1932

Abstract

Airborne lidar (light detection and ranging), which produces three-dimensional models of ground surfaces under the forest canopy, has become an important tool in archaeological research. On a microscale, lidar can lead to a new understanding of building shapes and orientations that were not recognized previously. On a medium scale, it can provide comprehensive views of settlements, cities, and polities and their relationships to the topography. It also facilitates studies of diverse land use practices, such as agricultural fields, roads, and canals. On a macroscale, lidar provides a means to comprehend broad spatial patterns beyond individual sites, including the implications of vacant spaces. A significant challenge for archaeologists is the integration of historical and temporal information in order to contextualize lidar data in the framework of landscape archaeology. In addition, a rapid increase in lidar data presents ethical issues, including the question of data ownership.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-041222-093758
2024-10-21
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/anthro/53/1/annurev-anthro-041222-093758.html?itemId=/content/journals/10.1146/annurev-anthro-041222-093758&mimeType=html&fmt=ahah

Literature Cited

  1. Ashmore W, Knapp AB, eds. 1999.. Archaeologies of Landscape: Contemporary Perspectives. Oxford, UK:: Blackwell
    [Google Scholar]
  2. Balsi M, Esposito S, Fallavollita P, Melis MG, Milanese M. 2021.. Preliminary archeological site survey by UAV-borne lidar: a case study. . Remote Sens. 13::332
    [Crossref] [Google Scholar]
  3. Barrett JC, Ko I. 2009.. A phenomenology of landscape: a crisis in British landscape archaeology?. J. Soc. Archaeol. 9::27594
    [Crossref] [Google Scholar]
  4. Beach T, Luzzadder-Beach S, Krause S, Guderjan T, Valdez F Jr., et al. 2019.. Ancient Maya wetland fields revealed under tropical forest canopy from laser scanning and multiproxy evidence. . PNAS 116::2146977
    [Crossref] [Google Scholar]
  5. Bedford S, Siméoni P, Lebot V. 2018.. The anthropogenic transformation of an island landscape: evidence for agricultural development revealed by LiDAR on the island of Efate, Central Vanuatu, South-West Pacific. . Archaeol. Ocean. 53::114
    [Crossref] [Google Scholar]
  6. Bender B. 2002.. Time and landscape. . Curr. Anthropol. 43::S10312
    [Crossref] [Google Scholar]
  7. Bennett MM, Chen JK, Alvarez León LF, Gleason CJ. 2022.. The politics of pixels: a review and agenda for critical remote sensing. . Progr. Hum. Geogr. 46::72952
    [Crossref] [Google Scholar]
  8. Bennett R, Cowley D, De Laet V. 2014.. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. . Antiquity 88::896905
    [Crossref] [Google Scholar]
  9. Bernardini F, Sgambati A, Kokelj MM, Zaccaria C, Micheli R, et al. 2013.. Airborne LiDAR application to karstic areas: the example of Trieste province (north-eastern Italy) from prehistoric sites to Roman forts. . J. Archaeol. Sci. 40::215260
    [Crossref] [Google Scholar]
  10. Bewley RH, Crutchley SP, Shell CA. 2005.. New light on an ancient landscape: lidar survey in the Stonehenge World Heritage Site. . Antiquity 79::63647
    [Crossref] [Google Scholar]
  11. Blatrix R, Aramayo JL, Zangerlé A, Roux B, Jouanne M, et al. 2022.. Interpreting landscapes of pre-Columbian raised-field agriculture using high-resolution LiDAR topography. . J. Archaeol. Sci. Rep. 42::103408
    [Google Scholar]
  12. Breglia LC. 2006.. Monumental Ambivalence: The Politics of Heritage. Austin:: Univ. Tex. Press
    [Google Scholar]
  13. Brewer JL, Carr C, Dunning NP, Walker DS, Hernández AA, et al. 2017.. Employing airborne lidar and archaeological testing to determine the role of small depressions in water management at the ancient Maya site of Yaxnohcah, Campeche, Mexico. . J. Archaeol. Sci. Rep. 13::291302
    [Google Scholar]
  14. Burham M. 2022.. Sacred sites for suburbanites: organic urban growth and neighborhood formation at Preclassic Ceibal, Guatemala. . J. Field Archaeol. 47::26283
    [Crossref] [Google Scholar]
  15. Canuto MA, Estrada-Belli F, Garrison TG, Houston SD, Acuña MJ, et al. 2018.. Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala. . Science 361::eaau0137
    [Crossref] [Google Scholar]
  16. Castro-Priego M, Olmo-Enciso L, Labrada-Ochoa MO, Jijón-Porras JA, García-Campoverde JA. 2021.. Agrarian spaces, pre-Hispanic settlement and LiDAR technology in the central coast of Ecuador. . Virtual Archaeol. Rev. 12::14057
    [Crossref] [Google Scholar]
  17. Chase AF, Chase DZ, Awe JJ, Weishampel JF, Iannone G, et al. 2014.. Ancient Maya regional settlement and inter-site analysis: the 2013 west-central Belize LiDAR Survey. . Remote Sens. 6::867195
    [Crossref] [Google Scholar]
  18. Chase AF, Chase DZ, Chase ASZ. 2020.. The Maya city of Caracol, Belize: the integration of an anthropogenic landscape. . In The Maya World, ed. SR Hutson, T Ardren , pp. 34463. London:: Routledge
    [Google Scholar]
  19. Chase AF, Chase DZ, Weishampel JF, Drake JB, Shrestha RL, et al. 2011.. Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. . J. Archaeol. Sci. 38::38798
    [Crossref] [Google Scholar]
  20. Chase ASZ, Cesaretti R. 2019.. Diversity in ancient Maya water management strategies and landscapes at Caracol, Belize, and Tikal, Guatemala. . WIREs Water 6::e1332
    [Crossref] [Google Scholar]
  21. Chase ASZ, Chase D, Chase A. 2020.. Ethics, new colonialism, and lidar data: a decade of lidar in Maya archaeology. . J. Comput. Appl. Archaeol. 3::5162
    [Google Scholar]
  22. Chase ASZ, Weishampel JF. 2016.. Using LiDAR and GIS to investigate water and soil management in the agricultural terracing at Caracol, Belize. . Adv. Archaeol. Pract. 4::35770
    [Crossref] [Google Scholar]
  23. Chase DZ, Chase AF. 2017.. Caracol, Belize, and changing perceptions of ancient Maya society. . J. Archaeol. Res. 25::185249
    [Crossref] [Google Scholar]
  24. Chevance J-B, Evans D, Hofer N, Sakhoeun S, Chhean R. 2019.. Mahendraparvata: an early Angkor-period capital defined through airborne laser scanning at Phnom Kulen. . Antiquity 93::130321
    [Crossref] [Google Scholar]
  25. Cochrane EE, Mills J. 2018.. LiDAR imagery confirms extensive interior land-use on Tutuila, American Sāmoa. . J. Pac. Archaeol. 9::7078
    [Google Scholar]
  26. Coe MD, Diehl RA. 1980.. In the Land of the Olmec. Austin:: Univ. Tex. Press
    [Google Scholar]
  27. Cohen A, Klassen S, Evans D. 2020.. Ethics in archaeological lidar. . J. Comput. Appl. Archaeol. 3::7691
    [Google Scholar]
  28. Cohen AS, Fernandez-Diaz JC, Meeks A. 2022.. Exploring the nature of authority over, and ownership of data generated by archaeological lidar projects in Latin America. . Archaeologies 18::55884
    [Crossref] [Google Scholar]
  29. Coluzzi R, Lanorte A, Lasaponara R. 2010.. On the LiDAR contribution for landscape archaeology and palaeoenvironmental studies: the case study of Bosco dell'Incoronata (Southern Italy). . Adv. Geosci. 24::12532
    [Crossref] [Google Scholar]
  30. Crutchley S, Crow P. 2010.. The Light Fantastic: Using Airborne Lidar in Archaeological Survey. Swindon, UK:: Engl. Herit.
    [Google Scholar]
  31. Cyphers A, Murtha T. 2014.. Early Olmec open spaces at San Lorenzo, Veracruz. . In Mesoamerican Plazas: Arenas of Community and Power, ed. K Tsukamoto, T Inomata , pp. 7189. Tucson:: Univ. Ariz. Press
    [Google Scholar]
  32. David B, Thomas J, eds. 2008.. Handbook of Landscape Archaeology. New York:: Routledge
    [Google Scholar]
  33. Davis DS, Caspari G, Lipo CP, Sanger MC. 2021.. Deep learning reveals extent of Archaic Native American shell-ring building practices. . J. Archaeol. Sci. 132::105433
    [Crossref] [Google Scholar]
  34. Davis DS, Sanger MC. 2021.. Ethical challenges in the practice of remote sensing and geophysical archaeology. . Archaeol. Prospect. 28::27178
    [Crossref] [Google Scholar]
  35. Denham T. 2022.. Landscape archaeology. . In Encyclopedia of Geoarchaeology, ed. AS Gilbert, P Goldberg, RD Mandel, V Aldeias . Cham, Switz.:: Springer. https://doi.org/10.1007/978-3-030-44600-0_168-1
    [Google Scholar]
  36. Devereux BJ, Amable GS, Crow P, Cliff AD. 2005.. The potential of airborne lidar for detection of archaeological features under woodland canopies. . Antiquity 79::64860
    [Crossref] [Google Scholar]
  37. Dominika S, Bartłomiej Ć, Krzysztof W, Dąbek PB, Bastante JM, Izabela W. 2022.. Inca water channel flow analysis based on 3D models from terrestrial and UAV laser scanning at the Chachabamba archaeological site (Machu Picchu National Archaeological Park, Peru). . J. Archaeol. Sci. 137::105515
    [Crossref] [Google Scholar]
  38. Estrada-Belli F, Gilabert-Sansalvador L, Canuto MA, Šprajc I, Fernandez-Diaz JC. 2023.. Architecture, wealth and status in Classic Maya urbanism revealed by airborne lidar mapping. . J. Archaeol. Sci. 157::105835
    [Crossref] [Google Scholar]
  39. Evans D. 2016.. Airborne laser scanning as a method for exploring long-term socio-ecological dynamics in Cambodia. . J. Archaeol. Sci. 74::16475
    [Crossref] [Google Scholar]
  40. Evans D, Fletcher R. 2015.. The landscape of Angkor Wat redefined. . Antiquity 89::140219
    [Crossref] [Google Scholar]
  41. Evans DH, Fletcher RJ, Pottier C, Chevance J-B, Soutif D, et al. 2013.. Uncovering archaeological landscapes at Angkor using lidar. . PNAS 110::12595600
    [Crossref] [Google Scholar]
  42. Fernandez-Diaz J, Cohen AS. 2020.. Whose data is it anyway? Lessons in data management and sharing from resurrecting and repurposing lidar data for archaeology research in Honduras. . J. Comput. Appl. Archaeol. 3::12234
    [Google Scholar]
  43. Fernandez-Diaz JC, Carter WE, Glennie C, Shrestha RL, Pan Z, et al. 2016.. Capability assessment and performance metrics for the Titan multispectral mapping lidar. . Remote Sens. 8::936
    [Crossref] [Google Scholar]
  44. Fernandez-Diaz JC, Carter WE, Shrestha RL, Glennie CL. 2014.. Now you see it…now you don't: understanding airborne mapping LiDAR collection and data product generation for archaeological research in Mesoamerica. . Remote Sens. 6::995110001
    [Crossref] [Google Scholar]
  45. Fernandez-Diaz JC, Cohen AS, González AM, Fisher CT. 2018.. Shifting perspectives and ethical concerns in the era of remote sensing technologies. . SAA Archaeol. Rec. 18::815
    [Google Scholar]
  46. Fernández-Lozano J, Gutiérrez-Alonso G, Fernández-Morán MÁ. 2015.. Using airborne LiDAR sensing technology and aerial orthoimages to unravel roman water supply systems and gold works in NW Spain (Eria valley, León). . J. Archaeol. Sci. 53::35673
    [Crossref] [Google Scholar]
  47. Fernández-Lozano J, Palao-Vicente JJ, Blanco-Sánchez JA, Gutiérrez-Alonso G, Remondo J, et al. 2019.. Gold-bearing Plio-Quaternary deposits: insights from airborne LiDAR technology into the landscape evolution during the early Roman mining works in north-west Spain. . J. Archaeol. Sci. Rep. 24::84355
    [Google Scholar]
  48. Fisher C, Leisz S, Evans D, Wall DH, Galvin K, et al. 2022.. Creating an Earth Archive. . PNAS 119::e2115485119
    [Crossref] [Google Scholar]
  49. Fisher CT, Cohen AS, Fernández-Diaz JC, Leisz SJ. 2017.. The application of airborne mapping LiDAR for the documentation of ancient cities and regions in tropical regions. . Quat. Int. 448::12938
    [Crossref] [Google Scholar]
  50. Fisher CT, Fernández-Diaz JC, Cohen AS, Cruz ON, Gonzáles AM, et al. 2016.. Identifying ancient settlement patterns through LiDAR in the Mosquitia region of Honduras. . PLOS ONE 11::e0159890
    [Crossref] [Google Scholar]
  51. Fleming A. 2006.. Post-processual landscape archaeology: a critique. . Camb. Archaeol. J. 16::26780
    [Crossref] [Google Scholar]
  52. Freeland T, Heung B, Burley DV, Clark G, Knudby A. 2016.. Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga. . J. Archaeol. Sci. 69::6474
    [Crossref] [Google Scholar]
  53. Fujii N, Saito K, Chiba T, Sata I, Yoshinaga T, Tasaki K. 2012.. The new three-dimensional visualization method of heritage sites by lidar data. . Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 39::8792
    [Crossref] [Google Scholar]
  54. Garrison TG, Houston S, Firpi OA. 2019.. Recentering the rural: Lidar and articulated landscapes among the Maya. . J. Anthropol. Archaeol. 53::13346
    [Crossref] [Google Scholar]
  55. Garrison TG, Thompson AE, Krause S, Eshleman S, Fernandez-Diaz JC, et al. 2023.. Assessing the lidar revolution in the Maya lowlands: a geographic approach to understanding feature classification accuracy. . Prog. Phys. Geogr. Earth Environ. 47::27092
    [Crossref] [Google Scholar]
  56. Golden C, Murtha T, Cook B, Shaffer DS, Schroder W, et al. 2016.. Reanalyzing environmental lidar data for archaeology: Mesoamerican applications and implications. . J. Archaeol. Sci. Rep. 9::293308
    [Google Scholar]
  57. Golden C, Scherer AK, Schroder W, Murtha T, Morell-Hart S, et al. 2021.. Airborne lidar survey, density-based clustering, and ancient Maya settlement in the Upper Usumacinta River Region of Mexico and Guatemala. . Remote Sens. 13::4109
    [Crossref] [Google Scholar]
  58. Graves McEwan D, Millican K. 2012.. In search of the middle ground: quantitative spatial techniques and experiential theory in archaeology. . J. Archaeol. Method Theory 19::49194
    [Crossref] [Google Scholar]
  59. Gupta N, Nicholas R. 2022.. Being seen, being heard: ownership of archaeology and digital heritage. . Archaeologies 18::495509
    [Crossref] [Google Scholar]
  60. Guth PL, Van Niekerk A, Grohmann CH, Muller J-P, Hawker L, et al. 2021.. Digital elevation models: terminology and definitions. . Remote Sens. 13::3581
    [Crossref] [Google Scholar]
  61. Hagan JM, Brown AA. 2019.. LiDAR in New Zealand archaeology: prospects and pitfalls. . J. Pac. Archaeol. 10::8091
    [Google Scholar]
  62. Hamilakis Y. 2014.. Archaeology and the Senses: Human Experience, Memory, and Affect. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  63. Hancock S, McGrath C, Lowe C, Davenport I, Woodhouse I. 2021.. Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage. . R. Soc. Open Sci. 8::211166
    [Crossref] [Google Scholar]
  64. Hansen RD, Morales-Aguilar C, Thompson J, Ensley R, Hernández E, et al. 2023.. LiDAR analyses in the contiguous Mirador-Calakmul karst basin, Guatemala: an introduction to new perspectives on regional early Maya socioeconomic and political organization. . Anc. Mesoam. 34::587626
    [Crossref] [Google Scholar]
  65. Hare T, Masson M, Russell B. 2014.. High-density LiDAR mapping of the ancient city of Mayapán. . Remote Sens. 6::906485
    [Crossref] [Google Scholar]
  66. Harmon JM, Leone MP, Prince SD, Snyder M. 2006.. Lidar for archaeological landscape analysis: a case study of two eighteenth-century Maryland plantation sites. . Am. Antiq. 71::64970
    [Crossref] [Google Scholar]
  67. Henry ER, Shields CR, Kidder TR. 2019.. Mapping the Adena-Hopewell landscape in the Middle Ohio Valley, USA: multi-scalar approaches to LiDAR-derived imagery from central Kentucky. . J. Archaeol. Method Theory 26::151355
    [Crossref] [Google Scholar]
  68. Hesse R. 2013.. The changing picture of archaeological landscapes: lidar prospection over very large areas as part of a cultural heritage strategy. . See Opitz & Cowley 2013 , pp. 17183
  69. Hightower JN, Butterfield AC, Weishampel JF. 2014.. Quantifying ancient Maya land use legacy effects on contemporary rainforest canopy structure. . Remote Sens. 6::1071632
    [Crossref] [Google Scholar]
  70. Horn SW III, Ford A. 2019.. Beyond the magic wand: methodological developments and results from integrated Lidar survey at the ancient Maya center El Pilar. . STAR Sci. Technol. Archaeol. Res. 5::16478
    [Google Scholar]
  71. Houston S, Ramírez ER, Garrison TG, Stuart D, Ayala HE, Rosales P. 2021.. A Teotihuacan complex at the Classic Maya city of Tikal, Guatemala. . Antiquity 95::e32
    [Crossref] [Google Scholar]
  72. Howes D, Classen C. 1991.. Sounding sensory profiles. . In The Varieties of Sensory Experience: A Sourcebook in the Anthropology of the Senses, ed. D Howes , pp. 25788. Toronto:: Univ. Tor. Press
    [Google Scholar]
  73. Hutson SR. 2015.. Adapting LiDAR data for regional variation in the tropics: a case study from the Northern Maya Lowlands. . J. Archaeol. Sci. 4::25263
    [Google Scholar]
  74. Inomata T, Fernandez-Diaz JC, Triadan D, García Mollinedo M, Pinzón F, et al. 2021.. Origins and spread of formal ceremonial complexes in the Olmec and Maya regions revealed by airborne lidar. . Nat. Hum. Behav. 5::1487501
    [Crossref] [Google Scholar]
  75. Inomata T, Pinzón F, Ranchos JL, Haraguchi T, Nasu H, et al. 2017.. Archaeological application of airborne LiDAR with object-based vegetation classification and visualization techniques at the lowland Maya site of Ceibal, Guatemala. . Remote Sens. 9::563
    [Crossref] [Google Scholar]
  76. Inomata T, Triadan D, Pinzón F, Aoyama K. 2019.. Artificial plateau construction during the Preclassic period at the Maya site of Ceibal, Guatemala. . PLOS ONE 14::e0221943
    [Crossref] [Google Scholar]
  77. Inomata T, Triadan D, Pinzón F, Burham M, Ranchos JL, et al. 2018.. Archaeological application of airborne LiDAR to examine social changes in the Ceibal region of the Maya lowlands. . PLOS ONE 13::e0191619
    [Crossref] [Google Scholar]
  78. Inomata T, Triadan D, Vázquez López VA, Fernandez-Diaz JC, Omori T, et al. 2020.. Monumental architecture at Aguada Fénix and the rise of Maya civilization. . Nature 582::53033
    [Crossref] [Google Scholar]
  79. Iriarte J, Robinson M, de Souza JG, Damasceno A, da Silva F, et al. 2020.. Geometry by design: contribution of lidar to the understanding of settlement patterns of the mound villages in SW Amazonia. . J. Comput. Appl. Archaeol. 3:(1):15169
    [Google Scholar]
  80. Jalandoni A, Kottermair M, Dixon B, Torres VH. 2022.. Effectiveness of 2020 airborne lidar for identifying archaeological sites and features on Guåhan (Guam). . J. Comput. Appl. Archaeol. 5::25570
    [Google Scholar]
  81. Johnson KM, Ouimet WB. 2014.. Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). . J. Archaeol. Sci. 43::920
    [Crossref] [Google Scholar]
  82. Johnson KM, Ouimet WB. 2018.. An observational and theoretical framework for interpreting the landscape palimpsest through airborne LiDAR. . Appl. Geogr. 91::3244
    [Crossref] [Google Scholar]
  83. Johnson M. 2008.. Ideas of Landscape. Oxford, UK:: Blackwell
    [Google Scholar]
  84. Johnson MH. 2012.. Phenomenological approaches in landscape archaeology. . Annu. Rev. Anthropol. 41::26984
    [Crossref] [Google Scholar]
  85. Jones BD, Bickler SH. 2017.. High resolution LiDAR data for landscape archaeology in New Zealand. . Archaeol. N. Z. 60::3544
    [Google Scholar]
  86. Khan S, Aragão L, Iriarte J. 2017.. A UAV–lidar system to map Amazonian rainforest and its ancient landscape transformations. . Int. J. Remote Sens. 38::231330
    [Crossref] [Google Scholar]
  87. Klassen S, Carter AK, Evans DH, Ortman S, Stark MT, et al. 2021.. Diachronic modeling of the population within the medieval Greater Angkor Region settlement complex. . Sci. Adv. 7::eabf8441
    [Crossref] [Google Scholar]
  88. Klassen S, Weed J, Evans D. 2018.. Semi-supervised machine learning approaches for predicting the chronology of archaeological sites: a case study of temples from medieval Angkor, Cambodia. . PLOS ONE 13::e0205649
    [Crossref] [Google Scholar]
  89. Kokalj Ž, Mast J. 2021.. Space lidar for archaeology? Reanalyzing GEDI data for detection of ancient Maya buildings. . J. Archaeol. Sci. Rep. 36::102811
    [Google Scholar]
  90. Kuna M, Novák D, Bucha Rášová A, Bucha B, Machová B, et al. 2022.. Computing and testing extensive total viewsheds: a case of prehistoric burial mounds in Bohemia. . J. Archaeol. Sci. 142::105596
    [Crossref] [Google Scholar]
  91. Ladefoged TN, McCoy MD, Asner GP, Kirch PV, Puleston CO, et al. 2011.. Agricultural potential and actualized development in Hawai'i: an airborne LiDAR survey of the leeward Kohala field system (Hawai'i Island). . J. Archaeol. Sci. 38::360519
    [Crossref] [Google Scholar]
  92. Laluk NC, Montgomery LM, Tsosie R, McCleave C, Miron R, et al. 2022.. Archaeology and social justice in Native America. . Am. Antiq. 87::65982
    [Crossref] [Google Scholar]
  93. Lasaponara R, Coluzzi R, Gizzi FT, Masini N. 2010.. On the LiDAR contribution for the archaeological and geomorphological study of a deserted medieval village in Southern Italy. . J. Geophys. Eng. 7::15563
    [Crossref] [Google Scholar]
  94. Lozić E. 2021.. Application of airborne LiDAR data to the archaeology of agrarian land use: the case study of the early medieval microregion of Bled (Slovenia). . Remote Sens. 13::3228
    [Crossref] [Google Scholar]
  95. Macrae S, Iannone G. 2016.. Understanding ancient Maya agricultural terrace systems through lidar and hydrological mapping. . Adv. Archaeol. Pract. 4:(3):37192
    [Crossref] [Google Scholar]
  96. Marken DB, Arnauld MC, eds. 2023.. Building an Archaeology of Maya Urbanism: Planning and Flexibility in the American Tropics. Denver:: Univ. Press Colo.
    [Google Scholar]
  97. Masini N, Gizzi FT, Biscione M, Fundone V, Sedile M, et al. 2018.. Medieval archaeology under the canopy with LiDAR. The (re)discovery of a medieval fortified settlement in southern Italy. . Remote Sens. 10::1598
    [Crossref] [Google Scholar]
  98. McCoy MD, Asner GP, Graves MW. 2011.. Airborne lidar survey of irrigated agricultural landscapes: an application of the slope contrast method. . J. Archaeol. Sci. 38::214154
    [Crossref] [Google Scholar]
  99. McCoy MD, Casana J, Hill AC, Laugier EJ, Mulrooney MA, Ladefoged TN. 2021.. Unpiloted aerial vehicle acquired lidar for mapping monumental architecture: a case study from the Hawaiian Islands. . Adv. Archaeol. Pract. 9::16074
    [Crossref] [Google Scholar]
  100. McGrath C, Lowe C, Macdonald M, Hancock S. 2022.. Investigation of very low Earth orbits (VLEOs) for global spaceborne lidar. . CEAS Space J. 14::62536
    [Crossref] [Google Scholar]
  101. Meyer-Heß MF, Pfeffer I, Juergens C. 2022.. Application of convolutional neural networks on digital terrain models for analyzing spatial relations in archaeology. . Remote Sens. 14::2535
    [Crossref] [Google Scholar]
  102. Millhauser JK, Morehart CT. 2016.. The ambivalence of maps: a historical perspective on sensing and representing space in Mesoamerica. . In Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing, ed. M Forte, S Campana , pp. 24768. Cham, Switz:.: Springer
    [Google Scholar]
  103. Mitsumoto J, Ryan J, Yamaguchi Y, Seike A. 2023.. LiDAR survey of the fifth-century Tsukuriyama mounded tomb group in Japan. . Antiquity 97::e6
    [Crossref] [Google Scholar]
  104. Mlekuž D. 2013a.. Messy landscapes: lidar and the practices of landscaping. . See Opitz & Cowley 2013 , pp. 8899
  105. Mlekuž D. 2013b.. Skin deep: LiDAR and good practice of landscape archaeology. . In Good Practice in Archaeological Diagnostics, C Corsi, B Slapšak, F Vermeulen , pp. 11329. Cham, Switz:.: Springer
    [Google Scholar]
  106. Murtha TM, Broadbent EN, Golden C, Scherer A, Schroder W, et al. 2019.. Drone-mounted LidAR survey of Maya settlement and landscape. . Latin Am. Antiq. 30::63036
    [Crossref] [Google Scholar]
  107. Nión-Álvarez S. 2022.. A methodological approach to identify Roman roads using LiDAR sensing technology and aerial orthoimages. The case of viae XIX and XX (NW Iberia). . J. Archaeol. Sci. 45::103612
    [Google Scholar]
  108. Norstedt G, Axelsson A-L, Laudon H, Östlund L. 2020.. Detecting cultural remains in boreal forests in Sweden using airborne laser scanning data of different resolutions. . J. Field Archaeol. 45::1628
    [Crossref] [Google Scholar]
  109. Núñez-Cortés Y, Ruiz-Cubillo P. 2022.. Up the hill and under the canopy: lidar applications for assessing issues of monumentality and socioeconomic status in Lomas Entierros, Costa Rica. . J. Archaeol. Sci. Rep. 45::103566
    [Google Scholar]
  110. Opitz R, Stoddart S, Cifani G. 2007.. LiDAR survey in southern Etruria, Italy: a significant new technique for the study of cultural landscapes. . Eur. Archaeol. 27::24
    [Google Scholar]
  111. Opitz RS. 2013.. An overview of airborne and terrestrial laser scanning in archaeology. . See Opitz & Cowley 2013 , pp. 1331
  112. Opitz RS, Cowley DC, eds. 2013.. Interpreting Archaeological Topography: 3D Data, Visualisation and Observation. Oxford, UK:: Oxbow Books
    [Google Scholar]
  113. Parton P, Clark G. 2022.. Using lidar and Bayesian inference to reconstruct archaeological populations in the Kingdom of Tonga. . J. Archaeol. Sci. Rep. 45::103610
    [Google Scholar]
  114. Peripato V, Levis C, Moreira GA, Gamerman D, ter Steege H, et al. 2023.. More than 10,000 pre-Columbian earthworks are still hidden throughout Amazonia. . Science 382::1039
    [Crossref] [Google Scholar]
  115. Prümers H, Betancourt CJ, Iriarte J, Robinson M, Schaich M. 2022.. Lidar reveals pre-Hispanic low-density urbanism in the Bolivian Amazon. . Nature 606::32528
    [Crossref] [Google Scholar]
  116. Puleston DE. 1983.. The Settlement Survey of Tikal: Tikal Report No. 13. Mus. Monogr. Philadelphia:: Univ. Pa. Mus. Archaeol. Anthropol.
    [Google Scholar]
  117. Punzo Díaz JL, Navarro Sandoval FL. 2022.. Prospección arqueológica de Tzintzuntzan, antigua ciudad de Michoacán, mediante tecnología lidar: primeros resultados. . Arqueol. Iberoam. 49::38
    [Google Scholar]
  118. Reese-Taylor K, Hernández AA, Esquivel AFFC, Monteleone K, Uriarte A, et al. 2016.. Boots on the ground at Yaxnohcah ground-truthing lidar in a complex tropical landscape. . Adv. Archaeol. Pract. 4::31438
    [Crossref] [Google Scholar]
  119. Richards-Rissetto H. 2022.. Technological challenges to practicing 3D ethics in archaeology. . In Digital Heritage and Archaeology in Practice: Data, Ethics, and Professionalism, ed. E Watrall, L Goldstein , pp. 16393. Gainesville:: Univ. Press Fla.
    [Google Scholar]
  120. Ringle WM, Gallareta Negrón T, May Ciau R, Seligson KE, Fernandez-Diaz JC, Ortegón Zapata D. 2021.. Lidar survey of ancient Maya settlement in the Puuc region of Yucatan, Mexico. . PLOS ONE 16::e0249314
    [Crossref] [Google Scholar]
  121. Risbøl O, Gjertsen AK, Skare K. 2006.. Airborne laser scanning of cultural remains in forests: some preliminary results from a Norwegian project. . Br. Archaeol. Rev. 1568::10712
    [Google Scholar]
  122. Risbøl O, Gustavsen L. 2018.. LiDAR from drones employed for mapping archaeology—potential, benefits and challenges. . Archaeol. Prospect. 25::32938
    [Crossref] [Google Scholar]
  123. Risbøl O, Langhammer D, Schlosser Mauritsen E, Seitsonen O. 2020.. Employment, utilization, and development of airborne laser scanning in Fenno-Scandinavian archaeology—a review. . Remote Sens. 12::1411
    [Crossref] [Google Scholar]
  124. Risbøl O, Petersen T, Jerpåsen GB. 2013.. Approaching a mortuary monument landscape using GIS- and ALS-generated 3D models. . Int. J. Herit. Digit. Era 2::50925
    [Crossref] [Google Scholar]
  125. Rochelo MJ, Davenport C, Selch D. 2015.. Revealing pre-historic Native American Belle Glade earthworks in the Northern Everglades utilizing airborne LiDAR. . J. Archaeol. Sci. Rep. 2::62443
    [Google Scholar]
  126. Rosenswig RM, López-Torrijos R. 2018.. Lidar reveals the entire kingdom of Izapa during the first millennium BC. . Antiquity 92::1292309
    [Crossref] [Google Scholar]
  127. Rosenswig RM, López-Torrijos R, Antonelli CE. 2015.. Lidar data and the Izapa polity: new results and methodological issues from tropical Mesoamerica. . Archaeol. Anthropol. Sci. 7::487504
    [Crossref] [Google Scholar]
  128. Rosenswig RM, López-Torrijos R, Antonelli CE, Mendelsohn RR. 2013.. Lidar mapping and surface survey of the Izapa state on the tropical piedmont of Chiapas, Mexico. . J. Archaeol. Sci. 40::1493507
    [Crossref] [Google Scholar]
  129. Rostain S, Dorison A, De Saulieu G, Prümers H, Le Pennec J-L, et al. 2024.. Two thousand years of garden urbanism in the Upper Amazon. . Science 383::18389
    [Crossref] [Google Scholar]
  130. Scarre C, Lawson G, eds. 2006.. Archaeoacoustics. Cambridge, UK:: McDonald Inst. Archaeol. Res., Cambridge Univ.
    [Google Scholar]
  131. Schroder W, Murtha T, Golden C, Anaya Hernández A, Scherer A, et al. 2020.. The lowland Maya settlement landscape: environmental LiDAR and ecology. . J. Archaeol. Sci. Rep. 33::102543
    [Google Scholar]
  132. Scott JC. 1998.. Seeing Like a State: How Certain Schemes to Improve the Human Condition Have Failed. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  133. Sheets PD, Hoopes J, Melson W, McKee BB, Sever T, et al. 1991.. Prehistory and volcanism in the Arenal area, Costa Rica. . J. Field Archaeol. 18::44565
    [Crossref] [Google Scholar]
  134. Sittler B. 2004.. Revealing historical landscapes by using airborne laser scanning: a 3-D modell of ridge and furrow in forests near Rastatt (Germany). . Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 36::25861
    [Google Scholar]
  135. Skeates R, Day J, eds. 2020.. The Routledge Handbook of Sensory Archaeology. New York:: Routledge
    [Google Scholar]
  136. Snitker G, Moser JD, Southerlin B, Stewart C. 2022.. Detecting historic tar kilns and tar production sites using high-resolution, aerial LiDAR-derived digital elevation models: introducing the Tar Kiln Feature Detection workflow (TKFD) using open-access R and FIJI software. . J. Archaeol. Sci. Rep. 41::103340
    [Google Scholar]
  137. Šprajc I, Dunning NP, Štajdohar J, Gómez QH, López IC, et al. 2021.. Ancient Maya water management, agriculture, and society in the area of Chactún, Campeche, Mexico. . J. Anthropol. Archaeol. 61::101261
    [Crossref] [Google Scholar]
  138. Šprajc I, Inomata T, Aveni AF. 2023.. Origins of Mesoamerican astronomy and calendar: evidence from the Olmec and Maya regions. . Sci. Adv. 9::eabq7675
    [Crossref] [Google Scholar]
  139. Šprajc I, Marsetič A, Štajdohar J, Dzul Góngora S, Ball JW, et al. 2022.. Archaeological landscape, settlement dynamics, and sociopolitical organization in the Chactún area of the central Maya Lowlands. . PLOS ONE 17::e0262921
    [Crossref] [Google Scholar]
  140. Stanton TW, Ardren T, Barth NC, Fernandez-Diaz JC, Rohrer P, et al. 2020.. ‘Structure’ density, area, and volume as complementary tools to understand Maya Settlement: an analysis of lidar data along the great road between Coba and Yaxuna. . J. Archaeol. Sci. Rep. 29::102178
    [Google Scholar]
  141. Stenborg P, Schaan DP, Figueiredo CG. 2018.. Contours of the past: LiDAR data expands the limits of late pre-Columbian human settlement in the Santarém region, lower Amazon. . J. Field Archaeol. 43::4457
    [Crossref] [Google Scholar]
  142. Stichelbaut B, Coucke D, Passmore DG, Van de Winkel J, De Mulder G. 2023.. LiDAR and conflict archaeology: the Battle of the Bulge (1944–1945). . Antiquity 97::94563
    [Crossref] [Google Scholar]
  143. Stoner WD. 2017.. Risk, agricultural intensification, political administration, and collapse in the classic period gulf lowlands: a view from above. . J. Archaeol. Sci. 80::8395
    [Crossref] [Google Scholar]
  144. Stoner WD, Stark BL, VanDerwarker A, Urquhart KR. 2021.. Between land and water: hydraulic engineering in the Tlalixcoyan basin, Veracruz, Mexico. . J. Anthropol. Archaeol. 61::101264
    [Crossref] [Google Scholar]
  145. Stott D, Kristiansen SM, Lichtenberger A, Raja R. 2018.. Mapping an ancient city with a century of remotely sensed data. . PNAS 115::E545058
    [Crossref] [Google Scholar]
  146. Sugiyama N, Sugiyama S, Catignani T, Chase ASZ, Fernandez-Diaz JC. 2021.. Humans as geomorphic agents: lidar detection of the past, present and future of the Teotihuacan Valley, Mexico. . PLOS ONE 16::e0257550
    [Crossref] [Google Scholar]
  147. VanValkenburgh P, Cushman KC, Butters LJC, Vega CR, Roberts CB, et al. 2020.. Lasers without lost cities: using drone lidar to capture architectural complexity at Kuelap, Amazonas, Peru. . J. Field Archaeol. 45::S7588
    [Crossref] [Google Scholar]
  148. Verbrugghe G, De Clercq W, Van Eetvelde V. 2017.. Routes across the Civitas Menapiorum: using least cost paths and GIS to locate the Roman roads of Sandy Flanders. . J. Hist. Geogr. 57::7688
    [Crossref] [Google Scholar]
  149. Verschoof-van der Vaart WB, Lambers K. 2019.. Learning to look at LiDAR: the use of R-CNN in the automated detection of archaeological objects in LiDAR data from the Netherlands. . J. Comput. Appl. Archaeol. 2::3140
    [Google Scholar]
  150. Vilbig JM, Sagan V, Bodine C. 2020.. Archaeological surveying with airborne LiDAR and UAV photogrammetry: a comparative analysis at Cahokia Mounds. . J. Archaeol. Sci. Rep. 33::102509
    [Google Scholar]
  151. Wahl D, Anderson L, Estrada-Belli F, Tokovinine A. 2019.. Fire on the mountain: total war in the Maya lowlands. . Am. Geophys. Union Fall Meet. 2019::PP23F-1710 ( Abstr. )
    [Google Scholar]
  152. Waselkov GA, Beebe DA, Cyr H, Chamberlain EL, Mehta JM, Nelson ES. 2022.. History and hydrology: engineering canoe canals in the estuaries of the Gulf of Mexico. . J. Field Archaeol. 47::486500
    [Crossref] [Google Scholar]
  153. Weishampel JF, Blair JB, Knox RG, Dubayah R, Clark DB. 2000.. Volumetric lidar return patterns from an old-growth tropical rainforest canopy. . Int. J. Remote Sens. 21::40915
    [Crossref] [Google Scholar]
  154. Weishampel JF, Hightower JN, Chase AF, Chase DZ, Patrick RA. 2011.. Detection and morphologic analysis of potential below-canopy cave openings in the karst landscape around the Maya polity of Caracol using airborne LiDAR. . J. Cave Karst Stud. 73::18796
    [Crossref] [Google Scholar]
  155. Weishampel JF, Ranson KJ, Harding DJ. 1996.. Remote sensing of forest canopies. . Selbyana 17::614
    [Google Scholar]
  156. Wienhold ML. 2013.. Prehistoric land use and hydrology: a multi-scalar spatial analysis in central Arizona. . J. Archaeol. Sci. 40::85059
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anthro-041222-093758
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error