Scholar]
  66. 66.
    Wang B, Zhang R, Jin F, Lou H, Mao Y, et al. 2017.. Perfluoroalkyl substances and endometriosis-related infertility in Chinese women. . Environ. Int. 102::20712
    [Crossref] [Google Scholar]
  67. 67.
    Ao J, Zhang R, Huo X, Zhu W, Zhang J. 2024.. Environmental exposure to legacy and emerging per- and polyfluoroalkyl substances and endometriosis in women of childbearing age. . Sci. Total Environ. 907::167838
    [Crossref] [Google Scholar]
  68. 68.
    Colon I, Caro D, Bourdony CJ, Rosario O. 2000.. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. . Environ. Health Perspect. 108:(9):895900
    [Google Scholar]
  69. 69.
    Hashemipour M, Kelishadi R, Amin MM, Ebrahim K. 2018.. Is there any association between phthalate exposure and precocious puberty in girls?. Environ. Sci. Pollut. Res. 25:(14):1358996
    [Crossref] [Google Scholar]
  70. 70.
    Srilanchakon K, Thadsri T, Jantarat C, Thengyai S, Nosoognoen W, Supornsilchai V. 2017.. Higher phthalate concentrations are associated with precocious puberty in normal weight Thai girls. . J. Pediatr. Endocrinol. Metab. 30:(12):129398
    [Crossref] [Google Scholar]
  71. 71.
    Golestanzadeh M, Riahi R, Kelishadi R. 2020.. Association of phthalate exposure with precocious and delayed pubertal timing in girls and boys: a systematic review and meta-analysis. . Environ. Sci. Process Impacts 22:(4):87394
    [Crossref] [Google Scholar]
  72. 72.
    Frederiksen H, Sørensen K, Mouritsen A, Aksglaede L, Hagen C, et al. 2012.. High urinary phthalate concentration associated with delayed pubarche in girls. . Int. J. Androl. 35::21626
    [Crossref] [Google Scholar]
  73. 73.
    Lomenick JP, Calafat AM, Melguizo Castro MS, Mier R, Stenger P, et al. 2010.. Phthalate exposure and precocious puberty in females. . J. Pediatr. 156:(2):22125
    [Crossref] [Google Scholar]
  74. 74.
    Adoamnei E, Mendiola J, Vela-Soria F, Fernández MF, Olea N, et al. 2018.. Urinary bisphenol A concentrations are associated with reproductive parameters in young men. . Environ. Res. 161::12228
    [Crossref] [Google Scholar]
  75. 75.
    Hu W, Dong T, Wang L, Guan Q, Song L, et al. 2017.. Obesity aggravates toxic effect of BPA on spermatogenesis. . Environ. Int. 105::5665
    [Crossref] [Google Scholar]
  76. 76.
    Radwan M, Wielgomas B, Dziewirska E, Radwan P, Kałużny P, et al. 2018.. Urinary bisphenol A levels and male fertility. . Am. J. Men's Health 12:(6):214451
    [Crossref] [Google Scholar]
  77. 77.
    Radke EG, Braun JM, Meeker JD, Cooper GS. 2018.. Phthalate exposure and male reproductive outcomes: a systematic review of the human epidemiological evidence. . Environ. Int. 121::76493
    [Crossref] [Google Scholar]
  78. 78.
    Chen Q, Yang H, Zhou N, Sun L, Bao H, et al. 2017.. Phthalate exposure, even below US EPA reference doses, was associated with semen quality and reproductive hormones: prospective MARHCS study in general population. . Environ. Int. 104::5868
    [Crossref] [Google Scholar]
  79. 79.
    Arbuckle TE, Agarwal A, MacPherson SH, Fraser WD, Sathyanarayana S, et al. 2018.. Prenatal exposure to phthalates and phenols and infant endocrine-sensitive outcomes: the MIREC study. . Environ. Int. 120::57283
    [Crossref] [Google Scholar]
  80. 80.
    Albert O, Huang JY, Aleksa K, Hales BF, Goodyer CG, et al. 2018.. Exposure to polybrominated diphenyl ethers and phthalates in healthy men living in the greater Montreal area: a study of hormonal balance and semen quality. . Environ. Int. 116::16575
    [Crossref] [Google Scholar]
  81. 81.
    Paul R, Moltó J, Ortuño N, Romero A, Bezos C, et al. 2017.. Relationship between serum dioxin-like polychlorinated biphenyls and post-testicular maturation in human sperm. . Reprod. Toxicol. 73::31221
    [Crossref] [Google Scholar]
  82. 82.
    Sumner RN, Tomlinson M, Craigon J, England GCW, Lea RG. 2019.. Independent and combined effects of diethylhexyl phthalate and polychlorinated biphenyl 153 on sperm quality in the human and dog. . Sci. Rep. 9:(1):3409
    [Crossref] [Google Scholar]
  83. 83.
    Yu YJ, Lin BG, Liang WB, Li LZ, Hong YD, et al. 2018.. Associations between PBDEs exposure from house dust and human semen quality at an e-waste areas in South China—a pilot study. . Chemosphere 198::26673
    [Crossref] [Google Scholar]
  84. 84.
    Conforti A, Mascia M, Cioffi G, De Angelis C, Coppola G, et al. 2018.. Air pollution and female fertility: a systematic review of literature. . Reprod. Biol. Endocrinol. 16:(1):117
    [Crossref] [Google Scholar]
  85. 85.
    Ramsay JM, Fendereski K, Horns JJ, VanDerslice JA, Hanson HA, et al. 2023.. Environmental exposure to industrial air pollution is associated with decreased male fertility. . Fertility Steril. 120:(3 Pt. 2):63747
    [Crossref] [Google Scholar]
  86. 86.
    Zhang J, Cai Z, Ma C, Xiong J, Li H. 2020.. Impacts of outdoor air pollution on human semen quality: a meta-analysis and systematic review. . Biomed. Res. Int. 2020::7528901
    [Crossref] [Google Scholar]
  87. 87.
    Deng Z, Chen F, Zhang M, Lan L, Qiao Z, et al. 2016.. Association between air pollution and sperm quality: a systematic review and meta-analysis. . Environ. Pollut. 208::66369
    [Crossref] [Google Scholar]
  88. 88.
    Perin PM, Maluf M, Czeresnia CE, Januário DANF, Saldiva PHN. 2010.. Impact of short-term preconceptional exposure to particulate air pollution on treatment outcome in couples undergoing in vitro fertilization and embryo transfer (IVF/ET). . J. Assist. Reprod. Genet. 27::37182
    [Crossref] [Google Scholar]
  89. 89.
    Green RS, Malig B, Windham GC, Fenster L, Ostro B, Swan S. 2009.. Residential exposure to traffic and spontaneous abortion. . Environ. Health Perspect. 117:(12):193944
    [Crossref] [Google Scholar]
  90. 90.
    Zeng X, Jin S, Chen X, Qiu Y. 2020.. Association between ambient air pollution and pregnancy outcomes in patients undergoing in vitro fertilization in Chengdu, China: a retrospective study. . Environ. Res. 184::109304
    [Crossref] [Google Scholar]
  91. 91.
    Faiz AS, Rhoads GG, Demissie K, Kruse L, Lin Y, Rich DQ. 2012.. Ambient air pollution and the risk of stillbirth. . Am. J. Epidemiol. 176:(4):30816
    [Crossref] [Google Scholar]
  92. 92.
    Slama R, Bottagisi S, Solansky I, Lepeule J, Giorgis-Allemand L, Sram R. 2013.. Short-term impact of atmospheric pollution on fecundability. . Epidemiology 24:(6):87179
    [Crossref] [Google Scholar]
  93. 93.
    Wieczorek K, Szczęsna D, Radwan M, Radwan P, Polańska K, et al. 2024.. Exposure to air pollution and ovarian reserve parameters. . Sci. Rep. 14::461
    [Crossref] [Google Scholar]
  94. 94.
    Hanson MA, Gluckman PD. 2014.. Early developmental conditioning of later health and disease: Physiology or pathophysiology?. Physiol. Rev. 94:(4):102776
    [Crossref] [Google Scholar]
  95. 95.
    Colborn T, Saal FSV, Soto AM. 1993.. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. . Environ. Health Perspect. 101:(5):37884
    [Crossref] [Google Scholar]
  96. 96.
    Ideraabdullah FY, Belenchia AM, Rosenfeld CS, Kullman SW, Knuth M, et al. 2019.. Maternal vitamin D deficiency and developmental origins of health and disease (DOHaD). . J. Endocrinol. 241:(2):R6580
    [Crossref] [Google Scholar]
  97. 97.
    Gentner MB, O'Connor Leppert ML. 2019.. Environmental influences on health and development: nutrition, substance exposure, and adverse childhood experiences. . Dev. Med. Child Neurol. 61:(9):100814
    [Crossref] [Google Scholar]
  98. 98.
    Hoffman DJ, Reynolds RM, Hardy DB. 2017.. Developmental origins of health and disease: current knowledge and potential mechanisms. . Nutr. Rev. 75:(12):95170
    [Crossref] [Google Scholar]
  99. 99.
    Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. 1993.. Fetal nutrition and cardiovascular disease in adult life. . Lancet 341:(8850):93841
    [Crossref] [Google Scholar]
  100. 100.
    Barker DJ, Osmond C. 1986.. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. . Lancet 1:(8489):107781
    [Crossref] [Google Scholar]
  101. 101.
    Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. 1989.. Weight in infancy and death from ischaemic heart disease. . Lancet 2:(8663):57780
    [Crossref] [Google Scholar]
  102. 102.
    Barker DJP. 1990.. The fetal and infant origins of adult disease. . Br. Med. J. 301:(6761):1111
    [Crossref] [Google Scholar]
  103. 103.
    Almond D, Currie J. 2011.. Killing me softly: the fetal origins hypothesis. . J. Econ. Perspect. 25:(3):15372
    [Crossref] [Google Scholar]
  104. 104.
    Sinclair KD. 2018.. When maternal periconceptional diet affects neurological development, it's time to think. . PNAS 115:(31):785254
    [Crossref] [Google Scholar]
  105. 105.
    Brehm E, Flaws JA. 2019.. Transgenerational effects of endocrine-disrupting chemicals on male and female reproduction. . Endocrinology 160:(6):142135
    [Crossref] [Google Scholar]
  106. 106.
    Li L-X, Chen L, Meng X-Z, Chen B-H, Chen S-Q, et al. 2013.. Exposure levels of environmental endocrine disruptors in mother-newborn pairs in China and their placental transfer characteristics. . PLOS ONE 8:(5):e62526
    [Crossref] [Google Scholar]
  107. 107.
    Chen M-L, Chang C-C, Shen Y-J, Hung J-H, Guo B-R, et al. 2008.. Quantification of prenatal exposure and maternal-fetal transfer of nonylphenol. . Chemosphere 73:(1):S239S45
    [Crossref] [Google Scholar]
  108. 108.
    Hoover RN, Hyer M, Pfeiffer RM, Adam E, Bond B, et al. 2011.. Adverse health outcomes in women exposed in utero to diethylstilbestrol. . N. Engl. J. Med. 365:(14):130414
    [Crossref] [Google Scholar]
  109. 109.
    Dieckmann KP, Skakkebaek NE. 1999.. Carcinoma in situ of the testis: review of biological and clinical features. . Int. J. Cancer 83:(6):81522
    [Crossref] [Google Scholar]
  110. 110.
    Skakkebaek N, Rajpert-De Meyts E, Main K. 2001.. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects: opinion.. Hum. Reprod. 16::97278
    [Crossref] [Google Scholar]
  111. 111.
    Mocarelli P, Gerthoux PM, Needham LL, Patterson DG Jr., Limonta G, et al. 2011.. Perinatal exposure to low doses of dioxin can permanently impair human semen quality. . Environ. Health Perspect. 119:(5):71318
    [Crossref] [Google Scholar]
  112. 112.
    Guo YL, Hsu PC, Hsu CC, Lambert GH. 2000.. Semen quality after prenatal exposure to polychlorinated biphenyls and dibenzofurans. . Lancet 356:(9237):124041
    [Crossref] [Google Scholar]
  113. 113.
    Weidner IS, Møller H, Jensen TK, Skakkebaek NE. 1998.. Cryptorchidism and hypospadias in sons of gardeners and farmers. . Environ. Health Perspect. 106:(12):79396
    [Crossref] [Google Scholar]
  114. 114.
    García-Rodríguez J, García-Martín M, Nogueras-Ocaña M, de Dios Luna-del-Castillo J, Espigares García M, et al. 1996.. Exposure to pesticides and cryptorchidism: geographical evidence of a possible association. . Environ. Health Perspect. 104:(10):109095
    [Google Scholar]
  115. 115.
    Kim SC, Kwon SK, Hong YP. 2011.. Trends in the incidence of cryptorchidism and hypospadias of registry-based data in Korea: a comparison between industrialized areas of petrochemical estates and a non-industrialized area. . Asian J. Androl. 13:(5):71518
    [Crossref] [Google Scholar]
  116. 116.
    Henriksen LS, Frederiksen H, Jørgensen N, Juul A, Skakkebæk NE, et al. 2023.. Maternal phthalate exposure during pregnancy and testis function of young adult sons. . Sci. Total Environ. 871::161914
    [Crossref] [Google Scholar]
  117. 117.
    Janesick A, Blumberg B. 2011.. Minireview: PPARγ as the target of obesogens. . J. Steroid Biochem. Mol. Biol. 127:(1–2):48
    [Crossref] [Google Scholar]
  118. 118.
    Legler J. 2013.. An integrated approach to assess the role of chemical exposure in obesity. . Obesity 21:(6):108485
    [Crossref] [Google Scholar]
  119. 119.
    Philips EM, Jaddoe VWV, Trasande L. 2017.. Effects of early exposure to phthalates and bisphenols on cardiometabolic outcomes in pregnancy and childhood. . Reprod. Toxicol. 68::10518
    [Crossref] [Google Scholar]
  120. 120.
    Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, et al. 2014.. The Navigation Guide—evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. . Environ. Health Perspect. 122:(10):102839
    [Crossref] [Google Scholar]
  121. 121.
    Hayashi K, Matsuda Y, Kawamichi Y, Shiozaki A, Saito S. 2011.. Smoking during pregnancy increases risks of various obstetric complications: a case-cohort study of the Japan Perinatal Registry Network database. . J. Epidemiol. 21:(1):6166
    [Crossref] [Google Scholar]
  122. 122.
    Jensen TK, Jørgensen N, Punab M, Haugen TB, Suominen J, et al. 2004.. Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European countries. . Am. J. Epidemiol. 159:(1):4958
    [Crossref] [Google Scholar]
  123. 123.
    Jensen MS, Mabeck L, Toft G, Thulstrup AM, Bonde JP. 2005.. Lower sperm counts following prenatal tobacco exposure. . Hum. Reprod. 20:(9):255966
    [Crossref] [Google Scholar]
  124. 124.
    Fowler PA, Childs AJ, Courant F, MacKenzie A, Rhind SM, et al. 2014.. In utero exposure to cigarette smoke dysregulates human fetal ovarian developmental signalling. . Hum. Reprod. 29:(7):147189
    [Crossref] [Google Scholar]
  125. 125.
    Weinberg CR, Wilcox AJ, Baird DD. 1989.. Reduced fecundability in women with prenatal exposure to cigarette smoking. . Am. J. Epidemiol. 129:(5):107278
    [Crossref] [Google Scholar]
  126. 126.
    Horta BL, Victora CG, Menezes AM, Halpern R, Barros FC. 1997.. Low birthweight, preterm births and intrauterine growth retardation in relation to maternal smoking. . Paediatr. Perinat. Epidemiol. 11:(2):14051
    [Crossref] [Google Scholar]
  127. 127.
    Ino T. 2010.. Maternal smoking during pregnancy and offspring obesity: meta-analysis. . Pediatr. Int. 52:(1):9499
    [Crossref] [Google Scholar]
  128. 128.
    Oken E, Levitan E, Gillman M. 2008.. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. . Int. J. Obes. 32:(2):20110
    [Crossref] [Google Scholar]
  129. 129.
    Mamun AA, O'Callaghan MJ, Williams GM, Najman JM. 2012.. Maternal smoking during pregnancy predicts adult offspring cardiovascular risk factors—evidence from a community-based large birth cohort study. . PLOS ONE 7:(7):e41106
    [Crossref] [Google Scholar]
  130. 130.
    Huang R-C, Burke V, Newnham J, Stanley F, Kendall G, et al. 2007.. Perinatal and childhood origins of cardiovascular disease. . Int. J. Obes. 31:(2):23644
    [Crossref] [Google Scholar]
  131. 131.
    Blake BE, Fenton SE. 2020.. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: a review including the placenta as a target tissue and possible driver of peri- and postnatal effects. . Toxicology 443::152565
    [Crossref] [Google Scholar]
  132. 132.
    Sumner RN, Harris IT, Van der Mescht M, Byers A, England GCW, Lea RG. 2020.. The dog as a sentinel species for environmental effects on human fertility. . Reproduction 159:(6):R265R76
    [Crossref] [Google Scholar]
  133. 133.
    Pocar P, Grieco V, Aidos L, Borromeo V. 2023.. Endocrine-disrupting chemicals and their effects in pet dogs and cats: an overview. . Animals 13:(3):378
    [Crossref] [Google Scholar]
  134. 134.
    Mensching DA, Slater M, Scott JW, Ferguson DC, Beasley VR. 2012.. The feline thyroid gland: A model for endocrine disruption by polybrominated diphenyl ethers (PBDEs)?. J. Toxicol. Environ. Health A. 75:(4):20112
    [Crossref] [Google Scholar]
  135. 135.
    Ali N, Malik RN, Mehdi T, Eqani SA, Javeed A, et al. 2013.. Organohalogenated contaminants (OHCs) in the serum and hair of pet cats and dogs: biosentinels of indoor pollution. . Sci. Total Environ. 449::2936
    [Crossref] [Google Scholar]
  136. 136.
    Bost PC, Strynar MJ, Reiner JL, Zweigenbaum JA, Secoura PL, et al. 2016.. U.S. domestic cats as sentinels for perfluoroalkyl substances: Possible linkages with housing, obesity, and disease. . Environ. Res. 151::14553
    [Crossref] [Google Scholar]
  137. 137.
    Lea RG, Byers AS, Sumner RN, Rhind SM, Zhang Z, et al. 2016.. Environmental chemicals impact dog semen quality in vitro and may be associated with a temporal decline in sperm motility and increased cryptorchidism. . Sci. Rep. 6::31281
    [Crossref] [Google Scholar]
  138. 138.
    Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, et al. 2023.. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. . Hum. Reprod. Update 29:(2):15776
    [Crossref] [Google Scholar]
  139. 139.
    Sumner RN, Byers A, Zhang Z, Agerholm JS, Lindh L, et al. 2021.. Environmental chemicals in dog testes reflect their geographical source and may be associated with altered pathology. . Sci. Rep. 11:(1):7361
    [Crossref] [Google Scholar]
  140. 140.
    Sharma B, Sarkar A, Singh P, Singh RP. 2017.. Agricultural utilization of biosolids: a review on potential effects on soil and plant grown. . Waste Manag. 64::11732
    [Crossref] [Google Scholar]
  141. 141.
    Venkatesan AK, Halden RU. 2014.. Contribution of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) to the toxic equivalency of dioxin-like compounds in archived biosolids from the U.S. EPA's 2001 national sewage sludge survey. . Environ. Sci. Technol. 48:(18):1084349
    [Crossref] [Google Scholar]
  142. 142.
    Evans NP, Bellingham M, Sharpe RM, Cotinot C, Rhind SM, et al. 2014.. Reproduction Symposium: Does grazing on biosolids-treated pasture pose a pathophysiological risk associated with increased exposure to endocrine disrupting compounds?. J. Anim. Sci. 92:(8):318598
    [Crossref] [Google Scholar]
  143. 143.
    Zhang Z, Le Velly M, Rhind SM, Kyle CE, Hough RL, et al. 2015.. A study on temporal trends and estimates of fate of bisphenol A in agricultural soils after sewage sludge amendment. . Sci. Total Environ. 515–16::111
    [Google Scholar]
  144. 144.
    Rhind SM, Kyle CE, Ruffie H, Calmettes E, Osprey M, et al. 2013.. Short- and long-term temporal changes in soil concentrations of selected endocrine disrupting compounds (EDCs) following single or multiple applications of sewage sludge to pastures. . Environ. Pollut. 181::26270
    [Crossref] [Google Scholar]
  145. 145.
    Rhind SM, Smith A, Kyle CE, Telfer G, Martin G, et al. 2002.. Phthalate and alkyl phenol concentrations in soil following applications of inorganic fertiliser or sewage sludge to pasture and potential rates of ingestion by grazing ruminants. . J. Environ. Monit. 4:(1):14248
    [Crossref] [Google Scholar]
  146. 146.
    Rhind SM, Kyle CE, Kerr C, Osprey M, Zhang ZL. 2011.. Effect of duration of exposure to sewage sludge-treated pastures on liver tissue accumulation of persistent endocrine disrupting compounds (EDCs) in sheep. . Sci. Total Environ. 409:(19):385056
    [Crossref] [Google Scholar]
  147. 147.
    Rhind SM, Kyle CE, Mackie C, McDonald L. 2009.. Accumulation of endocrine disrupting compounds in sheep fetal and maternal liver tissue following exposure to pastures treated with sewage sludge. . J. Environ. Monit. 11:(8):146976
    [Crossref] [Google Scholar]
  148. 148.
    Rhind SM, Kyle CE, Mackie C, Telfer G. 2007.. Effects of exposure of ewes to sewage sludge-treated pasture on phthalate and alkyl phenol concentrations in their milk. . Sci. Total Environ. 383:(1–3):7080
    [Crossref] [Google Scholar]
  149. 149.
    Rhind SM, Kyle CE, Telfer G, Duff EI, Smith A. 2005.. Alkyl phenols and diethylhexyl phthalate in tissues of sheep grazing pastures fertilized with sewage sludge or inorganic fertilizer. . Environ. Health Perspect. 113:(4):44753
    [Crossref] [Google Scholar]
  150. 150.
    Bellingham M, Amezaga MR, Mandon-Pepin B, Speers CJ, Kyle CE, et al. 2013.. Exposure to chemical cocktails before or after conception—the effect of timing on ovarian development. . Mol. Cell. Endocrinol. 376:(1–2):15672
    [Crossref] [Google Scholar]
  151. 151.
    Bellingham M, Fiandanese N, Byers A, Cotinot C, Evans NP, et al. 2012.. Effects of exposure to environmental chemicals during pregnancy on the development of the male and female reproductive axes. . Reprod. Domest. Anim. 47:(Suppl. 4):1522
    [Crossref] [Google Scholar]
  152. 152.
    Bellingham M, Fowler PA, Amezaga MR, Rhind SM, Cotinot C, et al. 2009.. Exposure to a complex cocktail of environmental endocrine-disrupting compounds disturbs the kisspeptin/GPR54 system in ovine hypothalamus and pituitary gland. . Environ. Health Perspect. 117:(10):155662
    [Crossref] [Google Scholar]
  153. 153.
    Bellingham M, Fowler PA, Amezaga MR, Whitelaw CM, Rhind SM, et al. 2010.. Foetal hypothalamic and pituitary expression of gonadotrophin-releasing hormone and galanin systems is disturbed by exposure to sewage sludge chemicals via maternal ingestion. . J. Neuroendocrinol. 22:(6):52733
    [Crossref] [Google Scholar]
  154. 154.
    Bellingham M, Fowler PA, MacDonald ES, Mandon-Pepin B, Cotinot C, et al. 2016.. Timing of maternal exposure and foetal sex determine the effects of low-level chemical mixture exposure on the foetal neuroendocrine system in sheep. . J. Neuroendocrinol. 28:(12). https://doi.org/10.1111/jne.12444
    [Crossref] [Google Scholar]
  155. 155.
    Bellingham M, McKinnell C, Fowler PA, Amezaga MR, Zhang Z, et al. 2012.. Foetal and post-natal exposure of sheep to sewage sludge chemicals disrupts sperm production in adulthood in a subset of animals. . Int. J. Androl. 35:(3):31729
    [Crossref] [Google Scholar]
  156. 156.
    Fowler PA, Bellingham M, Sinclair KD, Evans NP, Pocar P, et al. 2012.. Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. . Mol. Cell. Endocrinol. 355:(2):23139
    [Crossref] [Google Scholar]
  157. 157.
    Fowler PA, Dora NJ, McFerran H, Amezaga MR, Miller DW, et al. 2008.. In utero exposure to low doses of environmental pollutants disrupts fetal ovarian development in sheep. . Mol. Hum. Reprod. 14:(5):26980
    [Crossref] [Google Scholar]
  158. 158.
    Paul C, Rhind SM, Kyle CE, Scott H, McKinnell C, Sharpe RM. 2005.. Cellular and hormonal disruption of fetal testis development in sheep reared on pasture treated with sewage sludge. . Environ. Health Perspect. 113:(11):158087
    [Crossref] [Google Scholar]
  159. 159.
    Erhard HW, Rhind SM. 2004.. Prenatal and postnatal exposure to environmental pollutants in sewage sludge alters emotional reactivity and exploratory behaviour in sheep. . Sci. Total Environ. 332:(1–3):1018
    [Crossref] [Google Scholar]
  160. 160.
    Hombach-Klonisch S, Danescu A, Begum F, Amezaga MR, Rhind SM, et al. 2013.. Peri-conceptional changes in maternal exposure to sewage sludge chemicals disturbs fetal thyroid gland development in sheep. . Mol. Cell. Endocrinol. 367:(1–2):98108
    [Crossref] [Google Scholar]
  161. 161.
    Filis P, Walker N, Robertson L, Eaton-Turner E, Ramona L, et al. 2019.. Long-term exposure to chemicals in sewage sludge fertilizer alters liver lipid content in females and cancer marker expression in males. . Environ. Int. 124::98108
    [Crossref] [Google Scholar]
  162. 162.
    Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, et al. 2023.. Developmental programming: impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. . Sci. Total Environ. 900::165674
    [Crossref] [Google Scholar]
  163. 163.
    Thangaraj SV, Kachman M, Halloran KM, Sinclair KD, Lea R, et al. 2023.. Developmental programming: Preconceptional and gestational exposure of sheep to a real-life environmental chemical mixture alters maternal metabolome in a fetal sex-specific manner. . Sci. Total Environ. 864::161054
    [Crossref] [Google Scholar]
  164. 164.
    Ghasemzadeh-Hasankolaei M, Elcombe CS, Powls S, Lea RG, Sinclair KD, et al. 2024.. Preconceptional and in utero exposure of sheep to a real-life environmental chemical mixture disrupts key markers of energy metabolism in male offspring. . J. Neuroendocrinol. 36:(1):e13358
    [Crossref] [Google Scholar]
  165. 165.
    Sharpe RM. 2020.. Androgens and the masculinization programming window: human-rodent differences. . Biochem. Soc. Trans. 48:(4):172535
    [Crossref] [Google Scholar]
  166. 166.
    Lea RG, Mandon-Pépin B, Loup B, Poumerol E, Jouneau L, et al. 2022.. Ovine fetal testis stage-specific sensitivity to environmental chemical mixtures. . Reproduction 163:(2):11931
    [Crossref] [Google Scholar]
  167. 167.
    Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Evans NP, Bellingham M. 2021.. Morphological and transcriptomic alterations in neonatal lamb testes following developmental exposure to low-level environmental chemical mixture. . Environ. Toxicol. Pharmacol. 86::103670
    [Crossref] [Google Scholar]
  168. 168.
    Elcombe CS, Monteiro A, Elcombe MR, Ghasemzadeh-Hasankolaei M, Sinclair KD, et al. 2022.. Developmental exposure to real-life environmental chemical mixture programs a testicular dysgenesis syndrome-like phenotype in prepubertal lambs. . Environ. Toxicol. Pharmacol. 94::103913
    [Crossref] [Google Scholar]
  169. 169.
    Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Padmanabhan V, Lea R, et al. 2023.. Developmental exposure to a real-life environmental chemical mixture alters testicular transcription factor expression in neonatal and pre-pubertal rams, with morphological changes persisting into adulthood. . Environ. Toxicol. Pharmacol. 100::104152
    [Crossref] [Google Scholar]
  170. 170.
    Lea RG, Amezaga MR, Loup B, Mandon-Pépin B, Stefansdottir A, et al. 2016.. The fetal ovary exhibits temporal sensitivity to a ‘real-life’ mixture of environmental chemicals. . Sci. Rep. 6::22279
    [Crossref] [Google Scholar]
  171. 171.
    Evans NP, Bellingham M, Elcombe CS, Ghasemzadeh-Hasankolaei M, Lea RG, et al. 2023.. Sexually dimorphic impact of preconceptional and gestational exposure to a real-life environmental chemical mixture (biosolids) on offspring growth dynamics and puberty in sheep. . Environ. Toxicol. Pharmacol. 102::104257
    [Crossref] [Google Scholar]
  172. 172.
    Palma-Gudiel H, Cirera F, Crispi F, Eixarch E, Fananas L. 2018.. The impact of prenatal insults on the human placental epigenome: a systematic review. . Neurotoxicol. Teratol. 66::8093
    [Crossref] [Google Scholar]
  173. 173.
    Suhaimi NF, Jalaludin J, Abu Bakar S. 2021.. Deoxyribonucleic acid (DNA) methylation in children exposed to air pollution: a possible mechanism underlying respiratory health effects development. . Rev. Environ. Health 36:(1):7793
    [Crossref] [Google Scholar]
  174. 174.
    van den Driesche S, Kilcoyne KR, Wagner I, Rebourcet D, Boyle A, et al. 2017.. Experimentally induced testicular dysgenesis syndrome originates in the masculinization programming window. . JCI Insight 2:(6):e91204
    [Crossref] [Google Scholar]
  175. 175.
    Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. 2022.. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: an update of a systematic literature review. . Mutat. Res. Rev. Mutat. Res. 789::108408
    [Crossref] [Google Scholar]
  176. 176.
    Conley JM, Lambright CS, Evans N, Cardon M, Medlock-Kakaley E, et al. 2021.. A mixture of 15 phthalates and pesticides below individual chemical no observed adverse effect levels (NOAELs) produces reproductive tract malformations in the male rat. . Environ. Int. 156::106615
    [Crossref] [Google Scholar]
  177. 177.
    Zhang L, Hatzakis E, Nichols RG, Hao R, Correll J, et al. 2015.. Metabolomics reveals that aryl hydrocarbon receptor activation by environmental chemicals induces systemic metabolic dysfunction in mice. . Environ. Sci. Technol. 49:(13):806777
    [Crossref] [Google Scholar]
  178. 178.
    Marraudino M, Bonaldo B, Farinetti A, Panzica G, Ponti G, Gotti S. 2019.. Metabolism disrupting chemicals and alteration of neuroendocrine circuits controlling food intake and energy metabolism. . Front. Endocrinol. 9::766
    [Crossref] [Google Scholar]
  179. 179.
    Anderson OS, Kim JH, Peterson KE, Sanchez BN, Sant KE, et al. 2017.. Novel epigenetic biomarkers mediating bisphenol A exposure and metabolic phenotypes in female mice. . Endocrinology 158:(1):3140
    [Crossref] [Google Scholar]
  180. 180.
    Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, et al. 2022.. Obesity II: establishing causal links between chemical exposures and obesity. . Biochem. Pharmacol. 199::115015
    [Crossref] [Google Scholar]
  181. 181.
    Cicatiello AG, Di Girolamo D, Dentice M. 2018.. Metabolic effects of the intracellular regulation of thyroid hormone: old players, new concepts. . Front. Endocrinol. 9::474
    [Crossref] [Google Scholar]
  182. 182.
    Peluso T, Nittoli V, Reale C, Porreca I, Russo F, et al. 2023.. Chronic exposure to chlorpyrifos damages thyroid activity and imbalances hepatic thyroid hormones signaling and glucose metabolism: dependency of T3-FOXO1 axis by hyperglycemia. . Int. J. Mol. Sci. 24:(11):9582
    [Crossref] [Google Scholar]
  183. 183.
    Hua X, Cao XY, Wang XL, Sun P, Chen L. 2017.. Exposure of pregnant mice to triclosan causes insulin resistance via thyroxine reduction. . Toxicol. Sci. 160:(1):15060
    [Crossref] [Google Scholar]
  184. 184.
    Saradha B, Vaithinathan S, Mathur P. 2008.. Single exposure to low dose of lindane causes transient decrease in testicular steroidogenesis in adult male Wistar rats. . Toxicology 244:(2–3):19097
    [Crossref] [Google Scholar]
  185. 185.
    Hall A, Mattison D, Singh N, Chatzistamou I, Zhang J, et al. 2023.. Effect of TCDD exposure in adult female and male mice on the expression of miRNA in the ovaries and testes and associated reproductive functions. . Front Toxicol. 5::1268293
    [Crossref] [Google Scholar]
  186. 186.
    Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, et al. 2020.. Potential mechanisms of bisphenol A (BPA) contributing to human disease. . Int. J. Mol. Sci. 21:(16):5761
    [Crossref] [Google Scholar]
  187. 187.
    Duarte-Hospital C, Tête A, Brial F, Benoit L, Koual M, et al. 2021.. Mitochondrial dysfunction as a hallmark of environmental injury. . Cells 11:(1):110
    [Crossref] [Google Scholar]
  188. 188.
    Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, et al. 2017.. Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity. . 2017:8416763
  189. 189.
    Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, et al. 2024.. Redox mechanisms of environmental toxicants on male reproductive function. . Front. Cell Dev. Biol. 12::1333845
    [Crossref] [Google Scholar]
  190. 190.
    Dong R, Chen J, Zheng J, Zhang M, Zhang H, et al. 2018.. The role of oxidative stress in cardiometabolic risk related to phthalate exposure in elderly diabetic patients from Shanghai. . Environ. Int. 121::34048
    [Crossref] [Google Scholar]
  191. 191.
    Lemini C, Silveyra P, Segovia-Mendoza M. 2024.. Cardiovascular disrupting effects of bisphenols, phthalates, and parabens related to endothelial dysfunction: review of toxicological and pharmacological mechanisms. . Environ. Toxicol. Pharmacol. 107::104407
    [Crossref] [Google Scholar]
  192. 192.
    Rasoulpour RJ, Boekelheide K. 2005.. NF-κB is activated in the rat testis following exposure to mono-(2-ethylhexyl) phthalate. . Biol. Reprod. 72:(2):47986
    [Crossref] [Google Scholar]
  193. 193.
    Zhao X-F, Wang Q, Ji Y-L, Wang H, Liu P, et al. 2011.. Fenvalerate induces germ cell apoptosis in mouse testes through the Fas/FasL signaling pathway. . Arch. Toxicol. 85::11018
    [Crossref] [Google Scholar]
  194. 194.
    Song H, Park J, Bui PT, Choi K, Gye MC, et al. 2017.. Bisphenol A induces COX-2 through the mitogen-activated protein kinase pathway and is associated with levels of inflammation-related markers in elderly populations. . Environ. Res. 158::49098
    [Crossref] [Google Scholar]
  195. 195.
    Ruiz-Hernandez A, Kuo CC, Rentero-Garrido P, Tang WY, Redon J, et al. 2015.. Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. . Clin. Epigenetics 7:(1):55
    [Crossref] [Google Scholar]
  196. 196.
    Van Cauwenbergh O, Di Serafino A, Tytgat J, Soubry A. 2020.. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. . Clin. Epigenetics 12::65
    [Crossref] [Google Scholar]
  197. 197.
    Sinclair KD, Rutherford KM, Wallace JM, Brameld JM, Stoger R, et al. 2016.. Epigenetics and developmental programming of welfare and production traits in farm animals. . Reprod. Fertil. Dev. 28::144378
    [Crossref] [Google Scholar]
  198. 198.
    Cedar H, Bergman Y. 2009.. Linking DNA methylation and histone modification: patterns and paradigms. . Nat. Rev. Genet. 10:(5):295304
    [Crossref] [Google Scholar]
  199. 199.
    Horsthemke B. 2018.. A critical view on transgenerational epigenetic inheritance in humans. . Nat. Commun. 9::2973
    [Crossref] [Google Scholar]
  200. 200.
    Choi M, Genereux DP, Goodson J, Al-Azzawi H, Allain SQ, et al. 2017.. Epigenetic memory via concordant DNA methylation is inversely correlated to developmental potential of mammalian cells. . PLOS Genet. 13:(11):e1007060
    [Crossref] [Google Scholar]
  201. 201.
    Steegers-Theunissen RP, Twigt J, Pestinger V, Sinclair KD. 2013.. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. . Hum. Reprod. Update 19:(6):64055
    [Crossref] [Google Scholar]
  202. 202.
    Clare CE, Brassington AH, Kwong WY, Sinclair KD. 2019.. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. . Annu. Rev. Anim. Biosci. 7::26387
    [Crossref] [Google Scholar]
  203. 203.
    Petroff RL, Dolinoy DC, Wang K, Montrose L, Padmanabhan V, et al. 2024.. Translational toxicoepigenetic meta-analyses identify homologous gene DNA methylation reprogramming following developmental phthalate and lead exposure in mouse and human offspring. . Environ. Int. 186::108575
    [Crossref] [Google Scholar]
  204. 204.
    Wang T, Pehrsson EC, Purushotham D, Li D, Zhuo X, et al. 2018.. The NIEHS TaRGET II Consortium and environmental epigenomics. . Nat. Biotechnol. 36:(3):22527
    [Crossref] [Google Scholar]
  205. 205.
    Pepin AS, Lafleur C, Lambrot R, Dumeaux V, Kimmins S. 2022.. Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction. . Mol. Metab. 59::101463
    [Crossref] [Google Scholar]
  206. 206.
    Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, et al. 2015.. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. . Science 350:(6261):aab2006
    [Crossref] [Google Scholar]
  207. 207.
    Lismer A, Siklenka K, Lafleur C, Dumeaux V, Kimmins S. 2020.. Sperm histone H3 lysine 4 trimethylation is altered in a genetic mouse model of transgenerational epigenetic inheritance. . Nucleic Acids. Res. 48:(20):1138093
    [Crossref] [Google Scholar]
  208. 208.
    Chen Q, Yan M, Cao Z, Li X, Zhang Y, et al. 2016.. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. . Science 351:(6271):397400
    [Crossref] [Google Scholar]
  209. 209.
    Alavian-Ghavanini A, Rüegg J. 2018.. Understanding epigenetic effects of endocrine disrupting chemicals: from mechanisms to novel test methods. . Basic Clin. Pharmacol. Toxicol. 122:(1):3845
    [Crossref] [Google Scholar]
  210. 210.
    John RM, Rougeulle C. 2018.. Developmental epigenetics: phenotype and the flexible epigenome. . Front. Cell Dev. Biol. 6::130
    [Crossref] [Google Scholar]
  211. 211.
    Yi P, Yu X, Wang Z, O'Malley BW. 2021.. Steroid receptor-coregulator transcriptional complexes: new insights from CryoEM. . Essays Biochem. 65:(6):85766
    [Crossref] [Google Scholar]
  212. 212.
    Porter BA, Ortiz MA, Bratslavsky G, Kotula L. 2019.. Structure and function of the nuclear receptor superfamily and current targeted therapies of prostate cancer. . Cancers 11:(12):1852
    [Crossref] [Google Scholar]
  213. 213.
    Rawłuszko-Wieczorek AA, Romanowska K, Nowicki M. 2022.. Chromatin modifiers—coordinators of estrogen action. . Biomed. Pharmacother. 153::113548
    [Crossref] [Google Scholar]
  214. 214.
    Walker CL. 2016.. Minireview: epigenomic plasticity and vulnerability to EDC exposures. . Mol. Endocrinol. 30:(8):84855
    [Crossref] [Google Scholar]
  215. 215.
    Rosenfeld CS, Cooke PS. 2019.. Endocrine disruption through membrane estrogen receptors and novel pathways leading to rapid toxicological and epigenetic effects. . J. Steroid Biochem. Mol. Biol. 187::10617
    [Crossref] [Google Scholar]
  216. 216.
    Menezo YJ, Silvestris E, Dale B, Elder K. 2016.. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. . Reprod. Biomed. Online 33:(6):66883
    [Crossref] [Google Scholar]
  217. 217.
    Rubio K, Hernandez-Cruz EY, Rogel-Ayala DG, Sarvari P, Isidoro C, et al. 2023.. Nutriepigenomics in environmental-associated oxidative stress. . Antioxidants 12:(3):771
    [Crossref] [Google Scholar]
  218. 218.
    Zheng C, Yu G, Su Q, Wu L, Tang J, et al. 2023.. The deficiency of N6-methyladenosine demethylase ALKBH5 enhances the neurodegenerative damage induced by cobalt. . Sci. Total Environ. 881::163429
    [Crossref] [Google Scholar]
  219. 219.
    Herst PM, Dalvai M, Lessard M, Charest PL, Navarro P, et al. 2019.. Folic acid supplementation reduces multigenerational sperm miRNA perturbation induced by in utero environmental contaminant exposure. . Environ. Epigenetics 5:(4):dvz024
    [Crossref] [Google Scholar]
  220. 220.
    Santini L, Halbritter F, Titz-Teixeira F, Suzuki T, Asami M, et al. 2021.. Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3. . Nat. Commun. 12::3804
    [Crossref] [Google Scholar]
  221. 221.
    Kobayashi EH, Shibata S, Oike A, Kobayashi N, Hamada H, et al. 2022.. Genomic imprinting in human placentation. . Reprod. Med. Biol. 21:(1):e12490
    [Crossref] [Google Scholar]
  222. 222.
    Eggermann T. 2024.. Human reproduction and disturbed genomic imprinting. . Genes 15:(2):163
    [Crossref] [Google Scholar]
  223. 223.
    Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, et al. 2001.. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. . Nat. Genet. 27:(2):15354
    [Crossref] [Google Scholar]
  224. 224.
    Chen Z, Robbins KM, Wells KD, Rivera RM. 2013.. Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith–Wiedemann. . Epigenetics 8:(6):591601
    [Crossref] [Google Scholar]
  225. 225.
    Li Y, Xiao P, Boadu F, Goldkamp AK, Nirgude S, et al. 2023.. The counterpart congenital overgrowth syndromes Beckwith-Wiedemann Syndrome in human and large offspring syndrome in bovine involve alterations in DNA methylation, transcription, and chromatin configuration. . medRxiv. https://doi.org/10.1101/2023.12.14.23299981
  226. 226.
    Shirane K, Miura F, Ito T, Lorincz MC. 2020.. NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. . Nat. Genet. 52:(10):108898
    [Crossref] [Google Scholar]
  227. 227.
    Hanna CW, Kelsey G. 2021.. Features and mechanisms of canonical and noncanonical genomic imprinting. . Genes Dev. 35:(11–12):82134
    [Crossref] [Google Scholar]
  228. 228.
    Fang S, Chang KW, Lefebvre L. 2024.. Roles of endogenous retroviral elements in the establishment and maintenance of imprinted gene expression. . Front. Cell Dev. Biol. 12::1369751
    [Crossref] [Google Scholar]
  229. 229.
    Liao J, Szabo PE. 2024.. Role of transcription in imprint establishment in the male and female germ lines. . Epigenomics 16:(2):12736
    [Crossref] [Google Scholar]
  230. 230.
    Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, et al. 2011.. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. . Science 332:(6031):84852
    [Crossref] [Google Scholar]
  231. 231.
    Anvar Z, Chakchouk I, Demond H, Sharif M, Kelsey G, et al. 2021.. DNA methylation dynamics in the female germline and maternal-effect mutations that disrupt genomic imprinting. . Genes 12:(8):1214
    [Crossref] [Google Scholar]
  232. 232.
    Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. 2019.. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. . Nat. Rev. Genet. 20:(4):23548
    [Crossref] [Google Scholar]
  233. 233.
    Shi H, Strogantsev R, Takahashi N, Kazachenka A, Lorincz MC, et al. 2019.. ZFP57 regulation of transposable elements and gene expression within and beyond imprinted domains. . Epigenetics Chromatin 12::49
    [Crossref] [Google Scholar]
  234. 234.
    Yan R, Cheng X, Gu C, Xu Y, Long X, et al. 2023.. Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development. . Nat. Genet. 55:(1):13043
    [Crossref] [Google Scholar]
  235. 235.
    Robles-Matos N, Artis T, Simmons RA, Bartolomei MS. 2021.. Environmental exposure to endocrine disrupting chemicals influences genomic imprinting, growth, and metabolism. . Genes 12:(8):1153
    [Crossref] [Google Scholar]
  236. 236.
    Pietryk EW, Clement K, Elnagheeb M, Kuster R, Kilpatrick K, et al. 2018.. Intergenerational response to the endocrine disruptor vinclozolin is influenced by maternal genotype and crossing scheme. . Reprod. Toxicol. 78::919
    [Crossref] [Google Scholar]
  237. 237.
    Tindula G, Murphy SK, Grenier C, Huang Z, Huen K, et al. 2018.. DNA methylation of imprinted genes in Mexican-American newborn children with prenatal phthalate exposure. . Epigenomics 10:(7):101126
    [Crossref] [Google Scholar]
  238. 238.
    Zhao Y, Chen J, Wang X, Song Q, Xu HH, Zhang YH. 2016.. Third trimester phthalate exposure is associated with DNA methylation of growth-related genes in human placenta. . Sci. Rep. 6::33449
    [Crossref] [Google Scholar]
  239. 239.
    Bowman A, Peterson KE, Dolinoy DC, Meeker JD, Sanchez BN, et al. 2019.. Phthalate exposures, DNA methylation and adiposity in Mexican children through adolescence. . Front. Public Health 7::162
    [Crossref] [Google Scholar]
  240. 240.
    Choi YJ, Lee YA, Hong YC, Cho J, Lee KS, et al. 2020.. Effect of prenatal bisphenol A exposure on early childhood body mass index through epigenetic influence on the insulin-like growth factor 2 receptor (IGF2R) gene. . Environ. Int. 143::105929
    [Crossref] [Google Scholar]
  241. 241.
    Drake AJ, O'Shaughnessy PJ, Bhattacharya S, Monteiro A, Kerrigan D, et al. 2015.. In utero exposure to cigarette chemicals induces sex-specific disruption of one-carbon metabolism and DNA methylation in the human fetal liver. . BMC Med. 13::18
    [Crossref] [Google Scholar]
  242. 242.
    Ow MC, Hall SE. 2023.. Inheritance of stress responses via small non-coding RNAs in invertebrates and mammals. . Epigenomes 8:(1):1
    [Crossref] [Google Scholar]
  243. 243.
    Chen Q, Yan W, Duan E. 2016.. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. . Nat. Rev. Genet. 17:(12):73343
    [Crossref] [Google Scholar]
  244. 244.
    Fitz-James MH, Cavalli G. 2022.. Molecular mechanisms of transgenerational epigenetic inheritance. . Nat. Rev. Genet. 23:(6):32541
    [Crossref] [Google Scholar]
  245. 245.
    Hammond SS, Matin A. 2009.. Tools for the genetic analysis of germ cells. . Genesis 47:(9):61727
    [Crossref] [Google Scholar]
  246. 246.
    Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, et al. 2007.. Maternal microRNAs are essential for mouse zygotic development. . Genes Dev. 21:(6):64448
    [Crossref] [Google Scholar]
  247. 247.
    Conine CC, Sun F, Song L, Rivera-Pérez JA, Rando OJ. 2018.. Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice. . Dev. Cell 46:(4):47080.e3
    [Crossref] [Google Scholar]
  248. 248.
    Beck D, Ben Maamar M, Skinner MK. 2021.. Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance. . Epigenetics Chromatin 14:(1):6
    [Crossref] [Google Scholar]
  249. 249.
    Nilsson EE, Ben Maamar M, Skinner MK. 2022.. Role of epigenetic transgenerational inheritance in generational toxicology. . Environ. Epigenetics 8:(1):dvac001
    [Crossref] [Google Scholar]
  250. 250.
    Stouder C, Paoloni-Giacobino A. 2011.. Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. . Reproduction 141:(2):20716
    [Crossref] [Google Scholar]
  251. 251.
    Brevik A, Lindeman B, Rusnakova V, Olsen AK, Brunborg G, Duale N. 2012.. Paternal benzo[a]pyrene exposure affects gene expression in the early developing mouse embryo. . Toxicol. Sci. 129:(1):15765
    [Crossref] [Google Scholar]
  252. 252.
    Li G, Chang H, Xia W, Mao Z, Li Y, Xu S. 2014.. F0 maternal BPA exposure induced glucose intolerance of F2 generation through DNA methylation change in Gck. . Toxicol. Lett. 228:(3):19299
    [Crossref] [Google Scholar]
  253. 253.
    Chen J, Wu S, Wen S, Shen L, Peng J, et al. 2015.. The mechanism of environmental endocrine disruptors (DEHP) induces epigenetic transgenerational inheritance of cryptorchidism. . PLOS ONE 10:(6):e0126403
    [Crossref] [Google Scholar]
  254. 254.
    Thompson RP, Nilsson E, Skinner MK. 2020.. Environmental epigenetics and epigenetic inheritance in domestic farm animals. . Anim. Reprod. Sci. 220::106316
    [Crossref] [Google Scholar]
  255. 255.
    Stenz L, Rahban R, Prados J, Nef S, Paoloni-Giacobino A. 2019.. Genetic resistance to DEHP-induced transgenerational endocrine disruption. . PLOS ONE 14:(6):e0208371
    [Crossref] [Google Scholar]
  256. 256.
    Rajapakse N, Silva E, Kortenkamp A. 2002.. Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. . Environ. Health Perspect. 110:(9):91721
    [Crossref] [Google Scholar]
  257. 257.
    Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr., et al. 2012.. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. . Endocr. Rev. 33:(3):378455
    [Crossref] [Google Scholar]
  258. 258.
    Chauvigne F, Menuet A, Lesne L, Chagnon MC, Chevrier C, et al. 2009.. Time- and dose-related effects of di-(2-ethylhexyl) phthalate and its main metabolites on the function of the rat fetal testis in vitro. . Environ. Health Perspect. 117:(4):51521
    [Crossref] [Google Scholar]
  259. 259.
    Welsh M, Saunders PT, Fisken M, Scott HM, Hutchison GR, et al. 2008.. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. . J. Clin. Investig. 118:(4):147990
    [Crossref] [Google Scholar]
  260. 260.
    Auharek SA, de Franca LR, McKinnell C, Jobling MS, Scott HM, Sharpe RM. 2010.. Prenatal plus postnatal exposure to di(n-butyl) phthalate and/or flutamide markedly reduces final Sertoli cell number in the rat. . Endocrinology 151:(6):286875
    [Crossref] [Google Scholar]
  261. 261.
    vom Saal FS, Hughes C. 2005.. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. . Environ. Health Perspect. 113:(8):92633
    [Crossref] [Google Scholar]
  262. 262.
    Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM. 2007.. Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. . Reprod. Toxicol. 23:(3):38390
    [Crossref] [Google Scholar]
  263. 263.
    Kobayashi K, Miyagawa M, Wang RS, Sekiguchi S, Suda M, Honma T. 2002.. Effects of in utero and lactational exposure to bisphenol A on somatic growth and anogenital distance in F1 rat offspring. . Ind. Health. 40:(4):37581
    [Crossref] [Google Scholar]
  264. 264.
    Lv Z, Cheng J, Huang S, Zhang Y, Wu S, et al. 2016.. DEHP induces obesity and hypothyroidism through both central and peripheral pathways in C3H/He mice. . Obesity 24:(2):36878
    [Crossref] [Google Scholar]
  265. 265.
    Sun D, Zhou L, Wang S, Liu T, Zhu J, et al. 2022.. Effect of di-(2-ethylhexyl) phthalate on the hypothalamus-pituitary-thyroid axis in adolescent rat. . Endocr. J. 69:(2):21724
    [Crossref] [Google Scholar]
  266. 266.
    Birru RL, Liang HW, Farooq F, Bedi M, Feghali M, et al. 2021.. A pathway level analysis of PFAS exposure and risk of gestational diabetes mellitus. . Environ. Health 20::63
    [Crossref] [Google Scholar]
  267. 267.
    Klenke U, Constantin S, Wray S. 2016.. BPA directly decreases GnRH neuronal activity via noncanonical pathway. . Endocrinology 157:(5):198090
    [Crossref] [Google Scholar]
  268. 268.
    Lama A, Del Piano F, Annunziata C, Comella F, Opallo N, et al. 2023.. Bisphenol A exacerbates anxiety-like behavior and neuroinflammation in prefrontal cortex of adult obese mice. . Life Sci. 313::121301
    [Crossref] [Google Scholar]
  269. 269.
    Li LA. 2007.. Polychlorinated biphenyl exposure and CYP19 gene regulation in testicular and adrenocortical cell lines. . Toxicol. in Vitro 21:(6):108794
    [Crossref] [Google Scholar]
  270. 270.
    Peshdary V, Styles G, Gagné R, Yauk CL, Sorisky A, Atlas E. 2020.. Depot-specific analysis of human adipose cells and their responses to bisphenol S. . Endocrinology 161:(6):bqaa044
    [Crossref] [Google Scholar]
  271. 271.
    Sharma U, Rando OJ. 2017.. Metabolic inputs into the epigenome. . Cell Metab. 25:(3):54458
    [Crossref] [Google Scholar]
  272. 272.
    Wiese M, Bannister AJ. 2020.. Two genomes, one cell: mitochondrial-nuclear coordination via epigenetic pathways. . Mol. Metab. 38::100942
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-102259
Loading
/content/journals/10.1146/annurev-animal-111523-102259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error