1932

Abstract

Primates live in complex social systems, and social contact and disease interact to shape the evolution of animal (including human) sociality. Researchers use social network analysis (SNA), a method of mapping and measuring contact patterns within a network of individuals, to understand the role that social interactions play in disease transmission. Here, we review lessons learned from SNA of humans and nonhuman primates (NHPs) and explore how they can inform health and wildlife conservation. Utilizing the breadth of knowledge in human systems and outlining how we can integrate that knowledge into our understanding of NHP sociality will add to our comprehension of disease transmission in NHP social networks and, in turn, will reveal more about human disease and well-being.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-052721-085447
2024-10-21
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/anthro/53/1/annurev-anthro-052721-085447.html?itemId=/content/journals/10.1146/annurev-anthro-052721-085447&mimeType=html&fmt=ahah

Literature Cited

  1. Albery GF, Kirkpatrick L, Firth JA, Bansal S. 2021.. Unifying spatial and social network analysis in disease ecology. . J. Anim. Ecol. 90::4561
    [Crossref] [Google Scholar]
  2. Allington D, Duffy B, Wessely S, Dhavan N, Rubin J. 2021.. Health-protective behaviour, social media usage and conspiracy belief during the COVID-19 public health emergency. . Psychol. Med. 51::176369. Corrigendum . 2021.. Psychol. Med. 51:(10):1770
    [Google Scholar]
  3. Altmann M, Wee BC, Willard K, Peterson D, Gatewood LC. 1994.. Network analytic methods for epidemiological risk assessment. . Stat. Med. 13::5360
    [Crossref] [Google Scholar]
  4. Anderson RM, May RM. 1991.. Infectious Disease of Humans: Dynamics and Control. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  5. Anise IE, Ellis RJ, Altekruse J, Strier KB. 2024.. Social networks predict group fission, with implications for the management of northern muriquis (Brachyteles hypoxanthus). . Primate Conserv. 37::919
    [Google Scholar]
  6. Ashby B, Farine DR. 2022.. Social information use shapes the coevolution of sociality and virulence. . Evolution 76::115369
    [Crossref] [Google Scholar]
  7. Balasubramaniam KN, Beisner BA, Hubbard JA, Vandeleest JJ, Atwill ER, McCowan B. 2019.. Affiliation and disease risk: social networks mediate gut microbial transmission among rhesus macaques. . Anim. Behav. 151::13143
    [Crossref] [Google Scholar]
  8. Balasubramaniam KN, Kaburu SSK, Marty PR, Beisner BA, Bliss-Moreau E, et al. 2021.. Implementing social network analysis to understand the socioecology of wildlife co-occurrence and joint interactions with humans in anthropogenic environments. . J. Anim. Ecol. 90::281933
    [Crossref] [Google Scholar]
  9. Block P, Hoffman M, Raabe IJ, Dowd JB, Rahal C, et al. 2020.. Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. . Nat. Hum. Behav. 4::58896
    [Crossref] [Google Scholar]
  10. Boesch C, Boesch-Achermann H. 2000.. The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  11. Bouffanais R, Lim SS. 2020.. Cities – try to predict superspreading hotspots for COVID-19. . Nature 583::35255
    [Crossref] [Google Scholar]
  12. Bowden SE, Drake JM. 2013.. Ecology of multi-host pathogens of animals. . Nat. Educ. Knowl. 4::5
    [Google Scholar]
  13. Brent LJN, Lehmann J, Ramos-Fernández G. 2011.. Social network analysis in the study of nonhuman primates: a historical perspective. . Am. J. Primatol. 73::72030
    [Crossref] [Google Scholar]
  14. Bublitz DC, Wright PC, Rasambainarivo FT, Arrigo-Nelson J, Bodager JR, Gillespie TR. 2015.. Pathogenic enterobacteria in lemurs associated with anthropogenic disturbance. . Am. J. Primatol. 77::33037
    [Crossref] [Google Scholar]
  15. Calvignac-Spencer S, Leendertz SAJ, Gillespie TR, Leendertz FH. 2012.. Wild great apes as sentinels and sources of infectious disease. . Clin. Microbiol. Infect. 18::52127
    [Crossref] [Google Scholar]
  16. Carne C, Semple S, Morrogh-Bernard H, Zuberbühler K, Lehmann J. 2013.. Predicting the vulnerability of great apes to disease: the role of superspreaders and their potential vaccination. . PLOS ONE 8::e84642
    [Crossref] [Google Scholar]
  17. Carne C, Semple S, Morrogh-Bernard H, Zuberbühler K, Lehmann J. 2014.. The risk of disease to great apes: simulating disease spread in orang-utan (Pongo pygmaeus wurmbii) and chimpanzee (Pan troglodytes schweinfurthii) association networks. . PLOS ONE 9::e95039
    [Crossref] [Google Scholar]
  18. Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, et al. 2011.. Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. . PNAS 108::282530
    [Crossref] [Google Scholar]
  19. Chen Y-D, Chen H, King C-C. 2011.. Social network analysis for contact tracing. . In Infectious Disease Informatics and Biosurveillance, ed. C Castillo-Chavez, H Chen, WB Lober, M Thurmond, D Zeng , pp. 33958. New York:: Springer US
    [Google Scholar]
  20. Christley RM, Pinchbeck GL, Bowers RG, Clancy D, French NP, et al. 2005.. Infection in social networks: using network analysis to identify high-risk individuals. . Am. J. Epidemiol. 162::102431
    [Crossref] [Google Scholar]
  21. Coiera E. 2013.. Social networks, social media, and social diseases. . BMJ 346::2224
    [Crossref] [Google Scholar]
  22. Côté IM, Poulin R. 1995.. Parasitism and group size in social animals: a meta-analysis. . Behav. Ecol. 6::15965
    [Crossref] [Google Scholar]
  23. Croft DP, James R, Krause J. 2008.. Exploring Animal Social Networks. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  24. Dale MRT, Fortin M-J. 2021.. Quantitative Analysis of Ecological Networks. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  25. Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, et al. 2020.. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. . PNAS 117::2231122
    [Crossref] [Google Scholar]
  26. Danon L, Ford AP, House T, Jewell CP, Keeling MJ, et al. 2011.. Networks and the epidemiology of infectious disease. . Interdiscip. Perspect. Infect. Dis. 2011::284909
    [Crossref] [Google Scholar]
  27. Deere JR, Schaber KL, Foerster S, Gilby IC, Feldblum JT, et al. 2021.. Gregariousness is associated with parasite species richness in a community of wild chimpanzees. . Behav. Ecol. Sociobiol. 75::87
    [Crossref] [Google Scholar]
  28. Drewe JA, Perkins SE. 2015.. Disease transmission in animal social networks. . In Animal Social Networks, ed. J Krause, R James, DW Franks, DP Croft , pp. 95110. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  29. Eames K, Bansal S, Frost S, Riley S. 2015.. Six challenges in measuring contact networks for use in modelling. . Epidemics 10::7277
    [Crossref] [Google Scholar]
  30. Eames KTD, Keeling MJ. 2003.. Contact tracing and disease control. . Proc. R. Soc. B 270::256571
    [Crossref] [Google Scholar]
  31. Endo A, Murayama H, Abbott S, Ratnayake R, Pearson CAB, et al. 2022.. Heavy-tailed sexual contact networks and monkeypox epidemiology in the global outbreak, 2022. . Science 378::9094
    [Crossref] [Google Scholar]
  32. Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, et al. 2017.. Impending extinction crisis of the world's primates: why primates matter. . Sci. Adv. 3::e1600946
    [Crossref] [Google Scholar]
  33. Ezenwa VO, Ghai RR, McKay AF, Williams AE. 2016.. Group living and pathogen infection revisited. . Curr. Opin. Behav. Sci. 12::6672
    [Crossref] [Google Scholar]
  34. Fagre AC, Cohen LE, Eskew EA, Farrell M, Glennon E, et al. 2022.. Assessing the risk of human-to-wildlife pathogen transmission for conservation and public health. . Ecol. Lett. 25::153449
    [Crossref] [Google Scholar]
  35. Farine DR, Whitehead H. 2015.. Constructing, conducting and interpreting animal social network analysis. . J. Anim. Ecol. 84::114463
    [Crossref] [Google Scholar]
  36. Firth JA, Hellewell J, Klepac P, Kissler S, CMMID COVID-19 Work. Group, et al. 2020.. Using a real-world network to model localized COVID-19 control strategies. . Nat. Med. 26::161622
    [Crossref] [Google Scholar]
  37. Freeman LC. 2004.. The Development of Social Network Analysis: A Study in the Sociology of Science. Vancouver, BC:: Empir. Press
    [Google Scholar]
  38. Friant S, Ziegler TE, Goldberg TL. 2016.. Primate reinfection with gastrointestinal parasites: behavioural and physiological predictors of parasite acquisition. . Anim. Behav. 117::10513
    [Crossref] [Google Scholar]
  39. Funk S, Salathé M, Jansen VAA. 2010.. Modelling the influence of human behaviour on the spread of infectious diseases: a review. . J. R. Soc. Interface 7::124756
    [Crossref] [Google Scholar]
  40. Gardy JL, Johnston JC, Sui SJH, Cook VJ, Shah L, et al. 2011.. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. . N. Engl. J. Med. 364::73039
    [Crossref] [Google Scholar]
  41. Gibb R, Redding DW, Chin KQ, Donnelly CA, Blackburn TM, et al. 2020.. Zoonotic host diversity increases in human-dominated ecosystems. . Nature 584::398402
    [Crossref] [Google Scholar]
  42. Gilardi KV, Gillespie TR, Leendertz FH, Macfie EJ, Travis DA, et al. 2015.. Best practice guidelines for health monitoring and disease control in great ape populations. Occas. Pap. 56 , IUCN Species Surviv. Comm. Primate Spec. Group, Gland, Switz:. https://portals.iucn.org/library/sites/library/files/documents/SSC-OP-056.pdf
    [Google Scholar]
  43. Gilbertson MLJ, Fountain-Jones NM, Craft ME. 2018.. Incorporating genomic methods into contact networks to reveal new insights into animal behavior and infectious disease dynamics. . Behaviour 155::75991
    [Crossref] [Google Scholar]
  44. Gilbertson MLJ, White LA, Craft ME. 2021.. Trade-offs with telemetry-derived contact networks for infectious disease studies in wildlife. . Methods Ecol. Evol. 12::7687
    [Crossref] [Google Scholar]
  45. Gillespie TR, Chapman CA. 2001.. Determinants of group size in the red colobus monkey (Procolobus badius): an evaluation of the generality of the ecological-constraints model. . Behav. Ecol. Sociobiol. 50::32938
    [Crossref] [Google Scholar]
  46. Gillespie TR, Jones KE, Dobson AP, Clennon JA, Pascual M. 2021.. COVID-Clarity demands unification of health and environmental policy. . Glob. Change Biol. 27:(7):131921
    [Crossref] [Google Scholar]
  47. Gillespie TR, Leendertz FH. 2020.. COVID-19: protect great apes during human pandemics. . Nature 579::497
    [Crossref] [Google Scholar]
  48. Gillespie TR, Nunn CL, Leendertz FH. 2008.. Integrative approaches to the study of primate infectious disease: implications for biodiversity conservation and global health. . Am. J. Phys. Anthropol. 137::5369
    [Crossref] [Google Scholar]
  49. Gómez JM, Nunn CL, Verdú M. 2013.. Centrality in primate–parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. . PNAS 110::773841
    [Crossref] [Google Scholar]
  50. Goodall J. 1986.. The Chimpanzees of Gombe: Patterns of Behavior. Boston:: Belknap Press/Harvard Univ. Press
    [Google Scholar]
  51. Griffin RH, Nunn CL. 2012.. Community structure and the spread of infectious disease in primate social networks. . Evol. Ecol. 26::779800
    [Crossref] [Google Scholar]
  52. Hoang N-AT, Pham TQ, Quach H-L, Hoang NV, Nguyen KC, et al. 2022.. Investigating COVID-19 transmission in a tertiary hospital in Hanoi, Vietnam using social network analysis. . Trop. Med. Int. Health 27::98189
    [Crossref] [Google Scholar]
  53. Hung M, Lauren E, Hon ES, Birmingham WC, Xu J, et al. 2020.. Social network analysis of COVID-19 sentiments: application of artificial intelligence. . J. Med. Internet Res. 22::e22590
    [Crossref] [Google Scholar]
  54. Jo W, Chang D, You M, Ghim G-H. 2021.. A social network analysis of the spread of COVID-19 in South Korea and policy implications. . Sci. Rep. 11::8581
    [Crossref] [Google Scholar]
  55. Johnston AR, Gillespie TR, Rwego IB, Tranby McLachlan TL, Kent AD, Goldberg TL. 2010.. Molecular epidemiology of cross-species Giardia duodenalis transmission in western Uganda. . PLOS Negl. Trop. Dis. 4::e683
    [Crossref] [Google Scholar]
  56. Kappeler PM, Cremer S, Nunn CL. 2015.. Sociality and health: impacts of sociality on disease susceptibility and transmission in animal and human societies. . Philos. Trans. R. Soc. B 370::20140116
    [Crossref] [Google Scholar]
  57. Kawonga M, Blaauw D, Fonn S. 2015.. Exploring the use of social network analysis to measure communication between disease programme and district managers at sub-national level in South Africa. . Soc. Sci. Med. 135::114
    [Crossref] [Google Scholar]
  58. Keeling MJ, Eames KTD. 2005.. Networks and epidemic models. . J. R. Soc. Interface 2::295307
    [Crossref] [Google Scholar]
  59. Kinsley AC, Rossi G, Silk MJ, VanderWaal K. 2020.. Multilayer and multiplex networks: an introduction to their use in veterinary epidemiology. . Front. Vet. Sci. 7::596
    [Crossref] [Google Scholar]
  60. Klovdahl AS. 1985.. Social networks and the spread of infectious diseases: the AIDS example. . Soc. Sci. Med. 21::120316
    [Crossref] [Google Scholar]
  61. Köndgen S, Kuhl H, N'Goran PK, Walsh PD, Schenk S, et al. 2008.. Pandemic human viruses cause decline of endangered great apes. . Curr. Biol. 18::26064
    [Crossref] [Google Scholar]
  62. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. 2005.. Superspreading and the effect of individual variation on disease emergence. . Nature 438::35559
    [Crossref] [Google Scholar]
  63. Lonsdorf EV, Travis DA, Raphael J, Kamenya S, Lipende I, et al. 2022.. The Gombe Ecosystem Health Project: 16 years of program evolution and lessons learned. . Am. J. Primatol. 84::e23300
    [Crossref] [Google Scholar]
  64. Lu S, Zhao Y, Yu W, Yang Y, Gao J, et al. 2020.. Comparison of nonhuman primates identified the suitable model for COVID-19. . Signal Transduct. Target. Ther. 5::157
    [Crossref] [Google Scholar]
  65. Luke DA, Harris JK. 2007.. Network analysis in public health: history, methods, and applications. . Annu. Rev. Public Health 28::6993
    [Crossref] [Google Scholar]
  66. MacIntosh AJJ, Jacobs A, Garcia C, Shimizu K, Mouri K, et al. 2012.. Monkeys in the middle: parasite transmission through the social network of a wild primate. . PLOS ONE 7::e51144
    [Crossref] [Google Scholar]
  67. Martínez-López B, Perez AM, Sánchez-Vizcaíno JM. 2009.. Social network analysis. Review of general concepts and use in preventive veterinary medicine. . Transbound. Emerg. Dis. 56::10920
    [Crossref] [Google Scholar]
  68. McCowan B, Beisner B, Bliss-Moreau E, Vandeleest J, Jin J, et al. 2016.. Connections matter: social networks and lifespan health in primate translational models. . Front. Psychol. 7::433
    [Crossref] [Google Scholar]
  69. Meyers LA, Pourbohloul B, Newman MEJ, Skowronski DM, Brunham RC. 2005.. Network theory and SARS: predicting outbreak diversity. . J. Theor. Biol. 232::7181
    [Crossref] [Google Scholar]
  70. Moreno JL. 1934.. Who Shall Survive? A New Approach to the Problem of Human Interrelations. Washington, DC:: Nerv. Ment. Dis.
    [Google Scholar]
  71. Moreno JL, Jennings HH. 1938.. Statistics of social configurations. . Sociometry 1::34274
    [Crossref] [Google Scholar]
  72. Nagarajan K, Muniyandi M, Palani B, Sellappan S. 2020.. Social network analysis methods for exploring SARS-CoV-2 contact tracing data. . BMC Med. Res. Methodol. 20::233
    [Crossref] [Google Scholar]
  73. Nande A, Adlam B, Sheen J, Levy MZ, Hill AL. 2021.. Dynamics of COVID-19 under social distancing measures are driven by transmission network structure. . PLOS Comput. Biol. 17::e1008684
    [Crossref] [Google Scholar]
  74. Negrey JD, Reddy RB, Scully EJ, Phillips-Garcia S, Owens LA, et al. 2019.. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. . Emerg. Microbes Infect. 8::13949
    [Crossref] [Google Scholar]
  75. Nishida T. 1968.. The social group of wild chimpanzees in the Mahali Mountains. . Primates 9::167224
    [Crossref] [Google Scholar]
  76. Nunn CL, Gillespie TR. 2016.. Infectious disease and primate conservation. . In An Introduction to Primate Conservation, ed. SA Wich, AJ Marshall , pp. 15474. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  77. OHHLEP (One Health High-Level Expert Panel), Adisasmito WB, Almuhairi S, Behravesh CB, Bilivogui P, et al. 2022.. One Health: a new definition for a sustainable and healthy future. . PLOS Pathog. 18::e1010537
    [Crossref] [Google Scholar]
  78. Ostovari M, Jurkovitz C, Pachter L, Chen D. 2020.. A social network analysis approach for contact tracing in the hospital setting. . Del. J. Public Health 6::2225
    [Crossref] [Google Scholar]
  79. Palacios G, Lowenstine LJ, Cranfield MR, Gilardi KVK, Spelman L, et al. 2011.. Human metapneumovirus infection in wild mountain gorillas, Rwanda. . Emerg. Infect. Dis. 17::71113
    [Crossref] [Google Scholar]
  80. Parsons MB, Gillespie TR, Lonsdorf EV, Travis D, Lipende I, et al. 2014.. Global positioning system data-loggers: a tool to quantify fine-scale movement of domestic animals to evaluate potential for zoonotic transmission to an endangered wildlife population. . PLOS ONE 9::e110984
    [Crossref] [Google Scholar]
  81. Patrono LV, Samuni L, Corman VM, Nourifar L, Röthemeier C, et al. 2018.. Human coronavirus OC43 outbreak in wild chimpanzees, Côte d'Ivoire, 2016 correspondence. . Emerg. Microbes Infect. 7::118
    [Crossref] [Google Scholar]
  82. Patterson JEH, Ruckstuhl KE. 2013.. Parasite infection and host group size: a meta-analytical review. . Parasitology 140::80313
    [Crossref] [Google Scholar]
  83. Pedersen AB, Altizer S, Poss M, Cunningham AA, Nunn CL. 2005.. Patterns of host specificity and transmission among parasites of wild primates. . Int. J. Parasitol. 35::64757
    [Crossref] [Google Scholar]
  84. Pereira AHB, Vasconcelos AL, Silva VLB, Nogueira BS, Silva ACP, et al. 2022.. Natural SARS-CoV-2 infection in a free-ranging black-tailed marmoset (Mico melanurus) from an urban area in mid-west Brazil. . J. Comp. Pathol. 194::2227
    [Crossref] [Google Scholar]
  85. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, et al. 2017.. Pathways to zoonotic spillover. . Nat. Rev. Microbiol. 15::50210
    [Crossref] [Google Scholar]
  86. Poulin R, Filion A. 2021.. Evolution of social behaviour in an infectious world: comparative analysis of social network structure versus parasite richness. . Behav. Ecol. Sociobiol. 75::105
    [Crossref] [Google Scholar]
  87. Puga-Gonzalez I, Sosa S, Sueur C. 2019.. Editorial: Social networks analyses in primates, a multilevel perspective. . Primates 60::16365
    [Crossref] [Google Scholar]
  88. Ragazzo LJ, Zohdy S, Velonabison M, Herrera J, Wright PC, Gillespie TR. 2018.. Entamoeba histolytica infection in wild lemurs associated with proximity to humans. . Vet. Parasitol. 249::98101
    [Crossref] [Google Scholar]
  89. Read JM, Eames KTD, Edmunds WJ. 2008.. Dynamic social networks and the implications for the spread of infectious disease. . J. R. Soc. Interface 5::10017
    [Crossref] [Google Scholar]
  90. Rimbach R, Bisanzio D, Galvis N, Link A, Di Fiore A, Gillespie TR. 2015.. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics. . Philos. Trans. R. Soc. B 370::20140110
    [Crossref] [Google Scholar]
  91. Romano V, Duboscq J, Sarabian C, Thomas E, Sueur C, MacIntosh AJJ. 2016.. Modeling infection transmission in primate networks to predict centrality-based risk. . Am. J. Primatol. 78::76779
    [Crossref] [Google Scholar]
  92. Romano V, MacIntosh AJJ, Sueur C. 2020.. Stemming the flow: information, infection, and social evolution. . Trends. Ecol. Evol. 35::84953
    [Crossref] [Google Scholar]
  93. Rushmore J, Bisanzio D, Gillespie TR. 2017.. Making new connections: insights from primate–parasite networks. . Trends Parasitol. 33::54760
    [Crossref] [Google Scholar]
  94. Rushmore J, Caillaud D, Hall RJ, Stumpf RM, Meyers LA, Altizer S. 2014.. Network-based vaccination improves prospects for disease control in wild chimpanzees. . J. R. Soc. Interface 11::20140349
    [Crossref] [Google Scholar]
  95. Rushmore J, Caillaud D, Matamba L, Stumpf RM, Borgatti SP, Altizer S. 2013.. Social network analysis of wild chimpanzees provides insights for predicting infectious disease risk. . J. Anim. Ecol. 82::97686
    [Crossref] [Google Scholar]
  96. Sade DS. 1965.. Some aspects of parent-offspring and sibling relations in a group of rhesus monkeys, with a discussion of grooming. . Am. J. Phys. Anthropol. 23::117
    [Crossref] [Google Scholar]
  97. Sade DS. 1972.. Sociometrics of Macaca mulatta I. Linkages and cliques in grooming matrices. . Folia Primatol. 18::196223
    [Crossref] [Google Scholar]
  98. Sah P, Otterstatter M, Leu ST, Leviyang S, Bansal S. 2021.. Revealing mechanisms of infectious disease spread through empirical contact networks. . PLOS Comput. Biol. 17::e1009604
    [Crossref] [Google Scholar]
  99. Salathé M, Bengtsson L, Bodnar TJ, Brewer DD, Brownstein JS, et al. 2012.. Digital epidemiology. . PLOS Comput. Biol. 8::e1002616
    [Crossref] [Google Scholar]
  100. Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH. 2010.. A high-resolution human contact network for infectious disease transmission. . PNAS 107::2202025
    [Crossref] [Google Scholar]
  101. Salyer SJ, Gillespie TR, Rwego IB, Chapman CA, Goldberg TL. 2012.. Epidemiology and molecular relationships of Cryptosporidium spp. in people, primates, and livestock from western Uganda. . PLOS Negl. Trop. Dis. 6:(4):e1597
    [Crossref] [Google Scholar]
  102. Satsias ZM, Silk MJ, Hockings KJ, Cibot M, Rohen J, McLennan MR. 2022.. Sex-specific responses to anthropogenic risk shape wild chimpanzee social networks in a human-impacted landscape. . Anim. Behav. 186::2940
    [Crossref] [Google Scholar]
  103. Saunders HA, Schwartz J-M. 2021.. COVID-19 vaccination strategies depend on the underlying network of social interactions. . Sci. Rep. 11::24051
    [Crossref] [Google Scholar]
  104. Shano S, Islam A, Hagan E, Rostal MK, Martinez S, et al. 2021.. Environmental change and zoonotic disease risk at human-macaque interfaces in Bangladesh. . EcoHealth 18::48799
    [Crossref] [Google Scholar]
  105. Shelton RC, Lee M, Brotzman LE, Crookes DM, Jandorf L, et al. 2019.. Use of social network analysis in the development, dissemination, implementation, and sustainability of health behavior interventions for adults: a systematic review. . Soc. Sci. Med. 220::81101
    [Crossref] [Google Scholar]
  106. Silk JB. 2007.. Social components of fitness in primate groups. . Science 317::134751
    [Crossref] [Google Scholar]
  107. Silk MJ, Croft DP, Delahay RJ, Hodgson DJ, Boots M, et al. 2017.. Using social network measures in wildlife disease ecology, epidemiology, and management. . BioScience 67::24557
    [Crossref] [Google Scholar]
  108. Silk MJ, Fefferman NH. 2021.. The role of social structure and dynamics in the maintenance of endemic disease. . Behav. Ecol. Sociobiol. 75::122
    [Crossref] [Google Scholar]
  109. Smith KP, Christakis NA. 2008.. Social networks and health. . Annu. Rev. Sociol. 34::40529
    [Crossref] [Google Scholar]
  110. Snijders L, Blumstein DT, Stanley CR, Franks DW. 2017.. Animal social network theory can help wildlife conservation. . Trends Ecol. Evol. 32::56777
    [Crossref] [Google Scholar]
  111. Snyder-Mackler N, Burger JR, Gaydosh L, Belsky DW, Noppert GA, et al. 2020.. Social determinants of health and survival in humans and other animals. . Science 368::eaax9553
    [Crossref] [Google Scholar]
  112. Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC. 2015.. Shared decision-making drives collective movement in wild baboons. . Science 348::135861
    [Crossref] [Google Scholar]
  113. Sueur C, Jacobs A, Amblard F, Petit O, King AJ. 2011.. How can social network analysis improve the study of primate behavior?. Am. J. Primatol. 73::70319
    [Crossref] [Google Scholar]
  114. Tchesnokova V, Kulasekara H, Larson L, Bowers V, Rechkina E, et al. 2021.. Acquisition of the L452R mutation in the ACE2-binding interface of spike protein triggers recent massive expansion of SARS-CoV-2 variants. . J. Clin. Microbiol. 59::e00921
    [Crossref] [Google Scholar]
  115. Udiani O, Fefferman NH. 2020.. How disease constrains the evolution of social systems: social evolution under infection risk. . Proc. R. Soc. B 287::20201284
    [Crossref] [Google Scholar]
  116. Van Schaik CP. 1999.. The socioecology of fission-fusion sociality in orangutans. . Primates 40::6986
    [Crossref] [Google Scholar]
  117. Vanderwaal KL, Ezenwa VO. 2016.. Heterogeneity in pathogen transmission: mechanisms and methodology. . Funct. Ecol. 30::160622
    [Crossref] [Google Scholar]
  118. Vasylyeva TI, Friedman SR, Paraskevis D, Magiorkinis G. 2016.. Integrating molecular epidemiology and social network analysis to study infectious diseases: towards a socio-molecular era for public health. . Infect. Genet. Evol. 46::24855
    [Crossref] [Google Scholar]
  119. Vazquez-Prokopec GM, Bisanzio D, Stoddard ST, Paz-Soldan V, Morrison AC, et al. 2013.. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. . PLOS ONE 8::e58802
    [Crossref] [Google Scholar]
  120. Vazquez-Prokopec GM, Montgomery BL, Horne P, Clennon JA, Ritchie SA. 2017.. Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission. . Sci. Adv. 3::e1602024
    [Crossref] [Google Scholar]
  121. Vazquez-Prokopec GM, Stoddard ST, Paz-Soldan V, Morrison AC, Elder JP, et al. 2009.. Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. . Int. J. Health Geogr. 8::68
    [Crossref] [Google Scholar]
  122. Volz EM, Miller JC, Galvani A, Ancel Meyers L. 2011.. Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. . PLOS Comput. Biol. 7::e1002042
    [Crossref] [Google Scholar]
  123. Wasserman S, Faust K. 1994.. Social Network Analysis: Methods and Applications. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  124. Wey T, Blumstein DT, Shen W, Jordán F. 2008.. Social network analysis of animal behaviour: a promising tool for the study of sociality. . Anim. Behav. 75::33344
    [Crossref] [Google Scholar]
  125. White LA, Forester JD, Craft ME. 2017.. Using contact networks to explore mechanisms of parasite transmission in wildlife. . Biol. Rev. 92::389409
    [Crossref] [Google Scholar]
  126. Woolhouse MEJ, Dye C, Etard J-F, Smith T, Charlwood JD, et al. 1997.. Heterogeneities in the transmission of infectious agents: implications for the design of controlprograms. . PNAS 94::33842
    [Crossref] [Google Scholar]
  127. Wylie JL, Cabral T, Jolly AM. 2005.. Identification of networks of sexually transmitted infection: a molecular, geographic, and social network analysis. . J. Infect. Dis. 191::899906
    [Crossref] [Google Scholar]
  128. Yang Z. 2021.. Analysis of dynamic contact network of patients with COVID-19 in Shaanxi Province of China. . Sci. Rep. 11::4889
    [Crossref] [Google Scholar]
  129. Zhu Y, Guan M, Donovan E. 2020.. Elaborating cancer opinion leaders’ communication behaviors within online health communities: network and content analyses. . Soc. Media Soc. 6:. https://doi.org/10.1177/2056305120909473
    [Google Scholar]
/content/journals/10.1146/annurev-anthro-052721-085447
Loading
/content/journals/10.1146/annurev-anthro-052721-085447
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error