1932

Abstract

Rodents have been the primary model for mammalian nutritional physiology for decades. Despite an extensive body of literature, controversies remain around the effects of specific nutrients and total energy intake on several aspects of nutritional biology, even in this well-studied model. One approach that is helping to bring clarity to the field is the geometric framework for nutrition (GFN). The GFN is a multidimensional paradigm that can be used to conceptualize nutrition and nutritional effects, design experiments, and interpret results. To date, more than 30 publications have applied the GFN to data from rodent models of nutrition. Here we review the major conclusions from these studies. We pay particular attention to the effects of macronutrients on satiety, glucose metabolism, lifespan and the biology of aging, reproductive function, immune function, and the microbiome. We finish by highlighting several knowledge gaps that became evident upon reviewing this literature.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-102327
2025-02-18
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-102327.html?itemId=/content/journals/10.1146/annurev-animal-111523-102327&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Simpson SJ, Raubenheimer D. 2012.. The Nature of Nutrition: A Unifying Framework from Animal Adaptations to Human Obesity. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  2. 2.
    Lihoreau M, Charleston MA, Senior AM, Clissold FJ, Raubenheimer D, et al. 2017.. Collective foraging in spatially complex nutritional environments. . Philos. Trans. R. Soc. B 372:(1727):20160238
    [Crossref] [Google Scholar]
  3. 3.
    Raubenheimer D, Senior AM, Mirth C, Cui Z, Hou R, et al. 2022.. An integrative approach to dietary balance across the life course. . iScience 25::104315
    [Crossref] [Google Scholar]
  4. 4.
    Cowieson AJ. 2014.. The geometric framework: an in vivo approach. . J. Appl. Poult. Res. 23::295300
    [Crossref] [Google Scholar]
  5. 5.
    Machovsky-Capuska GE, Raubenheimer D. 2020.. The nutritional ecology of marine apex predators. . Annu. Rev. Mar. Sci. 12::36187
    [Crossref] [Google Scholar]
  6. 6.
    Raubenheimer D, Simpson SJ. 2023.. Protein appetite as an integrator in the obesity system: the protein leverage hypothesis. . Philos. Trans. R. Soc. B 378::20220212
    [Crossref] [Google Scholar]
  7. 7.
    Raubenheimer D, Simpson SJ. 2016.. Nutritional ecology and human health. . Annu. Rev. Nutr. 36::60326
    [Crossref] [Google Scholar]
  8. 8.
    Simpson SJ, Clissold FJ, Lihoreau M, Ponton F, Wilder SM, Raubenheimer D. 2015.. Recent advances in the integrative nutrition of arthropods. . Annu. Rev. Entomol. 60::293311
    [Crossref] [Google Scholar]
  9. 9.
    Cui Z, Dong Y, Sholl J, Lu J, Raubenheimer D. 2025.. The rhesus macaque as an animal model for human nutrition: an ecological-evolutionary perspective. . Annu. Rev. Anim. Biosci. 13::44164
    [Google Scholar]
  10. 10.
    Raubenheimer D, Simpson SJ. 1993.. The geometry of compensatory feeding in the locust. . Anim. Behav. 45::95364
    [Crossref] [Google Scholar]
  11. 11.
    Simpson SJ, Raubenheimer D. 1993.. A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. . Philos. Trans. R. Soc. B 342::381402
    [Crossref] [Google Scholar]
  12. 12.
    Simpson SJ, Raubenheimer D. 1997.. Geometric analysis of macronutrient selection in the rat. . Appetite 28::20113
    [Crossref] [Google Scholar]
  13. 13.
    Trevelline BK, Kohl KD. 2022.. The gut microbiome influences host diet selection behavior. . PNAS 119::e2117537119
    [Crossref] [Google Scholar]
  14. 14.
    Solon-Biet SM, McMahon AC, Ballard JWO, Ruohonen K, Wu L, et al. 2014.. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. . Cell Metab. 19::41830
    [Crossref] [Google Scholar]
  15. 15.
    Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JW, et al. 2008.. Lifespan and reproduction in Drosophila: new insights from nutritional geometry. . PNAS 105::2498503
    [Crossref] [Google Scholar]
  16. 16.
    Pak HH, Haws SA, Green CL, Koller M, Lavarias MT, et al. 2021.. Fasting drives the metabolic, molecular and geroprotective effects of a calorie-restricted diet in mice. . Nat. Metab. 3::132741
    [Crossref] [Google Scholar]
  17. 17.
    Pezeshki A, Chelikani PK. 2021.. Low protein diets and energy balance: mechanisms of action on energy intake and expenditure. . Front. Nutr. 8::655833
    [Crossref] [Google Scholar]
  18. 18.
    Zajitschek F, Zajitschek SRK, Vasconcelos ACO, Bonduriansky R. 2023.. Dietary restriction fails to extend life in stressful environments. . Funct. Ecol. 37::245970
    [Crossref] [Google Scholar]
  19. 19.
    Senior AM, Solon-Biet SM, Cogger VC, Le Couteur DG, Nakagawa S, et al. 2019.. Dietary macronutrient content, age-specific mortality and lifespan. . Proc. R. Soc. B 286::20190393
    [Crossref] [Google Scholar]
  20. 20.
    Rodriguez Paris V, Solon-Biet SM, Senior AM, Edwards MC, Desai R, et al. 2020.. Defining the impact of dietary macronutrient balance on PCOS traits. . Nat. Commun. 11::5262
    [Crossref] [Google Scholar]
  21. 21.
    Raubenheimer D. 2011.. Toward a quantitative nutritional ecology: the right-angled mixture triangle. . Ecol. Monogr. 81::40727
    [Crossref] [Google Scholar]
  22. 22.
    Theall CL, Wurtman JJ, Wurtman RJ. 1984.. Self-selection and regulation of protein: carbohydrate ratio in foods adult rats eat. . J. Nutr. 114::71118
    [Crossref] [Google Scholar]
  23. 23.
    Tews JK, Repa JJ, Harper AE. 1992.. Protein selection by rats adapted to high or moderately low levels of dietary protein. . Physiol. Behav. 51::699712
    [Crossref] [Google Scholar]
  24. 24.
    Sørensen A, Mayntz D, Raubenheimer D, Simpson SJ. 2008.. Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition. . Obesity 16::56671
    [Crossref] [Google Scholar]
  25. 25.
    Huang X, Hancock DP, Gosby AK, McMahon AC, Solon SMC, et al. 2013.. Effects of dietary protein to carbohydrate balance on energy intake, fat storage, and heat production in mice. . Obesity 21::8592
    [Crossref] [Google Scholar]
  26. 26.
    Sørensen A, Mayntz D, Simpson SJ, Raubenheimer D. 2010.. Dietary ratio of protein to carbohydrate induces plastic responses in the gastrointestinal tract of mice. . J. Comp. Physiol. B 180::25966
    [Crossref] [Google Scholar]
  27. 27.
    Raubenheimer D, Simpson SJ. 2019.. Protein leverage: theoretical foundations and ten points of clarification. . Obesity 27::122538
    [Crossref] [Google Scholar]
  28. 28.
    Simpson SJ, Raubenheimer D. 2005.. Obesity: the protein leverage hypothesis. . Obes. Rev. 6::13342
    [Crossref] [Google Scholar]
  29. 29.
    Zapata RC, Singh A, Pezeshki A, Avirineni BS, Patra S, Chelikani PK. 2019.. Low-protein diets with fixed carbohydrate content promote hyperphagia and sympathetically mediated increase in energy expenditure. . Mol. Nutr. Food Res. 63::e1900088
    [Crossref] [Google Scholar]
  30. 30.
    Blais A, Chaumontet C, Azzout-Marniche D, Piedcoq J, Fromentin G, et al. 2018.. Low-protein diet-induced hyperphagia and adiposity are modulated through interactions involving thermoregulation, motor activity, and protein quality in mice. . Am. J. Physiol. Endocrinol. Metab. 314::E139E51
    [Crossref] [Google Scholar]
  31. 31.
    Green CL, Pak HH, Richardson NE, Flores V, Yu D, et al. 2022.. Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. . Cell Metab. 34::20926.e5
    [Crossref] [Google Scholar]
  32. 32.
    Hill CM, Albarado DC, Coco LG, Spann RA, Khan MS, et al. 2022.. FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice. . Nat. Commun. 13::1897
    [Crossref] [Google Scholar]
  33. 33.
    Crean AJ, Afrin S, Niranjan H, Pulpitel TJ, Ahmad G, et al. 2023.. Male reproductive traits are differentially affected by dietary macronutrient balance but unrelated to adiposity. . Nat. Commun. 14::2566
    [Crossref] [Google Scholar]
  34. 34.
    Crean AJ, Senior AM, Freire T, Clark TD, Mackay F, et al. 2024.. Paternal dietary macronutrient balance and energy intake drive metabolic and behavioral differences among offspring. . Nat. Commun. 15::2982
    [Crossref] [Google Scholar]
  35. 35.
    Hew JJ, Parungao RJ, Mooney CP, Smyth JK, Kim S, et al. 2021.. Low-protein diet accelerates wound healing in mice post-acute injury. . Burns Trauma 9::tkab010
    [Crossref] [Google Scholar]
  36. 36.
    Hew JJ, Parungao RJ, Tsai KH, Shi H, Ma D, et al. 2020.. Geometric framework reveals that a moderate protein, high carbohydrate intake is optimal for severe burn injury in mice. . Br. J. Nutr. 123::105667
    [Crossref] [Google Scholar]
  37. 37.
    Robertson LT, Treviño-Villarreal JH, Mejia P, Grondin Y, Harputlugil E, et al. 2015.. Protein and calorie restriction contribute additively to protection from renal ischemia reperfusion injury partly via leptin reduction in male mice. . J. Nutr. 145::171727
    [Crossref] [Google Scholar]
  38. 38.
    Laeger T, Castaño-Martinez T, Werno MW, Japtok L, Baumeier C, et al. 2018.. Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes. . Diabetologia 61::145969
    [Crossref] [Google Scholar]
  39. 39.
    Wu C-T, Larson KR, Sims LC, Ryan KK. 2023.. Dietary protein restriction modulates ‘dessert’ intake after a meal, via fibroblast growth factor 21 (FGF21). . Physiol. Behav. 272::114368
    [Crossref] [Google Scholar]
  40. 40.
    Garcia Caraballo SC, Comhair TM, Dejong CHC, Lamers WH, Koehler SE. 2017.. Dietary treatment of fatty liver: High dietary protein content has an antisteatotic and antiobesogenic effect in mice. . Biochim. Biophys. Acta Mol. Basis Dis. 1863::1789804
    [Crossref] [Google Scholar]
  41. 41.
    Larson KR, Chaffin AT, Goodson ML, Fang Y, Ryan KK. 2019.. Fibroblast growth factor-21 controls dietary protein intake in male mice. . Endocrinology 160::106980
    [Crossref] [Google Scholar]
  42. 42.
    Wali JA, Milner AJ, Luk AWS, Pulpitel TJ, Dodgson T, et al. 2021.. Impact of dietary carbohydrate type and protein–carbohydrate interaction on metabolic health. . Nat. Metab. 3::81028
    [Crossref] [Google Scholar]
  43. 43.
    Hill CM, Laeger T, Dehner M, Albarado DC, Clarke B, et al. 2019.. FGF21 signals protein status to the brain and adaptively regulates food choice and metabolism. . Cell Rep. 27::293447.e3
    [Crossref] [Google Scholar]
  44. 44.
    Solon-Biet SM, Cogger VC, Pulpitel T, Heblinski M, Wahl D, et al. 2016.. Defining the nutritional and metabolic context of FGF21 using the geometric framework. . Cell Metab. 24::55565
    [Crossref] [Google Scholar]
  45. 45.
    Solon-Biet SM, Clark X, Bell-Anderson K, Rusu PM, Perks R, et al. 2023.. Toward reconciling the roles of FGF21 in protein appetite, sweet preference, and energy expenditure. . Cell Rep. 42::113536
    [Crossref] [Google Scholar]
  46. 46.
    Hu S, Wang L, Yang D, Li L, Togo J, et al. 2018.. Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. . Cell Metab. 28::41531.e4
    [Crossref] [Google Scholar]
  47. 47.
    Le Couteur DG, Solon-Biet SM, Parker BL, Pulpitel T, Brandon AE, et al. 2021.. Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. . Cell Metab. 33::236779.e4
    [Crossref] [Google Scholar]
  48. 48.
    Solon-Biet SM, Griffiths L, Fosh S, Le Couteur DG, Simpson SJ, Senior AM. 2022.. Meta-analysis links dietary branched-chain amino acids to metabolic health in rodents. . BMC Biol. 20::19
    [Crossref] [Google Scholar]
  49. 49.
    Solon-Biet SM, Cogger VC, Pulpitel T, Wahl D, Clark X, et al. 2019.. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. . Nat. Metab. 1::53245
    [Crossref] [Google Scholar]
  50. 50.
    Hintze KJ, Benninghoff AD, Cho CE, Ward RE. 2018.. Modeling the Western diet for preclinical investigations. . Adv. Nutr. 9::26371
    [Crossref] [Google Scholar]
  51. 51.
    Lang P, Hasselwander S, Li H, Xia N. 2019.. Effects of different diets used in diet-induced obesity models on insulin resistance and vascular dysfunction in C57BL/6 mice. . Sci. Rep. 9::19556
    [Crossref] [Google Scholar]
  52. 52.
    Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. 1988.. Diet-induced type II diabetes in C57BL/6J mice. . Diabetes 37::116367
    [Crossref] [Google Scholar]
  53. 53.
    Farris KM, Senior AM, Sobreira DR, Mitchell RM, Weber ZT, et al. 2024.. Dietary macronutrient composition impacts gene regulation in adipose tissue. . Commun. Biol. 7::194
    [Crossref] [Google Scholar]
  54. 54.
    Elawad O, Dafallah MA, Ahmed MMM, Albashir AAD, Abdalla SMA, et al. 2022.. Bardet-Biedl syndrome: a case series. . J. Med. Case Rep. 16::169
    [Crossref] [Google Scholar]
  55. 55.
    Wali JA, Ni D, Facey HJW, Dodgson T, Pulpitel TJ, et al. 2023.. Determining the metabolic effects of dietary fat, sugars and fat-sugar interaction using nutritional geometry in a dietary challenge study with male mice. . Nat. Commun. 14::4409
    [Crossref] [Google Scholar]
  56. 56.
    Choo VL, Viguiliouk E, Blanco Mejia S, Cozma AI, Khan TA, et al. 2018.. Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. . BMJ 363::k4644
    [Crossref] [Google Scholar]
  57. 57.
    Fontana L, Partridge L. 2015.. Promoting health and longevity through diet: from model organisms to humans. . Cell 161::10618
    [Crossref] [Google Scholar]
  58. 58.
    Speakman JR, Mitchell SE. 2011.. Caloric restriction. . Mol. Aspects Med. 32::159221
    [Crossref] [Google Scholar]
  59. 59.
    Swindell WR. 2012.. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. . Ageing Res. Rev. 11::25470
    [Crossref] [Google Scholar]
  60. 60.
    Speakman JR, Mitchell SE, Mazidi M. 2016.. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. . Exp. Gerontol. 86::2838
    [Crossref] [Google Scholar]
  61. 61.
    Lee C, Longo VD. 2011.. Fasting versus dietary restriction in cellular protection and cancer treatment: from model organisms to patients. . Oncogene 30::330516
    [Crossref] [Google Scholar]
  62. 62.
    Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. 2015.. Macronutrients and caloric intake in health and longevity. . J. Endocrinol. 226::R1728
    [Crossref] [Google Scholar]
  63. 63.
    Solon-Biet SM, Walters KA, Simanainen UK, McMahon AC, Ruohonen K, et al. 2015.. Macronutrient balance, reproductive function, and lifespan in aging mice. . PNAS 112::348186
    [Crossref] [Google Scholar]
  64. 64.
    Fotheringham AK, Solon-Biet SM, Bielefeldt-Ohmann H, McCarthy DA, McMahon AC, et al. 2021.. Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. . iScience 24::103308
    [Crossref] [Google Scholar]
  65. 65.
    Hew J, Solon-Biet SM, McMahon AC, Ruohonen K, Raubenheimer D, et al. 2016.. The effects of dietary macronutrient balance on skin structure in aging male and female mice. . PLOS ONE 11::e0166175
    [Crossref] [Google Scholar]
  66. 66.
    Morimoto J, Senior A, Ruiz K, Wali JA, Pulpitel T, et al. 2019.. Sucrose and starch intake contribute to reduced alveolar bone height in a rodent model of naturally occurring periodontitis. . PLOS ONE 14::e0212796
    [Crossref] [Google Scholar]
  67. 67.
    Cogger VC, Mohamad M, Solon-Biet SM, Senior AM, Warren A, et al. 2016.. Dietary macronutrients and the aging liver sinusoidal endothelial cell. . Am. J. Physiol. Heart Circ. Physiol. 310::H1064H70
    [Crossref] [Google Scholar]
  68. 68.
    Fraser R, Cogger VC, Dobbs B, Jamieson H, Warren A, et al. 2012.. The liver sieve and atherosclerosis. . Pathology 44::18186
    [Crossref] [Google Scholar]
  69. 69.
    Le Couteur DG, Fraser R, Hilmer S, Rivory LP, McLean AJ. 2005.. The hepatic sinusoid in aging and cirrhosis: effects on hepatic substrate disposition and drug clearance. . Clin. Pharmacokinet. 44::187200
    [Crossref] [Google Scholar]
  70. 70.
    Gokarn R, Solon-Biet S, Youngson NA, Wahl D, Cogger VC, et al. 2018.. The relationship between dietary macronutrients and hepatic telomere length in aging mice. . J. Gerontol. A 73::44649
    [Crossref] [Google Scholar]
  71. 71.
    Blasco MA. 2005.. Telomeres and human disease: ageing, cancer and beyond. . Nat. Rev. Genet. 6::61122
    [Crossref] [Google Scholar]
  72. 72.
    Gokarn R, Solon-Biet SM, Cogger VC, Cooney GJ, Wahl D, et al. 2018.. Long-term dietary macronutrients and hepatic gene expression in aging mice. . J. Gerontol. A 73::161825
    [Crossref] [Google Scholar]
  73. 73.
    Nehme J, Altulea A, Gheorghe T, Demaria M. 2023.. The effects of macronutrients metabolism on cellular and organismal aging. . Biomed. J. 46::100585
    [Crossref] [Google Scholar]
  74. 74.
    Swindell WR. 2009.. Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse. . BMC Genom. 10::585
    [Crossref] [Google Scholar]
  75. 75.
    Nelson JF, Gosden RG, Felicio LS. 1985.. Effect of dietary restriction on estrous cyclicity and follicular reserves in aging C57BL/6J mice. . Biol. Reprod. 32::51522
    [Crossref] [Google Scholar]
  76. 76.
    Moran LJ, Norman RJ, Teede HJ. 2015.. Metabolic risk in PCOS: phenotype and adiposity impact. . Trends Endocrinol. Metab. 26::13643
    [Crossref] [Google Scholar]
  77. 77.
    Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, et al. 2018.. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. . Fertil. Steril. 110::36479
    [Crossref] [Google Scholar]
  78. 78.
    Freire T, Clark X, Pulpitel T, Bell-Anderson K, Ribeiro R, et al. 2024.. Maternal macronutrient intake effects on offspring macronutrient targets and metabolism. . Obesity 32:(4):74355
    [Crossref] [Google Scholar]
  79. 79.
    Weber M, Grote V, Closa-Monasterolo R, Escribano J, Langhendries JP, et al. 2014.. Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. . Am. J. Clin. Nutr. 99::104151
    [Crossref] [Google Scholar]
  80. 80.
    Stokes A, Campbell KJ, Yu H-J, Szymlek-Gay EA, Abbott G, et al. 2021.. Protein intake from birth to 2 years and obesity outcomes in later childhood and adolescence: a systematic review of prospective cohort studies. . Adv. Nutr. 12::186376
    [Crossref] [Google Scholar]
  81. 81.
    Llewellyn CH, Kininmonth AR, Herle M, Nas Z, Smith AD, et al. 2023.. Behavioural susceptibility theory: the role of appetite in genetic susceptibility to obesity in early life. . Philos. Trans. R. Soc. B 378::20220223
    [Crossref] [Google Scholar]
  82. 82.
    Crean AJ, Pulpitel TJ, Pini T, Rickard JP, de Graaf SP, et al. 2024.. Low-fat, high-carbohydrate diets reduce body weight and sperm count but increase sperm motility in mice. . J. Nutr. 154::6068
    [Crossref] [Google Scholar]
  83. 83.
    Pini T, Raubenheimer D, Simpson SJ, Crean AJ. 2021.. Obesity and male reproduction; placing the Western diet in context. . Front. Endocrinol. 12::622292
    [Crossref] [Google Scholar]
  84. 84.
    Walf AA, Frye CA. 2007.. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. . Nat. Protoc. 2::32228
    [Crossref] [Google Scholar]
  85. 85.
    Besson AA, Lagisz M, Senior AM, Hector KL, Nakagawa S. 2016.. Effect of maternal diet on offspring coping styles in rodents: a systematic review and meta-analysis. . Biol. Rev. 91::106580
    [Crossref] [Google Scholar]
  86. 86.
    Holmes AJ, Chew YV, Colakoglu F, Cliff JB, Klaassens E, et al. 2017.. Diet-microbiome interactions in health are controlled by intestinal nitrogen source constraints. . Cell Metab. 25::14051
    [Crossref] [Google Scholar]
  87. 87.
    Rodriguez Paris V, Wong XYD, Solon-Biet SM, Edwards MC, Aflatounian A, et al. 2022.. The interplay between PCOS pathology and diet on gut microbiota in a mouse model. . Gut Microbes 14::2085961
    [Crossref] [Google Scholar]
  88. 88.
    Le Couteur DG, Tay SS, Solon-Biet S, Bertolino P, McMahon AC, et al. 2015.. The influence of macronutrients on splanchnic and hepatic lymphocytes in aging mice. . J. Gerontol. A 70::1499507
    [Crossref] [Google Scholar]
  89. 89.
    Pawelec G, Bronikowski A, Cunnane SC, Ferrucci L, Franceschi C, et al. 2020.. The conundrum of human immune system “senescence. .” Mech. Ageing Dev. 192::111357
    [Crossref] [Google Scholar]
  90. 90.
    Callahan JE, Kappler JW, Marrack P. 1993.. Unexpected expansions of CD8-bearing cells in old mice. . J. Immunol. 151::665769
    [Crossref] [Google Scholar]
  91. 91.
    Miller RA, Chrisp C, Galecki A. 1997.. CD4 memory T cell levels predict life span in genetically heterogeneous mice. . FASEB J. 11::77583
    [Crossref] [Google Scholar]
  92. 92.
    Miller RA. 2001.. Biomarkers of aging: prediction of longevity by using age-sensitive T-cell subset determinations in a middle-aged, genetically heterogeneous mouse population. . J. Gerontol. A 56::B18086
    [Crossref] [Google Scholar]
  93. 93.
    Sun D, Krishnan A, Su J, Lawrence R, Zaman K, Fernandes G. 2004.. Regulation of immune function by calorie restriction and cyclophosphamide treatment in lupus-prone NZB/NZW F1 mice. . Cell Immunol. 228::5465
    [Crossref] [Google Scholar]
  94. 94.
    Reddy Avula CP, Muthukumar A, Fernandes G. 1999.. Calorie restriction increases Fas/Fas-ligand expression and apoptosis in murine splenic lymphocytes. . FEBS Lett. 458::23135
    [Crossref] [Google Scholar]
  95. 95.
    Tan J, Ni D, Wali JA, Cox DA, Pinget GV, et al. 2021.. Dietary carbohydrate, particularly glucose, drives B cell lymphopoiesis and function. . iScience 24::102835
    [Crossref] [Google Scholar]
  96. 96.
    Tan J, Ni D, Taitz J, Pinget GV, Read M, et al. 2022.. Dietary protein increases T-cell-independent sIgA production through changes in gut microbiota-derived extracellular vesicles. . Nat. Commun. 13::4336
    [Crossref] [Google Scholar]
  97. 97.
    Mantis NJ, Rol N, Corthésy B. 2011.. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. . Mucosal Immunol. 4::60311
    [Crossref] [Google Scholar]
  98. 98.
    Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, et al. 2010.. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. . Science 328::17059
    [Crossref] [Google Scholar]
  99. 99.
    Senior AM. 2023.. Estimating genetic variance in life-span response to diet: insights from statistical simulation. . J. Gerontol. A 78::39296
    [Crossref] [Google Scholar]
  100. 100.
    Mitchell SJ, Madrigal-Matute J, Scheibye-Knudsen M, Fang E, Aon M, et al. 2016.. Effects of sex, strain, and energy intake on hallmarks of aging in mice. . Cell Metab. 23::1093112
    [Crossref] [Google Scholar]
  101. 101.
    Piper MD, Soultoukis GA, Blanc E, Mesaros A, Herbert SL, et al. 2017.. Matching dietary amino acid balance to the in silico-translated exome optimizes growth and reproduction without cost to lifespan. . Cell Metab. 25::61021
    [Crossref] [Google Scholar]
  102. 102.
    Waterston RH, Lander ES, Sulston JE. 2002.. On the sequencing of the human genome. . PNAS 99::371216
    [Crossref] [Google Scholar]
  103. 103.
    Emes RD, Goodstadt L, Winter EE, Ponting CP. 2003.. Comparison of the genomes of human and mouse lays the foundation of genome zoology. . Hum. Mol. Genet. 12::7019
    [Crossref] [Google Scholar]
  104. 104.
    Leulier F, MacNeil LT, Lee WJ, Rawls JF, Cani PD, et al. 2017.. Integrative physiology: at the crossroads of nutrition, microbiota, animal physiology, and human health. . Cell Metab. 25::52234
    [Crossref] [Google Scholar]
  105. 105.
    Bolker J. 2012.. There's more to life than rats and flies. . Nature 491::3133
    [Crossref] [Google Scholar]
  106. 106.
    Whewell W. 1840.. The Philosophy of the Inductive Sciences Founded Upon Their History. London:: J.W. Parker
    [Google Scholar]
  107. 107.
    Wilson EO. 1998.. Consilience: The Unity of Knowledge. New York:: Vintage Books
    [Google Scholar]
  108. 108.
    Raubenheimer D, Simpson SJ, Mayntz D. 2009.. Nutrition, ecology and nutritional ecology: toward an integrated framework. . Funct. Ecol. 23::416
    [Crossref] [Google Scholar]
  109. 109.
    Zhang H, Senior AM, Saner C, Olsen NJ, Larsen SC, et al. 2023.. Evidence for the protein leverage hypothesis in preschool children prone to obesity. . Clin. Nutr. 42::224957
    [Crossref] [Google Scholar]
  110. 110.
    Saner C, Senior AM, Zhang H, Eloranta A-M, Magnussen CG, et al. 2023.. Evidence for protein leverage in a general population sample of children and adolescents. . Eur. J. Clin. Nutr. 77::65259
    [Crossref] [Google Scholar]
  111. 111.
    Senior AM, Nakagawa S, Raubenheimer D, Simpson SJ. 2020.. Global associations between macronutrient supply and age-specific mortality. . PNAS 117::3082435
    [Crossref] [Google Scholar]
  112. 112.
    Senior AM, Legault V, Lavoie FB, Presse N, Gaudreau P, et al. 2022.. Multidimensional associations between nutrient intake and healthy ageing in humans. . BMC Biol. 20::196
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-102327
Loading
/content/journals/10.1146/annurev-animal-111523-102327
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error