1932

Abstract

Conservation genetics is the use of genetics to understand and mitigate the threats caused by anthropogenic activities, including habitat loss and fragmentation, wildlife trafficking, and emerging diseases. In this review, we discuss the role of primate conservation genetics in the development of effective conservation strategies, emphasizing the importance of maintaining genetic diversity to enhance adaptive potential and prevent extinction. First, we discuss studies of various primate species that exemplify how genetic data have been instrumental in accurately assessing threat levels, identifying trafficked animals and tracing their geographic origin, and studying how habitat loss affects primate populations. Subsequently, we describe the various molecular tools and analytical approaches employed in these studies. Lastly, we provide a bibliographic review of research in conservation genetics over the last 20 years. We conclude with a brief discussion of the limitations and challenges in this field in developing countries and recommendations for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-041422-114003
2024-10-21
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/anthro/53/1/annurev-anthro-041422-114003.html?itemId=/content/journals/10.1146/annurev-anthro-041422-114003&mimeType=html&fmt=ahah

Literature Cited

  1. Acevedo-Garcés YA, Valencia LM, Di Fiore A, Acevedo-Cendales LD, Rojas W, et al. 2021.. Current and historical genetic structure of the white-footed tamarin (Saguinus leucopus). . In Molecular Ecology and Conservation Genetics of Neotropical Mammals, ed. M Nardelli, JI Túnez , pp. 17197. Cham, Switz:.: Springer
    [Google Scholar]
  2. Allendorf FW, Hohenlohe PA, Luikart G. 2010.. Genomics and the future of conservation genetics. . Nat. Rev. Genet. 11:(10):697709
    [Crossref] [Google Scholar]
  3. Altmann J, Alberts SC, Haines SA, Dubach J, Muruthi P, et al. 1996.. Behavior predicts genetic structure in a wild primate group. . PNAS 93:(12):5797801
    [Crossref] [Google Scholar]
  4. Alves F, Martins FMS, Areias M, Muñoz-Mérida A. 2022.. Automating microsatellite screening and primer design from multi-individual libraries using micro-primers. . Sci. Rep. 12::295
    [Crossref] [Google Scholar]
  5. Anderson C. 1991.. Emerging virus threat. . Nature 351:(9):89
    [Crossref] [Google Scholar]
  6. Andersson AA, Tilley HB, Lau W, Dudgeon D, Bonebrake TC, Dingle C. 2021.. CITES and beyond: illuminating 20 years of global, legal wildlife trade. . Glob. Ecol. Conserv. 26::e01455
    [Google Scholar]
  7. Anthony NM, Clifford SL, Bawe-Johnson M, Abernethy KA, Bruford MW, Wickings EJ. 2007.. Distinguishing gorilla mitochondrial sequences from nuclear integrations and PCR recombinants: guidelines for their diagnosis in complex sequence databases. . Mol. Phylogenet. Evol. 43:(2):55366
    [Crossref] [Google Scholar]
  8. Arandjelovic M, Guschanski K, Schubert G, Harris TR, Thalmann O, et al. 2009.. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. . Mol. Ecol. Resour. 9:(1):2836
    [Crossref] [Google Scholar]
  9. Arandjelovic M, Head J, Kühl H, Boesch C, Robbins MM, et al. 2010.. Effective non-invasive genetic monitoring of multiple wild western gorilla groups. . Biol. Conserv. 143:(7):178091
    [Crossref] [Google Scholar]
  10. Arandjelovic M, Vigilant L. 2018.. Non-invasive genetic censusing and monitoring of primate populations. . Am. J. Primatol. 80:(3):e22743
    [Crossref] [Google Scholar]
  11. Arulandhu AJ, Staats M, Hagelaar R, Voorhuijzen MM, Prins TW, Scholtens I, et al. 2017.. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. . Gigascience 6:(10):gix080
    [Crossref] [Google Scholar]
  12. Ayala-Burbano PA, Galetti PM Jr., Wormell D, Pissinatti A, Marques MC, de Freitas PD. 2020.. Studbook and molecular analyses for the endangered black-lion-tamarin; an integrative approach for assessing genetic diversity and driving management in captivity. . Sci. Rep. 10::6781
    [Crossref] [Google Scholar]
  13. Barido-Sottani J, Bošková V, Du Plessis L, Kühnert D, Magnus C, et al. 2018.. Taming the BEAST—a community teaching material resource for BEAST 2. . Syst. Biol. 67:(1):17074
    [Crossref] [Google Scholar]
  14. Barrett MA, Brown JL, Junge RE, Yoder AD. 2013.. Climate change, predictive modeling and lemur health: assessing impacts of changing climate on health and conservation in Madagascar. . Biol. Conserv. 157::40922
    [Crossref] [Google Scholar]
  15. Blair ME, Gutierrez-Espeleta GA, Melnick DJ. 2013.. Subspecies of the Central American squirrel monkey (Saimiri oerstedii) as units for conservation. . Int. J. Primatol. 34:(1):8698
    [Crossref] [Google Scholar]
  16. Berger A, Bruschek M, Grethen C, Sperl W, Kofler B. 2001.. Poor storage and handling of tissue mimics mitochondrial DNA depletion. . Diagn. Mol. Pathol. 10:(1):5559
    [Crossref] [Google Scholar]
  17. Boubli JP, Byrne H, Ferreira da Silva MJ, Silva-Júnior J, Costa Araújo R, et al. 2019.. On a new species of titi monkey (Primates: Plecturocebus Byrne et al., 2016), from Alta Floresta, southern Amazon, Brazil. . Mol. Phylogenet. Evol. 132::11737
    [Crossref] [Google Scholar]
  18. Boubli JP, Ferreira da Silva MJ, Amado MV, Hrbek T, Pontual FB, Farias IP. 2008.. A taxonomic reassessment of Cacajao melanocephalus Humboldt (1811), with the description of two new species. . Int. J. Primatol. 29:(3):72341
    [Crossref] [Google Scholar]
  19. Boubli JP, Rylands AB, Farias IP, Alfaro ME, Lynch-Alfaro J. 2012.. Cebus phylogenetic relationships: a preliminary reassessment of the diversity of the untufted capuchin monkeys. . Am. J. Primatol. 74:(4):38193
    [Crossref] [Google Scholar]
  20. Boyle SA, Smith AT. 2010.. Behavioral modifications in northern bearded saki monkeys (Chiropotes satanas chiropotes) in forest fragments of central Amazonia. . Primates 51:(1):4351
    [Crossref] [Google Scholar]
  21. Bradley BJ, Lawler RR. 2011.. Linking genotypes, phenotypes, and fitness in wild primate populations. . Evol. Anthropol. 20:(3):10419
    [Crossref] [Google Scholar]
  22. Byrne H, Rylands AB, Carneiro JC, Alfaro JWL, Bertuol F, et al. 2016.. Phylogenetic relationships of the New World titi monkeys (Callicebus): first appraisal of taxonomy based on molecular evidence. . Front. Zool. 13::10
    [Crossref] [Google Scholar]
  23. Camacho-Sanchez M, Burraco P, Gomez-Mestre I, Leonard JA. 2013.. Preservation of RNA and DNA from mammal samples under field conditions. . Mol. Ecol. Resour. 13:(4):66373
    [Crossref] [Google Scholar]
  24. Carretero-Pinzón X, Defler TR, McAlpine CA, Rhodes JR. 2016.. What do we know about the effect of patch size on primate species across life history traits?. Biodivers. Conserv. 25:(1):3766
    [Crossref] [Google Scholar]
  25. Carvalho Brcko I, Carneiro J, Ruiz-García M, Boubli JP, de Sousa e Silva-Júnior J, et al. 2022.. Phylogenetics and an updated taxonomic status of the Tamarins (Callitrichinae, Cebidae). . Mol. Phylogenet. Evol. 173::107504
    [Crossref] [Google Scholar]
  26. Casacci LP, Barbero F, Balletto E. 2014.. The “evolutionarily significant unit” concept and its applicability in biological conservation. . Ital. J. Zool. 81:(2):18293
    [Crossref] [Google Scholar]
  27. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015.. Accelerated modern human–induced species losses: entering the sixth mass extinction. . Sci. Adv. 1:(5):e1400253
    [Crossref] [Google Scholar]
  28. Chac LD, Thinh BB. 2023.. Species identification through DNA barcoding and its applications: a review. . Biol. Bull. 50:(6):114356
    [Crossref] [Google Scholar]
  29. Chapais B. 2001.. Primate nepotism: What is the explanatory value of kin selection?. Int. J. Primatol. 22:(2):20329
    [Crossref] [Google Scholar]
  30. Chapple DG, Ritchie PA. 2013.. A retrospective approach to testing the DNA barcoding method. . PLOS ONE 8:(11):77882
    [Crossref] [Google Scholar]
  31. Chaves PB, Magnus T, Jerusalinsky L, Talebi M, Strier KB, et al. 2019.. Phylogeographic evidence for two species of muriqui (genus Brachyteles). . Am. J. Primatol. 81:(12):e23066
    [Crossref] [Google Scholar]
  32. Chaves PB, Strier KB, Di Fiore A. 2023.. Paternity data reveal high MHC diversity among sires in a polygynandrous, egalitarian primate. . Proc. R. Soc. B 290::20231035
    [Crossref] [Google Scholar]
  33. Chiou KL, Bergey CM. 2018.. Methylation-based enrichment facilitates low-cost, noninvasive genomic scale sequencing of populations from feces. . Sci. Rep. 8::1975
    [Crossref] [Google Scholar]
  34. Clifford SL, Anthony NM, Bawe-Johnson M, Abernethy KA, Tutin CEG, et al. 2004.. Mitochondrial DNA phylogeography of western lowland gorillas (Gorilla gorilla gorilla). . Mol. Ecol. 13:(6):155165
    [Crossref] [Google Scholar]
  35. Constable JL, Ashley MV, Goodall J, Pusey AE. 2001.. Noninvasive paternity assignment in Gombe chimpanzees. . Mol. Ecol. 10:(5):1279300
    [Crossref] [Google Scholar]
  36. Conv. Biol. Divers. 2022.. Final text of Kunming-Montreal Global Biodiversity Framework available in all languages. Press Release , Conv. Biol. Divers., Montreal, Can.:, Dec. 22. https://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222
    [Google Scholar]
  37. Costa-Araújo R, de Melo FR, Canale GR, Hernández-Rangel SM, Messias MR, et al. 2019.. The Munduruku marmoset: a new monkey species from southern Amazonia. . PeerJ 7::e7019
    [Crossref] [Google Scholar]
  38. Costa-Araújo R, de Sousa e Silva-Júnior J, Boubli JP, Rossi RV, Canale GR, et al. 2021.. An integrative analysis uncovers a new, pseudo-cryptic species of Amazonian marmoset (Primates: Callitrichidae: Mico) from the arc of deforestation. . Sci. Rep. 11::15665
    [Crossref] [Google Scholar]
  39. Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK. 2000.. Considering evolutionary processes in conservation biology. . TREE 15:(7):29095
    [Google Scholar]
  40. Dayama G, Zhou W, Prado-Martinez J, Marques-Bonet T, Mills RE. 2020.. Characterization of nuclear mitochondrial insertions in the whole genomes of primates. . NAR Genom. Bioinform. 2:(4):lqaa089
    [Crossref] [Google Scholar]
  41. De Barba M, Miquel C, Lobréaux S, Quenette PY, Swenson JE, Taberlet P. 2017.. High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. . Mol. Ecol. Resour. 17:(3):492507
    [Crossref] [Google Scholar]
  42. De Guia APO, Saitoh T. 2007.. The gap between the concept and definitions in the evolutionarily significant unit: the need to integrate neutral genetic variation and adaptive variation. . Ecol. Res. 22:(4):60412
    [Crossref] [Google Scholar]
  43. De Winter II, Umanets A, Gort G, Nieuwland WH, van Hooft P, et al. 2020.. Effects of seasonality and previous logging on faecal helminth-microbiota associations in wild lemurs. . Sci. Rep. 10::16818
    [Crossref] [Google Scholar]
  44. Desalle R, Amato G. 2017.. Conservation genetics, precision conservation, and de-extinction. . Hastings Cent. Rep. 47::S1823
    [Crossref] [Google Scholar]
  45. Di Fiore A. 2009.. Genetic approaches to the study of dispersal and kinship in New World primates. . In South American Primates, ed. PA Garber, A Estrada, JC Bicca-Marques, EW Heymann, KB Strier , pp. 21150. New York:: Springer
    [Google Scholar]
  46. Di Rocco F, Anello M. 2021.. The use of forensic DNA on the conservation of neotropical mammals. . In Molecular Ecology and Conservation Genetics of Neotropical Mammals, ed. M Nardelli, JI Túnez , pp. 8598. Cham, Switz:.: Springer
    [Google Scholar]
  47. Dipita AD, Missoup AD, Tindo M, Gaubert P. 2022.. DNA-typing improves illegal wildlife trade surveys: tracing the Cameroonian bushmeat trade. . Biol. Conserv. 269::109552
    [Crossref] [Google Scholar]
  48. Duval K, Aubin RA, Elliott J, Gorn-Hondermann I, Birnboim HC, et al. 2010.. Optimized manual and automated recovery of amplifiable DNA from tissues preserved in buffered formalin and alcohol-based fixative. . Forensic Sci. Int. Genet. 4:(2):8088
    [Crossref] [Google Scholar]
  49. Estrada A, Garber PA. 2022.. Principal drivers and conservation solutions to the impending primate extinction crisis: introduction to the special issue. . Int. J. Primatol. 43:(Spec. Issue):114
    [Crossref] [Google Scholar]
  50. Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, et al. 2017.. Impending extinction crisis of the world's primates: why primates matter. . Sci. Adv. 3:(1):e1600946
    [Crossref] [Google Scholar]
  51. Fedigan LM, Jack K. 2001.. Neotropical primates in a regenerating Costa Rican dry forest: a comparison of howler and capuchin population patterns. . Int. J. Primatol. 22::689713
    [Crossref] [Google Scholar]
  52. Flatt T, Heyland A. 2011.. Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-Offs. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  53. Foran DR. 2006.. Relative degradation of nuclear and mitochondrial DNA: an experimental approach. . J. Forensic Sci. 51:(4):76670
    [Crossref] [Google Scholar]
  54. Frandsen P, Fontsere C, Nielsen SV, Hanghøj K, Castejon-Fernandez N, Lizano E, et al. 2020.. Targeted conservation genetics of the endangered chimpanzee. . Heredity 125:(1/2):1527
    [Crossref] [Google Scholar]
  55. Frankham R. 2019.. Conservation genetics. . In Encyclopedia of Ecology, Vol. 1, ed. B Fath , pp. 38290. Amsterdam:: Elsevier. , 2nd ed..
    [Google Scholar]
  56. Frankham R, Bradshaw CJA, Brook BW. 2014.. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. . Biol. Conserv. 170::5663
    [Crossref] [Google Scholar]
  57. Galezo AA, Nolas MA, Fogel AS, Mututua RS, Warutere JK, et al. 2022.. Mechanisms of inbreeding avoidance in a wild primate. . Curr. Biol. 32:(7):160715.e4
    [Crossref] [Google Scholar]
  58. Gani M, Rovie-Ryan JJ, Sitam FT, Kulaimi NAM, Zheng CC, et al. 2021.. Taxonomic and genetic assessment of captive white-handed gibbons (Hylobates lar) in Peninsular Malaysia with implications towards conservation translocation and reintroduction programmes. . Zookeys 1076::2541
    [Crossref] [Google Scholar]
  59. Gaubert P, Njiokou F, Olayemi A, Pagani P, Dufour S, Danquah E, et al. 2015.. Bushmeat genetics: setting up a reference framework for the DNA typing of African forest bushmeat. . Mol. Ecol. Res. 15:(3):63351
    [Crossref] [Google Scholar]
  60. Gerloff U, Hartung B, Fruth B, Hohmann G, Tautz D. 1999.. Intracommunity relationships, dispersal pattern and paternity success in a wild living community of bonobos (Pan paniscus) determined from DNA analysis of faecal samples. . Proc. R. Soc. B 266:(1424):118995
    [Crossref] [Google Scholar]
  61. Ghobrial L, Lankester F, Kiyang JA, Akih AE, de Vries S, et al. 2010.. Tracing the origins of rescued chimpanzees reveals widespread chimpanzee hunting in Cameroon. . BMC Ecol. 10::2
    [Crossref] [Google Scholar]
  62. Gilbert T, Soorae PS. 2017.. The role of zoos and aquariums in reintroductions and other conservation translocations. . Int. Zoo Yearb. 51:(1):914
    [Crossref] [Google Scholar]
  63. Gippoliti S. 2019.. Species delimitation in mammals: a comment on Zachos. 2018.. Mamm. Biol. 94:(1):12731
    [Google Scholar]
  64. Godoy I, Vigilant L, Perry SE. 2016.. Inbreeding risk, avoidance and costs in a group-living primate, Cebus capucinus. . Behav. Ecol. Sociobiol. 70::160111
    [Crossref] [Google Scholar]
  65. Gonder MK, Locatelli S, Ghobrial L, Mitchell MW, Kujawski JT, et al. 2011.. Evidence from Cameroon reveals differences in the genetic structure and histories of chimpanzee populations. . PNAS 108:(12):476671
    [Crossref] [Google Scholar]
  66. Goossens B, Funk SM, Vidal C, Latour S, Jamart A, et al. 2002.. Measuring genetic diversity in translocation programmes: principles and application to a chimpanzee release project. . Anim. Conserv. 5:(3):22536
    [Crossref] [Google Scholar]
  67. Graham EAM, Turk EE, Rutty GN. 2008.. Room temperature DNA preservation of soft tissue for rapid DNA extraction: an addition to the disaster victim identification investigators toolkit?. Forensic Sci. Int. Genet. 2:(1):2934
    [Crossref] [Google Scholar]
  68. Graham TL, Matthews HD, Turner SE. 2016.. A global-scale evaluation of primate exposure and vulnerability to climate change. . Int. J. Primatol. 37:(2):15874
    [Crossref] [Google Scholar]
  69. Grebe NM, Hirwa JP, Stoinski TS, Vigilant L, Rosenbaum S, Kalan AK. 2022.. Mountain gorillas maintain strong affiliative biases for maternal siblings despite high male reproductive skew and extensive exposure to paternal kin. . eLife 11::e80822
    [Crossref] [Google Scholar]
  70. Green MR, Sambrook J. 2012.. Molecular Cloning: A Laboratory Manual. New York:: Cold Spring Harbor Lab. Press. , 4th ed..
    [Google Scholar]
  71. Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, et al. 2013.. Next-generation museomics disentangles one of the largest primate radiations. . Syst. Biol. 62:(4):53954
    [Crossref] [Google Scholar]
  72. Gust DA, McCaster T, Gordon TP, Gergits WF, Casna NJ, McClure HM. 1998.. Paternity in sooty mangabeys. . Int. J. Primatol. 19:(1):8394
    [Crossref] [Google Scholar]
  73. Gutiérrez EE, Garbino GS. 2018.. Species delimitation based on diagnosis and monophyly, and its importance for advancing mammalian taxonomy. . Zool. Res. 39:(5):3018
    [Crossref] [Google Scholar]
  74. Hajibabaei M, Singer GAC, Hickey DA. 2006.. Benchmarking DNA barcodes: an assessment using available primate sequences. . Genome 49:(7):85154
    [Crossref] [Google Scholar]
  75. Hebert PDN, Ratnasingham S, de Waard JR. 2003.. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. . Proc. R. Soc. London B 270:(Suppl. 1):S9699
    [Google Scholar]
  76. Hernandez-Rodriguez J, Arandjelovic M, Lester J, de Filippo C, Weihmann A, et al. 2018.. The impact of endogenous content, replicates and pooling on genome capture from faecal samples. . Mol. Ecol. Resour. 18:(2):31933
    [Crossref] [Google Scholar]
  77. Hoban S, Bruford M, D'Urban Jackson J, Lopes-Fernandes M, Heuertz M, et al. 2020.. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. . Biol. Conserv. 248::108654
    [Crossref] [Google Scholar]
  78. Honess PE, Macdonald DW. 2011.. Marking and radio-tracking primates. . In Field and Laboratory Methods in Primatology: A Practical Guide, ed. DJ Curtis, JM Setchell , pp. 189206. Cambridge, UK:: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  79. Hvilsom C, Frandsen P, Børsting C, Carlsen F, Sallé B, et al. 2013.. Understanding geographic origins and history of admixture among chimpanzees in European zoos, with implications for future breeding programmes. . Heredity 110:(6):58693
    [Crossref] [Google Scholar]
  80. Inoue E, Inoue-Murayama M, Takenaka O, Nishida T. 2007.. Wild chimpanzee infant urine and saliva sampled noninvasively usable for DNA analyses. . Primates 48:(2):156
    [Crossref] [Google Scholar]
  81. IUCN (Int. Union Conserv. Nat.). 2012.. Red List Categories and Criteria: Version 3.1. Gland, Switz./Cambridge, UK:: IUCN. , 2nd ed.. https://portals.iucn.org/library/node/10315
    [Google Scholar]
  82. Johnson JA, Altwegg R, Evans DM, Ewen JG, Gordon IJ, et al. 2016.. Is there a future for genome-editing technologies in conservation?. Anim. Conserv. 19:(2):97101
    [Crossref] [Google Scholar]
  83. Johnson PCD, Haydon DT. 2007.. Maximum-likelihood estimation of allelic dropout and false allele error rates from microsatellite genotypes in the absence of reference data. . Genetics 175:(2):82742
    [Crossref] [Google Scholar]
  84. Jolly CJ, Müller AE, Phillips-Conroy JE. 2011.. Trapping primates. . In Field and Laboratory Methods in Primatology: A Practical Guide, ed. DJ Curtis, JM Setchell , pp. 13346. Cambridge, UK:: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  85. Kappeler PM, Schäffler L. 2008.. The lemur syndrome unresolved: extreme male reproductive skew in sifakas (Propithecus verreauxi), a sexually monomorphic primate with female dominance. . Behav. Ecol. Sociobiol. 62:(6):100715
    [Crossref] [Google Scholar]
  86. Kheng V, Zichello JM, Lumbantobing DN, Lawalata SZS, Andayani N, Melnick DJ. 2018.. Phylogeography, population structure, and conservation of the Javan gibbon (Hylobates moloch). . Int. J. Primatol. 39:(1):526
    [Crossref] [Google Scholar]
  87. Köster PC, Dashti A, Bailo B, Muadica AS, Maloney JG, et al. 2021.. Occurrence and genetic diversity of protist parasites in captive non-human primates, zookeepers, and free-living sympatric rats in the Córdoba Zoo Conservation Centre, Southern Spain. . Animals 11:(3):700
    [Crossref] [Google Scholar]
  88. Kuang W, Zinner D, Li Y, Yao X, Roos C, Yu L. 2023.. Recent advances in genetics and genomics of snub-nosed monkeys (Rhinopithecus) and their implications for phylogeny, conservation, and adaptation. . Genes 14:(5):985
    [Crossref] [Google Scholar]
  89. Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, et al. 2023.. A global catalog of whole-genome diversity from 233 primate species. . Science 380:(6648):90613
    [Crossref] [Google Scholar]
  90. Kutsukake N, Nunn CL. 2006.. Comparative tests of reproductive skew in male primates: the roles of demographic factors and incomplete control. . Behav. Ecol. Sociobiol. 60:(5):695706
    [Crossref] [Google Scholar]
  91. Lan L-Y, Hong Q-X, Gao S-M, Li Q, You Y-Y, et al. 2023.. Gut microbiota of skywalker hoolock gibbons (Hoolock tianxing) from different habitats and in captivity: implications for gibbon health. . Am. J. Primatol. 85:(4):e23468
    [Crossref] [Google Scholar]
  92. Lande R. 1988.. Genetics and demography in biological conservation. . Science 241:(4872):145560
    [Crossref] [Google Scholar]
  93. Lande R. 1998.. Anthropogenic, ecological and genetic factors in extinction and conservation. . Rev. Popul. Ecol. 40:(3):25969
    [Crossref] [Google Scholar]
  94. Larsen PA, Campbell CR, Yoder AD. 2014.. Next-generation approaches to advancing eco-immunogenomic research in critically endangered primates. . Mol. Ecol. Resour. 14:(6):1198209
    [Crossref] [Google Scholar]
  95. Launhardt K, Borries C, Hardt C, Epplen JT, Winkler P. 2001.. Paternity analysis of alternative male reproductive routes among the langurs (Semnopithecus entellus) of Ramnagar. . Anim. Behav. 61:(1):5364
    [Crossref] [Google Scholar]
  96. Leaché AD, Fujita MK, Minin VN, Bouckaert RR. 2014.. Species delimitation using genome-wide SNP data. . Syst. Biol. 63:(4):53442
    [Crossref] [Google Scholar]
  97. Lima MGM, Buckner JC, de Sousa e Silva-Júnior J, Aleixo A, Martins AB, et al. 2017.. Capuchin monkey biogeography: understanding Sapajus Pleistocene range expansion and the current sympatry between Cebus and Sapajus. . J. Biogeogr. 44:(4):81020
    [Crossref] [Google Scholar]
  98. Liu Z, Tan X, Orozco-TerWengel P, Zhou X, Zhang L, et al. 2018.. Population genomics of wild Chinese rhesus macaques reveals a dynamic demographic history and local adaptation, with implications for biomedical research. . Gigascience 7:(9):giy106
    [Google Scholar]
  99. Lopes GP, Rohe F, Bertuol F, Polo E, Lima IJ, et al. 2023.. Taxonomic review of Saguinus mystax (Spix, 1823) (Primates, Callitrichidae), and description of a new species. . PeerJ 11::e14526
    [Crossref] [Google Scholar]
  100. Maldonado AM, Soto-Calderón ID, Hinek A, Moreno-Sierra AM, Lafon T, et al. 2023.. Conservation status of the Nancy Ma's owl monkey (Aotus nancymaae, Hershkovitz, 1983) on the Colombian–Peruvian Amazon border. . In Owl Monkeys: Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas, ed. E Fernandez-Duque , pp. 62347. Cham, Switz:.: Springer
    [Google Scholar]
  101. Marquès Gomila C, Kiene F, Klein A, Kessler SE, Zohdy S, et al. 2023.. Host-related and environmental factors influence long-term ectoparasite infestation dynamics of mouse lemurs in northwestern Madagascar. . Am. J. Primatol. 85:(6):e23494
    [Crossref] [Google Scholar]
  102. Mazur P. 1970.. Cryobiology: the freezing of biological systems. . Science 168:(3934):93949
    [Crossref] [Google Scholar]
  103. McDonald MM, Cunneyworth PMK, Anderson AG, Wroblewski E. 2023.. Wild origins and mitochondrial genetic diversity of Angolan colobus monkeys (Colobus angolensis) in AZA-accredited zoos and its implications for ex situ population management. . Zoo Biol. 42:(5):66874
    [Crossref] [Google Scholar]
  104. Michaud CL, Foran DR. 2011.. Simplified field preservation of tissues for subsequent DNA analyses. . J. Forensic Sci. 56:(4):84652
    [Crossref] [Google Scholar]
  105. Minhós T, Wallace E, Ferreira da Silva MJ, RM, Carmo M, et al. 2013.. DNA identification of primate bushmeat from urban markets in Guinea-Bissau and its implications for conservation. . Biol. Conserv. 167::4349
    [Crossref] [Google Scholar]
  106. Montero BK, Refaly E, Ramanamanjato JB, Randriatafika F, Rakotondranary SJ, et al. 2019.. Challenges of next-generation sequencing in conservation management: insights from long-term monitoring of corridor effects on the genetic diversity of mouse lemurs in a fragmented landscape. . Evol. Appl. 12:(3):42542
    [Crossref] [Google Scholar]
  107. Moraes AM, Ruiz-Miranda CR, Ribeiro MC, Grativol AD, Carvalho CD, et al. 2017.. Temporal genetic dynamics of reintroduced and translocated populations of the endangered golden lion tamarin (Leontopithecus rosalia). . Conserv. Genet. 18:(5):9951009
    [Crossref] [Google Scholar]
  108. Morin PA, Chambers KE, Boesch C, Vigilant L. 2001.. Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). . Mol. Ecol. 10:(7):183544
    [Crossref] [Google Scholar]
  109. Moritz C. 1994.. Defining “evolutionarily significant units” for conservation. . Trends. Ecol. Evol. 9:(10):37375
    [Crossref] [Google Scholar]
  110. Mouginot M, Cheng L, Wilson ML, Feldblum JT, Städele V, et al. 2023.. Reproductive inequality among males in the genus Pan. . Philos. Trans. R. Soc. B 378:(1883):20220301
    [Crossref] [Google Scholar]
  111. Mundy NI, Pissinatti A, Woodruff DS. 2000.. Multiple nuclear insertions of mitochondrial cytochrome b sequences in Callitrichine primates. . Mol. Biol. Evol. 17:(7):107580
    [Crossref] [Google Scholar]
  112. Muniz L, Perry S, Manson JH, Gilkenson H, Gros-Louis J, Vigilant L. 2010.. Male dominance and reproductive success in wild white-faced capuchins (Cebus capucinus) at Lomas Barbudal, Costa Rica. . Am. J. Primatol. 72:(12):111830
    [Crossref] [Google Scholar]
  113. Muniz L, Vigilant L. 2008.. Isolation and characterization of microsatellite markers in the white-faced capuchin monkey (Cebus capucinus) and cross-species amplification in other New World monkeys. . Mol. Ecol. Resour. 8::4025
    [Crossref] [Google Scholar]
  114. Muñoz-Lora ML, Gómez-Cadenas K, Falla AC, Soto-Calderón ID. 2020.. Trends in the use of studbooks in captive breeding programs of neotropical primates. . Neotrop. Primates 26::3040
    [Crossref] [Google Scholar]
  115. Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M, et al. 2017.. Morphometric, behavioral, and genomic evidence for a new orangutan species. . Curr. Biol. 27:(22):348798.e10
    [Crossref] [Google Scholar]
  116. Nowak MG, Rianti P, Wich SA, Meijaard E, Fredriksson G. 2023.. Pongo tapanuliensis (amended version of 2017 assessment). . Red List Assess., IUCN (Int. Union Conserv. Nat.). https://doi.org/10.2305/IUCN.UK.2023-1.RLTS.T120588639A247632253.en
  117. Nsubuga AM, Robbins MM, Roeder AD, Morin PA, Boesch C, Vigilant L. 2004.. Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. . Mol. Ecol. 13:(7):208994
    [Crossref] [Google Scholar]
  118. Oklander LI, Caputo M, Fernández GP, Jerusalinsky L, de Oliveira SF, et al. 2022.. Gone with the water: the loss of genetic variability in black and gold howler monkeys (Alouatta caraya) due to dam construction. . Front. Ecol. Evol. 10::85
    [Crossref] [Google Scholar]
  119. Oklander LI, Caputo M, Solari A, Corach D. 2020.. Genetic assignment of illegally trafficked neotropical primates and implications for reintroduction programs. . Sci. Rep. 10::3676
    [Crossref] [Google Scholar]
  120. Oklander LI, Kowalewski MM, Corach D. 2010.. Genetic consequences of habitat fragmentation in black-and-gold howler (Alouatta caraya) populations from northern Argentina. . Int. J. Primatol. 31:(5):81332
    [Crossref] [Google Scholar]
  121. Oklander LI, Kowalewski MM, Corach D. 2014.. Male reproductive strategies in black and gold howler monkeys (Alouatta caraya). . Am. J. Primatol. 76:(1):4355
    [Crossref] [Google Scholar]
  122. Oklander LI, Marino M, Zunino GE, Corach D. 2004.. Preservation and extraction of DNA from feces in howler monkeys (Alouatta caraya). . Neotrop. Primates 12:(2):5963
    [Crossref] [Google Scholar]
  123. Oklander LI, Willoughby JR, Corach D, Cortés-Ortiz L. 2021.. Using genetic diversity estimates in the assessment of the conservation status of neotropical primates. . In Molecular Ecology and Conservation Genetics of Neotropical Mammals, ed. M Nardelli, JI Túnez , pp. 26175. Cham, Switz:.: Springer
    [Google Scholar]
  124. Palsbøll PJ, Berube M, Allendorf FW. 2007.. Identification of management units using population genetic data. . TREE 22:(1):1116
    [Google Scholar]
  125. Paul A, Kuester J. 2004.. The impact of kinship on mating and reproduction. . In Kinship and Behavior in Primates, ed. B Chapais, CM Berman , pp. 27191. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  126. Pedersen AB, Davies TJ. 2009.. Cross-species pathogen transmission and disease emergence in primates. . Ecohealth 6:(4):496508
    [Crossref] [Google Scholar]
  127. Pizzutto CS, Colbachini H, Jorge-Neto PN. 2021.. One conservation: the integrated view of biodiversity conservation. . Anim. Reprod. 18:(2):e20210024
    [Crossref] [Google Scholar]
  128. Presti FT, Guedes NMR, Antas PTZ, Miyaki CY. 2015.. Population genetic structure in hyacinth macaws (Anodorhynchus hyacinthinus) and identification of the probable origin of confiscated individuals. . J. Hered. 106::491502
    [Crossref] [Google Scholar]
  129. Quéméré E, Hibert F, Miquel C, Lhuillier E, Rasolondraibe E, et al. 2013.. A DNA metabarcoding study of a primate dietary diversity and plasticity across its entire fragmented range. . PLOS ONE 8:(3):e58971
    [Crossref] [Google Scholar]
  130. Ramón-Laca A, Soriano L, Gleeson D, Godoy JA. 2015.. A simple and effective method for obtaining mammal DNA from faeces. . Wildl. Biol. 21:(4):195203
    [Crossref] [Google Scholar]
  131. Rashid NRA, Ali ME, Hamid SBA, Rahman MM, Razzak MA, et al. 2015.. A suitable method for the detection of a potential fraud of bringing macaque monkey meat into the food chain. . Food Addit. Contam. A 32:(7):101322
    [Crossref] [Google Scholar]
  132. Ratnasingham S, Hebert PDN. 2007.. BOLD: the Barcode of Life Data System ( http://www.barcodinglife.org). . Mol. Ecol. Notes 7:(3):35564
    [Crossref] [Google Scholar]
  133. Rönn AC, Andrés O, López-Giráldez F, Johnsson-Glans C, Verschoor EJ, et al. 2009.. First generation microarray system for identification of primate species subject to bushmeat trade. . Endanger. Species Res. 9:(2):13342
    [Crossref] [Google Scholar]
  134. Ross CT. 1998.. Primate life histories. . Evol. Anthropol. 6::5463
    [Crossref] [Google Scholar]
  135. Ross CT, Jaeggi AV, Borgerhoff Mulder M, Smith JE, Smith EA, et al. 2020.. The multinomial index: a robust measure of reproductive skew. . Proc. R. Soc. B 287::20202025
    [Crossref] [Google Scholar]
  136. Roy D, Lehnert SJ, Venney CJ, Walter R, Heath DD. 2021.. NGS-μsat: bioinformatics framework supporting high throughput microsatellite genotyping from next generation sequencing platforms. . Conserv. Genet. Resour. 13:(2):16173
    [Crossref] [Google Scholar]
  137. Ruiz-García M, Sánchez-Castillo S, Castillo MI, Luengas K, Ortega JM, et al. 2019.. The mystery of the origins of Cebus albifrons malitiosus and Cebus albifronshypoleucus: Mitogenomics and microsatellite analyses revealed an amazing evolutionary history of the Northern Colombian white-fronted capuchins. . Mitochondrial DNA A 30:(3):52547
    [Crossref] [Google Scholar]
  138. Schmidt JM, de Manuel M, Marques-Bonet T, Castellano S, Andrés AM. 2019.. The impact of genetic adaptation on chimpanzee subspecies differentiation. . PLOS Genet. 15:(11):e1008485
    [Crossref] [Google Scholar]
  139. Schneider J, Brun L, Taberlet P, Fumagalli L, van de Waal E. 2023.. Molecular assessment of dietary variation in neighbouring primate groups. . Methods Ecol. Evol. 14:(8):192536
    [Crossref] [Google Scholar]
  140. Simons ND, Lorenz JG, Sheeran LK, Li JH, Xia DP, Wagner RS. 2012.. Noninvasive saliva collection for DNA analyses from free-ranging Tibetan macaques (Macaca thibetana). . Am. J. Primatol. 74:(11):106470
    [Crossref] [Google Scholar]
  141. Smart U, Cihlar JC, Budowle B. 2021.. International wildlife trafficking: a perspective on the challenges and potential forensic genetics solutions. . Forensic Sci. Int. Genet. 54::102551
    [Crossref] [Google Scholar]
  142. Smiley T, Spelman L, Lukasik-Braum M, Mukherjee J, Kaufman G, et al. 2010.. Noninvasive saliva collection techniques for free-ranging mountain gorillas and captive eastern gorillas. . J. Zoo Wildl. Med. 41:(2):2019
    [Crossref] [Google Scholar]
  143. Smith JE. 2014.. Hamilton's legacy: kinship, cooperation and social tolerance in mammalian groups. . Anim. Behav. 92::291304
    [Crossref] [Google Scholar]
  144. Snyder-Mackler N, Majoros WH, Yuan ML, Shaver AO, Gordon JB, et al. 2016.. Efficient genome-wide sequencing and low-coverage pedigree analysis from noninvasively collected samples. . Genetics 203:(2):699714
    [Crossref] [Google Scholar]
  145. Song H, Buhay JE, Whiting MF, Crandall KA. 2008.. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. . PNAS 105:(36):1348691
    [Crossref] [Google Scholar]
  146. Soto-Calderón ID, Dew JL, Bergl RA, Jensen-Seaman MI, Anthony NM. 2015.. Admixture between historically isolated mitochondrial lineages in captive western gorillas: recommendations for future management. . J. Hered. 106:(3):31014
    [Crossref] [Google Scholar]
  147. Soto-Calderón ID, Lee EJ, Jensen-Seaman MI, Anthony NM. 2012.. Factors affecting the relative abundance of nuclear copies of mitochondrial DNA (numts) in hominoids. . J. Mol. Evol. 75:(3–4):10211
    [Crossref] [Google Scholar]
  148. Soto-Calderón ID, Ntie S, Mickala P, Maisels F, Wickings EJ, Anthony NM. 2009.. Effects of storage type and time on DNA amplification success in tropical ungulate faeces: technical advances. . Mol. Ecol. Resour. 9:(2):47179
    [Crossref] [Google Scholar]
  149. Soto-Calderón ID, Salazar-Meneses MF, Maldonado ÁM, Mendoza AP, del Valle-Useche C, Ussa-Pérez DA. 2023.. Guía para la colecta de muestras biológicas de especies silvestres para análisis moleculares. Medellín, Colombia:: Univ. Antioquia
    [Google Scholar]
  150. Strier KB. 2008.. The effects of kin on primate life histories. . Annu. Rev. Anthropol. 37::2136
    [Crossref] [Google Scholar]
  151. Strier KB, Chaves PB, Mendes SL, Fagundes V, Di Fiore A. 2011.. Low paternity skew and the influence of maternal kin in an egalitarian, patrilocal primate. . PNAS 108:(47):1891519
    [Crossref] [Google Scholar]
  152. Strier KB, Possamai CB, Tabacow FP, Pissinatti A, Lanna AM, et al. 2017.. Demographic monitoring of wild muriqui populations: criteria for defining priority areas and monitoring intensity. . PLOS ONE 12:(12):e0188922
    [Crossref] [Google Scholar]
  153. Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, et al. 1996.. Reliable genotyping of samples with very low DNA quantities using PCR. . Nucleic Acids Res. 24:(16):318994
    [Crossref] [Google Scholar]
  154. Teixeira JC, Huber CD. 2021.. The inflated significance of neutral genetic diversity in conservation genetics. . PNAS 118:(10):e2015096118
    [Crossref] [Google Scholar]
  155. Torres-Florez JP, Johnson WE, Nery MF, Eizirik E, Oliveira-Miranda MA, Galetti PM. 2018.. The coming of age of conservation genetics in Latin America: what has been achieved and what needs to be done. . Conserv. Genet. 19:(1):115
    [Crossref] [Google Scholar]
  156. Traylor-Holzer K, Leus K, Bauman K. 2019.. Integrated Collection Assessment and Planning (ICAP) workshop: helping zoos move toward the one plan approach. . Zoo Biol. 38:(1):95105
    [Crossref] [Google Scholar]
  157. USDA APHIS (US Dep. Agric. Anim. Plant Health Insp. Serv.). 2021.. Confirmation of COVID-19 in gorillas at a California zoo. Press Release, USDA APHIS, Riverdale, MD:. https://content.govdelivery.com/accounts/USDAAPHIS/bulletins/2b5837f
    [Google Scholar]
  158. Van Belle S, Estrada A. 2008.. Group size and composition influence male and female reproductive success in black howler monkeys (Alouatta pigra). . Am. J. Primatol. 70:(6):61319
    [Crossref] [Google Scholar]
  159. Van Belle S, Estrada A, Strier KB, Di Fiore A. 2012.. Genetic structure and kinship patterns in a population of black howler monkeys, Alouatta pigra, at Palenque National Park, Mexico. . Am. J. Primatol. 74:(10):94857
    [Crossref] [Google Scholar]
  160. Vigilant L, Roy J, Bradley BJ, Stoneking CJ, Robbins MM, Stoinski TS. 2015.. Reproductive competition and inbreeding avoidance in a primate species with habitual female dispersal. . Behav. Ecol. Sociobiol. 69:(7):116372
    [Crossref] [Google Scholar]
  161. Wasser SK, Wolock CJ, Kuhner MK, Brown JE, Morris C, et al. 2022.. Elephant genotypes reveal the size and connectivity of transnational ivory traffickers. . Nat. Hum. Behav. 6:(3):37182
    [Crossref] [Google Scholar]
  162. Westphal D, Mancini AN, Baden AL. 2021.. Primate landscape genetics: a review and practical guide. . Evol. Anthropol. 30:(3):17184
    [Crossref] [Google Scholar]
  163. Widdig A. 2007.. Paternal kin discrimination: the evidence and likely mechanisms. . Biol. Rev. 82:(2):31934
    [Crossref] [Google Scholar]
  164. Willoughby JR, Sundaram M, Wijayawardena BK, Kimble SJA, Ji Y, et al. 2015.. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. . Biol. Conserv. 191::495503
    [Crossref] [Google Scholar]
  165. Witzenberger KA, Hochkirch A. 2011.. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. . Biodivers. Conserv. 20:(9):184361
    [Crossref] [Google Scholar]
  166. Xu X, Arnason U. 1996.. The mitochondrial DNA molecule of sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of orangutan. . J. Mol. Evol. 43:(5):43137
    [Crossref] [Google Scholar]
  167. Yu L, Wang GD, Ruan J, Chen Y-B, Yang CP, et al. 2016.. Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. . Nat. Genet. 48:(8):94752
    [Crossref] [Google Scholar]
  168. Zachos FE. 2018.. Mammals and meaningful taxonomic units: the debate about species concepts and conservation. . Mamm. Rev. 48:(3):15359
    [Crossref] [Google Scholar]
  169. Zhou X, Meng X, Liu Z, Chang J, Wang B, et al. 2016.. Population genomics reveals low genetic diversity and adaptation to hypoxia in snub-nosed monkeys. . Mol. Biol. Evol. 33:(10):267081
    [Crossref] [Google Scholar]
  170. Zhou Y, Tian J, Jiqi LU. 2023.. Genetic structure and recent population demographic history of Taihangshan macaque (Macaca mulatta tcheliensis), North China. . Integr. Zool. 18:(3):53042
    [Crossref] [Google Scholar]
  171. Zimmerman ME. 2003.. The black market for wildlife: combating transnational organized crime in the illegal wildlife trade. . Vanderbilt J. Transnatl. Law 36:(5):165790
    [Google Scholar]
  172. Zlatanova D. 2015.. IUCN guidelines for reintroductions and conservation translocations of species—problems and solutions. . In Proceedings of the First National Conference on the Reintroduction of Conservation-Reliant Species, pp. 1829. Sofia, Bulg:.: Univ. Press. https://tinyurl.com/IUCNconf
    [Google Scholar]
/content/journals/10.1146/annurev-anthro-041422-114003
Loading
/content/journals/10.1146/annurev-anthro-041422-114003
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error