1932

Abstract

Nutrition is a complex and contested area in biomedicine, which requires diverse evidence sources. Nonhuman primate models are considered an important biomedical research tool because of their biological similarities to humans, but they are typically used with little explicit consideration of their ecology and evolution. Using the rhesus macaque (RM), we consider the potential of nutritional ecology for enriching the use of primates as models for human nutrition. We introduce some relevant aspects of RM evolutionary and social ecology and discuss two examples where they have been used in biomedical research: obesity and aging. We next consider how insights from nutritional ecology can help inform and direct the use of RM as a biomedical model. We conclude by illustrating how conceptual tools might inform the use of RM as a model for human nutrition and extracting insights from RM that might be relevant to broader theoretical considerations around animal model systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-111523-102354
2025-02-18
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/animal/13/1/annurev-animal-111523-102354.html?itemId=/content/journals/10.1146/annurev-animal-111523-102354&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, et al. 2019.. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. . Lancet 393:(10184):195872
    [Crossref] [Google Scholar]
  2. 2.
    Brown AW, Aslibekyan S, Bier D, Ferreira da Silva R, Hoover A, et al. 2023.. Toward more rigorous and informative nutritional epidemiology: the rational space between dismissal and defense of the status quo. . Crit. Rev. Food Sci. Nutr. 63:(18):315067
    [Crossref] [Google Scholar]
  3. 3.
    Flanagan A, Bradfield J, Kohlmeier M, Ray S. 2023.. Need for a nutrition-specific scientific paradigm for research quality improvement. . BMJ Nutr. Prev. Health 6:(2):38391
    [Crossref] [Google Scholar]
  4. 4.
    Raubenheimer D, Simpson SJ. 2016.. Nutritional ecology and human health. . Annu. Rev. Nutr. 36::60326
    [Crossref] [Google Scholar]
  5. 5.
    Raubenheimer D, Simpson SJ. 2023.. Protein appetite as an integrator in the obesity system: the protein leverage hypothesis. . Philos. Trans. R. Soc. B 378:(1888):20220212
    [Crossref] [Google Scholar]
  6. 6.
    Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. 2023.. The importance of animal models in biomedical research: current insights and applications. . Animals 13:(7):1223
    [Crossref] [Google Scholar]
  7. 7.
    Conn PM, ed. 2017.. Animal Models for the Study of Human Disease. Cambridge, MA:: Academic. , 2nd ed..
    [Google Scholar]
  8. 8.
    Sterelny K. 2017.. Humans as model organisms. . Proc. R. Soc. B 284:(1869):20172115
    [Crossref] [Google Scholar]
  9. 9.
    Rubio-Aliaga I. 2012.. Model organisms in molecular nutrition research. . Mol. Nutr. Food Res. 56:(6):84453
    [Crossref] [Google Scholar]
  10. 10.
    Baker DH. 2008.. Animal models in nutrition research. . J. Nutr. 138:(2):39196
    [Crossref] [Google Scholar]
  11. 11.
    Katz PS. 2016.. ‘ Model organisms’ in the light of evolution. . Curr. Biol. 26:(14):R64950
    [Crossref] [Google Scholar]
  12. 12.
    Ankeny RA, Leonelli S. 2020.. Model Organisms. Cambridge Elem. Philos. Biol. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  13. 13.
    Eur. Parl. 2021.. Plans and actions to accelerate a transition to innovation without the use of animals in research, regulatory testing and education. Text adopt., P9_TA(2021)0387 , Eur. Parl., Strasbourg, Fr:.
    [Google Scholar]
  14. 14.
    Hunter P. 2008.. The paradox of model organisms. The use of model organisms in research will continue despite their shortcomings. . EMBO Rep. 9:(8):71720
    [Crossref] [Google Scholar]
  15. 15.
    Kiani AK, Pheby D, Henehan G, Brown R, Sieving P, et al. 2022.. Ethical considerations regarding animal experimentation. . J. Prev. Med. Hyg. 63:(2 Suppl. 3):E25566
    [Google Scholar]
  16. 16.
    Striedter GF. 2019.. Variation across species and levels: implications for model species research. . Brain Behav. Evol. 93:(2–3):5769
    [Crossref] [Google Scholar]
  17. 17.
    Phillips KA, Bales KL, Capitanio JP, Conley A, Czoty PW, et al. 2014.. Why primate models matter. . Am. J. Primatol. 76:(9):80127
    [Crossref] [Google Scholar]
  18. 18.
    Xue C, Raveendran M, Harris RA, Fawcett GL, Liu X, et al. 2016.. The population genomics of rhesus macaques (Macaca mulatta) based on whole-genome sequences. . Genome Res. 26:(12):165162
    [Crossref] [Google Scholar]
  19. 19.
    Cooper EB, Brent LJ, Snyder-Mackler N, Singh M, Sengupta A, et al. 2022.. The rhesus macaque as a success story of the Anthropocene. . eLife 11::e78169
    [Crossref] [Google Scholar]
  20. 20.
    Tarantal AF, Noctor SC, Hartigan-O'Connor DJ. 2022.. Nonhuman primates in translational research. . Annu. Rev. Anim. Biosci. 10::44168
    [Crossref] [Google Scholar]
  21. 21.
    Colman RJ. 2018.. Non-human primates as a model for aging. . Biochim. Biophys. Acta Mol. Basis Dis. 1864:(9 Pt. A):273341
    [Crossref] [Google Scholar]
  22. 22.
    Disotell TR, Tosi AJ. 2007.. The monkey's perspective. . Genome Biol. 8:(9):226
    [Crossref] [Google Scholar]
  23. 23.
    Zhang B-L, Chen W, Wang Z, Pang W, Luo M-T, et al. 2023.. Comparative genomics reveals the hybrid origin of a macaque group. . Sci. Adv. 9:(22):eadd3580
    [Crossref] [Google Scholar]
  24. 24.
    Roos C, Zinner D. 2015.. Diversity and evolutionary history of macaques with special focus on Macaca mulatta and Macaca fascicularis. . In The Nonhuman Primate in Nonclinical Drug Development and Safety Assessment, ed. J Bluemel, S Korte, E Schenck, GF Weinbauer , pp. 316. San Diego, CA:: Academic
    [Google Scholar]
  25. 25.
    Li J, Han K, Xing J, Kim H-S, Rogers J, et al. 2009.. Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements. . Gene 448:(2):24249
    [Crossref] [Google Scholar]
  26. 26.
    Richard AF, Goldstein SJ, Dewar RE. 1989.. Weed macaques: the evolutionary implications of macaque feeding ecology. . Int. J. Primatol. 10:(6):56994
    [Crossref] [Google Scholar]
  27. 27.
    Meindl RS, Chaney ME, Lovejoy CO. 2018.. Early hominids may have been weed species. . PNAS 115:(6):124449
    [Crossref] [Google Scholar]
  28. 28.
    Sengupta A, Radhakrishna S. 2018.. The hand that feeds the monkey: mutual influence of humans and rhesus macaques (Macaca mulatta) in the context of provisioning. . Int. J. Primatol. 39:(5):81730
    [Crossref] [Google Scholar]
  29. 29.
    Anderson CJ, Johnson SA, Hostetler ME, Summers MG. 2016.. History and status of introduced rhesus macaques (Macaca mulatta) in Silver Springs State Park, Florida. Publ. WEC367 , Dep. Wildl. Ecol. Conserv., Univ. Fla., Gainesville:
    [Google Scholar]
  30. 30.
    Evans BJ, Gansauge M-T, Tocheri MW, Schillaci MA, Sutikna T, et al. 2020.. Mitogenomics of macaques (Macaca) across Wallace's Line in the context of modern human dispersals. . J. Hum. Evol. 146::102852
    [Crossref] [Google Scholar]
  31. 31.
    Leonard WR, Stock JT, Valeggia CR. 2010.. Evolutionary perspectives on human diet and nutrition. . Evol. Anthropol. 19:(3):8586
    [Crossref] [Google Scholar]
  32. 32.
    Sarker G, Kabir M, Feeroz M, Hasan M. 2008.. Food and feeding behaviour of rhesus macaque (Macaca mulatta) at Barmi, Gazipur, Bangladesh. . J. Life Sci. 20::18
    [Google Scholar]
  33. 33.
    Pontzer H, Wood BM. 2021.. Effects of evolution, ecology, and economy on human diet: insights from hunter-gatherers and other small-scale societies. . Annu. Rev. Nutr. 41::36385
    [Crossref] [Google Scholar]
  34. 34.
    Yuan Q, Zhou Z, Lindell SG, Higley JD, Ferguson B, et al. 2012.. The rhesus macaque is three times as diverse but more closely equivalent in damaging coding variation as compared to the human. . BMC Genet. 13:(1):52
    [Crossref] [Google Scholar]
  35. 35.
    Warren WC, Harris RA, Haukness M, Fiddes IT, Murali SC, et al. 2020.. Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. . Science 370:(6523):eabc6617
    [Crossref] [Google Scholar]
  36. 36.
    Smith DG, McDonough J. 2005.. Mitochondrial DNA variation in Chinese and Indian rhesus macaques (Macaca mulatta). . Am. J. Primatol. 65:(1):125
    [Crossref] [Google Scholar]
  37. 37.
    Fooden J. 2000.. Systematic Review of the Rhesus Macaque, Macaca mulatta (Zimmermann, 1780). Chicago:: Field Mus. Nat. Hist.
    [Google Scholar]
  38. 38.
    Groves C. 2001.. Primate Taxonomy. Washington, DC:: Smithson. Books. , 1st ed..
    [Google Scholar]
  39. 39.
    Hernandez RD, Hubisz MJ, Wheeler DA, Smith DG, Ferguson B, et al. 2007.. Demographic histories and patterns of linkage disequilibrium in Chinese and Indian rhesus macaques. . Science 316:(5822):24043
    [Crossref] [Google Scholar]
  40. 40.
    Smith DG. 2005.. Genetic characterization of Indian-origin and Chinese-origin rhesus macaques (Macaca mulatta). . Comp. Med. 55:(3):22730
    [Google Scholar]
  41. 41.
    Liu Z, Tan X, Orozco-terWengel P, Zhou X, Zhang L, et al. 2018.. Population genomics of wild Chinese rhesus macaques reveals a dynamic demographic history and local adaptation, with implications for biomedical research. . GigaScience 7:(9):giy106
    [Crossref] [Google Scholar]
  42. 42.
    Zhou Y, Tian J, Jiang H, Han M, Wang Y, Lu J. 2024.. Phylogeography and demographic history of macaques, fascicularis species group, in East Asia: inferred from multiple genomic markers. . Mol. Phylogenet. Evol. 194::108042
    [Crossref] [Google Scholar]
  43. 43.
    Francis G, Wang Q. 2023.. Coming to the Caribbean—acclimation of Rhesus macaques (Macaca mulatta) at Cayo Santiago. . Am. J. Biol. Anthropol. 181:(2):27195
    [Crossref] [Google Scholar]
  44. 44.
    Pathak AK, Sukhavasi K, Marnetto D, Chaubey G, Pandey AK. 2022.. Human population genomics approach in food metabolism. . In Future Foods, ed. R Bhat , pp. 43349. Cambridge, MA:: Academic
    [Google Scholar]
  45. 45.
    Thierry B. 2007.. Unity in diversity: lessons from macaque societies. . Evol. Anthropol. 16:(6):22438
    [Crossref] [Google Scholar]
  46. 46.
    Adams MJ, Majolo B, Ostner J, Schülke O, De Marco A, et al. 2015.. Personality structure and social style in macaques. . J. Personal. Soc. Psychol. 109:(2):33853
    [Crossref] [Google Scholar]
  47. 47.
    Thierry B. 2000.. Covariation of conflict management patterns across macaque species. . In Natural Conflict Resolution, pp. 10628. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  48. 48.
    Izumiyama S. 2014.. Seasonal and altitudinal migration of Japanese Macaques in the Northern Japan Alps. . In High Altitude Primates, ed. NB Grow, S Gursky-Doyen, A Krzton , pp. 15381. New York:: Springer
    [Google Scholar]
  49. 49.
    Fiore AM, Cronin KA, Ross SR, Hopper LM. 2020.. Food cleaning by Japanese macaques: Innate, innovative or cultural?. Folia Primatol. 91:(4):43344
    [Crossref] [Google Scholar]
  50. 50.
    Maestripieri D. 2007.. Macachiavellian Intelligence: How Rhesus Macaques and Humans Have Conquered the World. Chicago:: Univ. Chicago Press
    [Google Scholar]
  51. 51.
    Roberts P, Stewart BA. 2018.. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. . Nat. Hum. Behav. 2:(8):54250
    [Crossref] [Google Scholar]
  52. 52.
    Dubuc C, Hughes KD, Cascio J, Santos LR. 2012.. Social tolerance in a despotic primate: co-feeding between consortship partners in rhesus macaques. . Am. J. Phys. Anthropol. 148:(1):7380
    [Crossref] [Google Scholar]
  53. 53.
    Mazumder J, Kaburu SSK. 2021.. First report of food sharing among nicobar long-tailed macaques. . Quat. Int. 603::3139
    [Crossref] [Google Scholar]
  54. 54.
    Amici F, Widdig A, MacIntosh AJJ, Francés VB, Castellano-Navarro A, et al. 2020.. Dominance style only partially predicts differences in neophobia and social tolerance over food in four macaque species. . Sci. Rep. 10:(1):22069
    [Crossref] [Google Scholar]
  55. 55.
    Balasubramaniam KN, Marty PR, Samartino S, Sobrino A, Gill T, et al. 2020.. Impact of individual demographic and social factors on human-wildlife interactions: a comparative study of three macaque species. . Sci. Rep. 10:(1):21991
    [Crossref] [Google Scholar]
  56. 56.
    Testard C, Larson SM, Watowich MM, Kaplinsky CH, Bernau A, et al. 2021.. Rhesus macaques build new social connections after a natural disaster. . Curr. Biol. 31:(11):2299309.e7
    [Crossref] [Google Scholar]
  57. 57.
    Testard C, Shergold C, Acevedo-Ithier A, Hart J, Bernau A, et al. 2024.. Ecological disturbance alters the adaptive benefits of social ties. . Science 384:(6702):133035
    [Crossref] [Google Scholar]
  58. 58.
    Turner BL, Thompson AL. 2013.. Beyond the Paleolithic prescription: incorporating diversity and flexibility in the study of human diet evolution. . Nutr. Rev. 71:(8):50110
    [Crossref] [Google Scholar]
  59. 59.
    Havel PJ, Kievit P, Comuzzie AG, Bremer AA. 2017.. Use and importance of nonhuman primates in metabolic disease research: current state of the field. . ILAR J. 58:(2):25168
    [Crossref] [Google Scholar]
  60. 60.
    Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, et al. 2018.. Animal models of obesity and diabetes mellitus. . Nat. Rev. Endocrinol. 14:(3):14062
    [Crossref] [Google Scholar]
  61. 61.
    Wood EK, Sullivan EL. 2022.. The influence of diet on metabolism and health across the lifespan in nonhuman primates. . Curr. Opin. Endocr. Metab. Res. 24::100336
    [Crossref] [Google Scholar]
  62. 62.
    Kemnitz JW. 1984.. Obesity in macaques: spontaneous and induced. . Adv. Vet. Sci. Comp. Med. 28::81114
    [Crossref] [Google Scholar]
  63. 63.
    Bauer SA, Arndt TP, Leslie KE, Pearl DL, Turner PV. 2011.. Obesity in rhesus and cynomolgus macaques: a comparative review of the condition and its implications for research. . Comp. Med. 61:(6):51426
    [Google Scholar]
  64. 64.
    Mattison JA, Vaughan KL. 2017.. An overview of nonhuman primates in aging research. . Exp. Gerontol. 94::4145
    [Crossref] [Google Scholar]
  65. 65.
    Kemnitz JW, Francken GA. 1986.. Characteristics of spontaneous obesity in male rhesus monkeys. . Physiol. Behav. 38:(4):47783
    [Crossref] [Google Scholar]
  66. 66.
    Vaughan KL, Mattison JA. 2016.. Obesity and aging in humans and nonhuman primates: a mini-review. . Gerontology 62:(6):61117
    [Crossref] [Google Scholar]
  67. 67.
    West DB, York B. 1998.. Dietary fat, genetic predisposition, and obesity: lessons from animal models. . Am. J. Clin. Nutr. 67:(Suppl. 3):505S12S
    [Crossref] [Google Scholar]
  68. 68.
    Schwartz SM, Kemnitz JW. 1992.. Age- and gender-related changes in body size, adiposity, and endocrine and metabolic parameters in free-ranging rhesus macaques. . Am. J. Phys. Anthropol. 89:(1):10921
    [Crossref] [Google Scholar]
  69. 69.
    Hall KD, Farooqi IS, Friedman JM, Klein S, Loos RJF, et al. 2022.. The energy balance model of obesity: beyond calories in, calories out. . Am. J. Clin. Nutr. 115:(5):124354
    [Crossref] [Google Scholar]
  70. 70.
    Ludwig DS, Ebbeling CB. 2018.. The carbohydrate-insulin model of obesity: beyond “calories in, calories out. .” JAMA Intern. Med. 178:(8):1098103
    [Crossref] [Google Scholar]
  71. 71.
    Johnson RJ, Lanaspa MA, Sanchez-Lozada LG, Tolan D, Nakagawa T, et al. 2023.. The fructose survival hypothesis for obesity. . Philos. Trans. R. Soc. B 378:(1885):20220230
    [Crossref] [Google Scholar]
  72. 72.
    Gao L, Hu S, Yang D, Wang L, Togo J, et al. 2024.. The hedonic overdrive model best explains high-fat diet-induced obesity in C57BL/6 mice. . Obesity 32:(4):73342
    [Crossref] [Google Scholar]
  73. 73.
    Simpson SJ, Raubenheimer D. 2005.. Obesity: the protein leverage hypothesis. . Obes. Rev. 6:(2):13342
    [Crossref] [Google Scholar]
  74. 74.
    Bremer AA, Stanhope KL, Graham JL, Cummings BP, Wang W, et al. 2011.. Fructose-fed rhesus monkeys: a nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. . Clin. Transl. Sci. 4:(4):24352
    [Crossref] [Google Scholar]
  75. 75.
    Jen K-LC. 1987.. Failure to induce weight gain with palatable diets in monkeys (Macaca mulatta). . Primates 28:(1):6169
    [Crossref] [Google Scholar]
  76. 76.
    Hopkins M, Beaulieu K, Gibbons C, Halford JCG, Blundell J, et al. 2000.. The control of food intake in humans. . In Endotext, ed. KR Feingold, B Anawalt, MR Blackman, A Boyce, G Chrousos, et al . South Dartmouth, MA:: MDText.com, Inc.
    [Google Scholar]
  77. 77.
    Levitsky DA, Sewall A, Zhong Y, Barre L, Shoen S, et al. 2019.. Quantifying the imprecision of energy intake of humans to compensate for imposed energetic errors: a challenge to the physiological control of human food intake. . Appetite 133::33743
    [Crossref] [Google Scholar]
  78. 78.
    Almiron-Roig E, Palla L, Guest K, Ricchiuti C, Vint N, et al. 2013.. Factors that determine energy compensation: a systematic review of preload studies. . Nutr. Rev. 71:(7):45873
    [Crossref] [Google Scholar]
  79. 79.
    Huang F-Y, Sutcliffe MPF, Grabenhorst F. 2021.. Preferences for nutrients and sensory food qualities identify biological sources of economic values in monkeys. . PNAS 118:(26):e2101954118
    [Crossref] [Google Scholar]
  80. 80.
    Jen K-LC, Bodkin NL, Metzger BL, Hansen BC. 1985.. Nutrient composition: effects on appetite in monkeys with oral factors held constant. . Physiol. Behav. 34:(5):65559
    [Crossref] [Google Scholar]
  81. 81.
    Hannah JS, Dubey AK, Hansen BC. 1990.. Postingestional effects of a high-protein diet on the regulation of food intake in monkeys. . Am. J. Clin. Nutr. 52:(2):32025
    [Crossref] [Google Scholar]
  82. 82.
    Wilson ME, Fisher J, Fischer A, Lee V, Harris RB, Bartness TJ. 2008.. Quantifying food intake in socially housed monkeys: social status effects on caloric consumption. . Physiol. Behav. 94:(4):58694
    [Crossref] [Google Scholar]
  83. 83.
    Johnston JR, Meeker TL, Ramsey JK, Crane MM, Cohen JK, Ethun KF. 2020.. Utility of automated feeding data to detect social instability in a captive breeding colony of rhesus macaques (Macaca mulatta): a case study of intrafamily aggression. . J. Am. Assoc. Lab. Anim. Sci. 59:(1):4657
    [Crossref] [Google Scholar]
  84. 84.
    Bateson M, Pepper GV. 2023.. Food insecurity as a cause of adiposity: evolutionary and mechanistic hypotheses. . Philos. Trans. R. Soc. B 378:(1888):20220228
    [Crossref] [Google Scholar]
  85. 85.
    Scott KA, Melhorn SJ, Sakai RR. 2012.. Effects of chronic social stress on obesity. . Curr. Obes. Rep. 1:(1):1625
    [Crossref] [Google Scholar]
  86. 86.
    Hemmingsson E, Nowicka P, Ulijaszek S, Sørensen TIA. 2023.. The social origins of obesity within and across generations. . Obes. Rev. 24:(1):e13514
    [Crossref] [Google Scholar]
  87. 87.
    Tieken SM, Leidy HJ, Stull AJ, Mattes RD, Schuster RA, Campbell WW. 2007.. Effects of solid versus liquid meal-replacement products of similar energy content on hunger, satiety, and appetite-regulating hormones in older adults. . Horm. Metab. Res. 39:(5):38994
    [Crossref] [Google Scholar]
  88. 88.
    Zheng M, Allman-Farinelli M, Heitmann BL, Toelle B, Marks G, et al. 2015.. Liquid versus solid energy intake in relation to body composition among Australian children. . J. Hum. Nutr. Diet. 28:(Suppl. 2):7079
    [Crossref] [Google Scholar]
  89. 89.
    Colman RJ, Anderson RM. 2011.. Nonhuman primate calorie restriction. . Antioxid. Redox Signal. 14:(2):22939
    [Crossref] [Google Scholar]
  90. 90.
    Le Bourg E. 2018.. Does calorie restriction in primates increase lifespan? Revisiting studies on macaques (Macaca mulatta) and mouse lemurs (Microcebus murinus). . BioEssays 40:(10):e1800111
    [Crossref] [Google Scholar]
  91. 91.
    Chiou KL, Montague MJ, Goldman EA, Watowich MM, Sams SN, et al. 2020.. Rhesus macaques as a tractable physiological model of human ageing. . Philos. Trans. R. Soc. B 375:(1811):20190612
    [Crossref] [Google Scholar]
  92. 92.
    Bodkin NL, Alexander TM, Ortmeyer HK, Johnson E, Hansen BC. 2003.. Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction. . J. Gerontol. A 58:(3):21219
    [Crossref] [Google Scholar]
  93. 93.
    Lane MA, Mattison JA, Roth GS, Brant LJ, Ingram DK. 2004.. Effects of long-term diet restriction on aging and longevity in primates remain uncertain. . J. Gerontol. A 59:(5):4057
    [Crossref] [Google Scholar]
  94. 94.
    Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. 2014.. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. . Nat. Commun. 5::3557
    [Crossref] [Google Scholar]
  95. 95.
    Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, et al. 2012.. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. . Nature 489:(7415):31821
    [Crossref] [Google Scholar]
  96. 96.
    Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, et al. 2017.. Caloric restriction improves health and survival of rhesus monkeys. . Nat. Commun. 8::14063
    [Crossref] [Google Scholar]
  97. 97.
    Austad SN, Hoffman JM. 2021.. Beyond calorie restriction: aging as a biological target for nutrient therapies. . Curr. Opin. Biotechnol. 70::5660
    [Crossref] [Google Scholar]
  98. 98.
    Austad SN. 2012.. Ageing: mixed results for dieting monkeys. . Nature 489:(7415):21011
    [Crossref] [Google Scholar]
  99. 99.
    Rizza W, Veronese N, Fontana L. 2014.. What are the roles of calorie restriction and diet quality in promoting healthy longevity?. Ageing Res. Rev. 13::3845
    [Crossref] [Google Scholar]
  100. 100.
    Sohal RS, Forster MJ. 2014.. Caloric restriction and the aging process: a critique. . Free Radic. Biol. Med. 73::36682
    [Crossref] [Google Scholar]
  101. 101.
    Raubenheimer D, Simpson SJ, Tait AH. 2012.. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. . Philos. Trans. R. Soc. B 367:(1596):162846
    [Crossref] [Google Scholar]
  102. 102.
    Raubenheimer D, Simpson SJ, Mayntz D. 2009.. Nutrition, ecology and nutritional ecology: toward an integrated framework. . Funct. Ecol. 23:(1):416
    [Crossref] [Google Scholar]
  103. 103.
    Raubenheimer D. 2011.. Toward a quantitative nutritional ecology: the right-angled mixture triangle. . Ecol. Monogr. 81:(3):40727
    [Crossref] [Google Scholar]
  104. 104.
    Simpson SJ, Raubenheimer D. 2012.. The Nature of Nutrition. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  105. 105.
    Lambert JE, Rothman JM. 2015.. Fallback foods, optimal diets, and nutritional targets: primate responses to varying food availability and quality. . Annu. Rev. Anthropol. 44::493512
    [Crossref] [Google Scholar]
  106. 106.
    Raubenheimer D, Hou R, Dong Y, Ren C, Cui Z. 2023.. Towards an integrated understanding of dietary phenotypes. . Philos. Trans. R. Soc. B 378:(1891):20220545
    [Crossref] [Google Scholar]
  107. 107.
    Senior AM, Raubenheimer D, Le Couteur DG, Simpson SJ. 2025.. The geometric framework for nutrition and its application to rodent models. . Annu. Rev. Anim. Biosci. 13::389410
    [Google Scholar]
  108. 108.
    Zhang K, Karim F, Jin Z, Xiao H, Yao Y, et al. 2022.. Diet and feeding behavior of a group of high-altitude rhesus macaques: high adaptation to food shortages and seasonal fluctuations. . Curr. Zool. 69:(3):30414
    [Google Scholar]
  109. 109.
    Machovsky-Capuska GE, Senior AM, Simpson SJ, Raubenheimer D. 2016.. The multidimensional nutritional niche. . Trends Ecol. Evol. 31:(5):35565
    [Crossref] [Google Scholar]
  110. 110.
    DeSantis LRG, Pardi MI, Du A, Greshko MA, Yann LT, et al. 2022.. Global long-term stability of individual dietary specialization in herbivorous mammals. . Proc. R. Soc. B 289:(1968):20211839
    [Crossref] [Google Scholar]
  111. 111.
    Sholl J, Raubenheimer D. 2023.. Who's afraid of nutritionism?. Br. J. Philos. Sci. https://doi.org/10.1086/728785
    [Google Scholar]
  112. 112.
    Raubenheimer D, Simpson SJ. 1999.. Integrating nutrition: a geometrical approach. . In Proceedings of the 10th International Symposium on Insect-Plant Relationships, ed. SJ Simpson, AJ Mordue, J Hardie , pp. 6782. Dordrecht:: Springer Neth.
    [Google Scholar]
  113. 113.
    Raubenheimer D, Rothman JM. 2013.. Nutritional ecology of entomophagy in humans and other primates. . Annu. Rev. Entomol. 58::14160
    [Crossref] [Google Scholar]
  114. 114.
    Raubenheimer D, Simpson SJ. 1997.. Integrative models of nutrient balancing: application to insects and vertebrates. . Nutr. Res. Rev. 10:(1):15179
    [Crossref] [Google Scholar]
  115. 115.
    Gosby AK, Conigrave AD, Lau NS, Iglesias MA, Hall RM, et al. 2011.. Testing protein leverage in lean humans: a randomised controlled experimental study. . PLOS ONE 6:(10):e25929
    [Crossref] [Google Scholar]
  116. 116.
    Uwimbabazi M, Raubenheimer D, Tweheyo M, Basuta GI, Conklin-Brittain NL, et al. 2021.. Nutritional geometry of female chimpanzees (Pan troglodytes). . Am. J. Primatol. 83:(7):e23269
    [Crossref] [Google Scholar]
  117. 117.
    Am. J. Phys. Anthropol. Abstracts - AAPA presentations. 2015.. Am. J. Phys. Anthropol. 156:(S60):65334
    [Crossref] [Google Scholar]
  118. 118.
    Cui Z-W, Zhang Y, Yan J-B, Zhang Y-F, Dong Y-L, et al. 2022.. What does it mean to be a macronutritional generalist? A five-year case study in wild rhesus macaques (Macaca mulatta). . Zool. Res. 43:(6):93539
    [Crossref] [Google Scholar]
  119. 119.
    Cui Z-W, Wang Z-L, Shao Q, Raubenheimer D, Lu J-Q. 2018.. Macronutrient signature of dietary generalism in an ecologically diverse primate in the wild. . Behav. Ecol. 29:(4):80413
    [Crossref] [Google Scholar]
  120. 120.
    Takahashi MQ, Rothman JM, Raubenheimer D, Cords M. 2021.. Daily protein prioritization and long-term nutrient balancing in a dietary generalist, the blue monkey. . Behav. Ecol. 32:(2):22335
    [Crossref] [Google Scholar]
  121. 121.
    Hou R, Chapman CA, Rothman JM, Zhang H, Huang K, et al. 2021.. The geometry of resource constraint: an empirical study of the golden snub-nosed monkey. . J. Anim. Ecol. 90:(3):75165
    [Crossref] [Google Scholar]
  122. 122.
    Eisert R. 2011.. Hypercarnivory and the brain: protein requirements of cats reconsidered. . J. Comp. Physiol. B 181:(1):117
    [Crossref] [Google Scholar]
  123. 123.
    Veldhorst MA, Westerterp-Plantenga MS, Westerterp KR. 2009.. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. . Am. J. Clin. Nutr. 90:(3):51926
    [Crossref] [Google Scholar]
  124. 124.
    Johnson RJ, Stenvinkel P, Martin SL, Jani A, Sánchez-Lozada LG, et al. 2013.. Redefining metabolic syndrome as a fat storage condition based on studies of comparative physiology. . Obesity 21:(4):65964
    [Crossref] [Google Scholar]
  125. 125.
    Oda M, Satta Y, Takenaka O, Takahata N. 2002.. Loss of urate oxidase activity in hominoids and its evolutionary implications. . Mol. Biol. Evol. 19:(5):64053
    [Crossref] [Google Scholar]
  126. 126.
    Lim JY, Wasserman MD, Veen J, Després-Einspenner M-L, Kissling WD. 2021.. Ecological and evolutionary significance of primates’ most consumed plant families. . Proc. Biol. Sci. 288:(1953):20210737
    [Google Scholar]
  127. 127.
    Sengupta A, Radhakrishna S. 2015.. Fruit trait preference in rhesus macaques (Macaca mulatta) and its implications for seed dispersal. . Int. J. Primatol. 36:(5):9991013
    [Crossref] [Google Scholar]
  128. 128.
    Cui Z, Shao Q, Grueter CC, Wang Z, Lu J, Raubenheimer D. 2019.. Dietary diversity of an ecological and macronutritional generalist primate in a harsh high-latitude habitat, the Taihangshan macaque (Macaca mulatta tcheliensis). . Am. J. Primatol. 81:(4):e22965
    [Crossref] [Google Scholar]
  129. 129.
    Mc Auley MT. 2022.. Dietary restriction and ageing: recent evolutionary perspectives. . Mech. Ageing Dev. 208::111741
    [Crossref] [Google Scholar]
  130. 130.
    Le Couteur DG, Raubenheimer D, Solon-Biet S, de Cabo R, Simpson SJ. 2022.. Does diet influence aging? Evidence from animal studies. . J. Intern. Med. 295:(4):40015
    [Crossref] [Google Scholar]
  131. 131.
    Mirzaei H, Raynes R, Longo VD. 2016.. The conserved role for protein restriction during aging and disease. . Curr. Opin. Clin. Nutr. Metab. Care 19:(1):7479
    [Crossref] [Google Scholar]
  132. 132.
    Babygirija R, Lamming DW. 2021.. The regulation of healthspan and lifespan by dietary amino acids. . Transl. Med. Aging 5::1730
    [Crossref] [Google Scholar]
  133. 133.
    Wali JA, Ni D, Facey HJW, Dodgson T, Pulpitel TJ, et al. 2023.. Determining the metabolic effects of dietary fat, sugars and fat-sugar interaction using nutritional geometry in a dietary challenge study with male mice. . Nat. Commun. 14::4409
    [Crossref] [Google Scholar]
  134. 134.
    Solon-Biet SM, Walters KA, Simanainen UK, McMahon AC, Ruohonen K, et al. 2015.. Macronutrient balance, reproductive function, and lifespan in aging mice. . PNAS 112:(11):348186
    [Crossref] [Google Scholar]
  135. 135.
    Kowald A, Kirkwood TBL. 2015.. Evolutionary significance of ageing in the wild. . Exp. Gerontol. 71::8994
    [Crossref] [Google Scholar]
  136. 136.
    Chiva M. 1997.. Cultural aspects of meals and meal frequency. . Br. J. Nutr. 77:(Suppl. 1):S2128
    [Crossref] [Google Scholar]
  137. 137.
    Acosta-Rodríguez V, Rijo-Ferreira F, Izumo M, Xu P, Wight-Carter M, et al. 2022.. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. . Science 376:(6598):1192202
    [Crossref] [Google Scholar]
  138. 138.
    Pak HH, Haws SA, Green CL, Koller M, Lavarias MT, et al. 2021.. Fasting drives the metabolic, molecular and geroprotective effects of a calorie-restricted diet in mice. . Nat. Metab. 3:(10):132741
    [Crossref] [Google Scholar]
  139. 139.
    Boyd P, O'Connor SG, Heckman-Stoddard BM, Sauter ER. 2022.. Time-restricted feeding studies and possible human benefit. . JNCI Cancer Spectr. 6:(3):pkac032
    [Crossref] [Google Scholar]
  140. 140.
    Rynders CA, Thomas EA, Zaman A, Pan Z, Catenacci VA, Melanson EL. 2019.. Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. . Nutrients 11:(10):2442
    [Crossref] [Google Scholar]
  141. 141.
    Cui Z, Wang Z, Zhao G, Lu J. 2015.. Seasonal changes in activity time allocation in adult female Taihang Mountain macaques: effects of food and temperature. . J. Vet. Sci. 35:(2):13846
    [Google Scholar]
  142. 142.
    Burian RM. 1993.. How the choice of experimental organism matters: epistemological reflections on an aspect of biological practice. . J. Hist. Biol. 26:(2):35167
    [Crossref] [Google Scholar]
  143. 143.
    Kellogg EA, Shaffer HB. 1993.. Model organisms in evolutionary studies. . Syst. Biol. 42:(4):40914
    [Crossref] [Google Scholar]
  144. 144.
    Bolker JA. 2009.. Exemplary and surrogate models: two modes of representation in biology. . Perspect. Biol. Med. 52:(4):48599
    [Crossref] [Google Scholar]
  145. 145.
    Ankeny RA, Leonelli S. 2011.. What's so special about model organisms?. Stud. Hist. Philos. Sci. A 42:(2):31323
    [Crossref] [Google Scholar]
  146. 146.
    Bolker JA. 2014.. Models in context: biological and epistemological niches. . In Entangled Life, ed. G Barker, E Desjardins, T Pearce , 4:15366. Dordrecht:: Springer Neth.
    [Google Scholar]
  147. 147.
    Wehling M. 2015.. Principles of Translational Science in Medicine: From Bench to Bedside. Cambridge, MA:: Academic. , 2nd ed..
    [Google Scholar]
  148. 148.
    Green S, Dietrich MR, Leonelli S, Ankeny RA. 2018.. ‘ Extreme’ organisms and the problem of generalization: interpreting the Krogh principle. . Hist. Philos. Life Sci. 40:(4):65
    [Crossref] [Google Scholar]
  149. 149.
    Nawata CM, Pannabecker TL. 2018.. Mammalian urine concentration: a review of renal medullary architecture and membrane transporters. . J. Comp. Physiol. B 188:(6):899918
    [Crossref] [Google Scholar]
  150. 150.
    Duffy MA, García-Robledo C, Gordon SP, Grant NA, Green DA, et al. 2021.. Model systems in ecology, evolution, and behavior: a call for diversity in our model systems and discipline. . Am. Nat. 198:(1):5368
    [Crossref] [Google Scholar]
  151. 151.
    Gosby AK, Conigrave AD, Raubenheimer D, Simpson SJ. 2014.. Protein leverage and energy intake. . Obes. Rev. 15:(3):18391
    [Crossref] [Google Scholar]
  152. 152.
    Raubenheimer D, Gosby AK, Simpson SJ. 2015.. Integrating nutrients, foods, diets, and appetites with obesity and cardiometabolic health. . Obesity 23:(9):174142
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-111523-102354
Loading
/content/journals/10.1146/annurev-animal-111523-102354
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error