1932

Abstract

The investigation of dynamic fully integrated cultural-environmental systems is one grand challenge facing archaeologists in this century. In the Midwest and Southeast United States, archaeologists recently increased their study of Mississippian social systems (ca. AD 1000–1600) in relationship to paleoclimate and paleoenvironmental data. Significant differences in chronological control between archaeological chronologies and paleoenvironmental records pose challenges to the study of cultural-environmental systems in this region and often result in equifinal results. Three major lines of paleoenvironmental records are reviewed: bald cypress tree-ring records, the Living Blended Drought Atlas (LBDA), and lake-bottom sediment cores. The strongest approaches include local and regional multiproxy environmental records from the same location as a well-investigated archaeological site(s) or region(s). In the rare case where the cores also encode a regional population history, it may be possible to develop stronger inferences that consider variation within and between communities and their vulnerability to climate change and environmental catastrophes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-101819-110206
2024-10-21
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/anthro/53/1/annurev-anthro-101819-110206.html?itemId=/content/journals/10.1146/annurev-anthro-101819-110206&mimeType=html&fmt=ahah

Literature Cited

  1. Abatzoglou JT, Williams AP. 2016.. Impact of anthropogenic climate change on wildfire across western US forests. . PNAS 113:(42):1177075
    [Crossref] [Google Scholar]
  2. Aharon P, Aldridge D, Hellstrom J. 2012.. Rainfall variability and the rise and collapse of the Mississippian chiefdoms: evidence from a DeSoto caverns stalagmite. . In Climates, Landscapes, and Civilizations, Vol. 198, ed. L Giosan, DQ Fuller, K Nicoll, RK Flad, PD Clift , pp. 3542. Washington, DC:: Am. Geophys. Union
    [Google Scholar]
  3. Anderson DG. 1994.. The Savannah River Chiefdoms: Political Change in the Late Prehistoric Southeast. Tuscaloosa:: Univ. Ala. Press
    [Google Scholar]
  4. Anderson DG. 2001.. Climate and culture change in prehistoric and early historic eastern North America. . Archaeol. East. N. Am. 29::14386
    [Google Scholar]
  5. Anderson DG, Stahle DW, Cleveland MR. 1995.. Paleoclimate and the potential food reserves of Mississippian societies: a case study from the Savannah River Valley. . Am. Antiq. 60::25886
    [Crossref] [Google Scholar]
  6. Ault TR. 2020.. On the essentials of drought in a changing climate. . Science 368:(6488):25660
    [Crossref] [Google Scholar]
  7. Ault TR, Cole JE, Overpeck JT, Pederson GT, Meko DM. 2014.. Assessing the risk of persistent drought using climate model simulations and paleoclimate data. . J. Clim. 27:(20):752949
    [Crossref] [Google Scholar]
  8. Ault TR, Henebry GM, de Beurs KM, Schwartz MD, Betancourt JL, Moore D. 2013.. The false spring of 2012, earliest in North American record. . EOS 94:(20):18188
    [Crossref] [Google Scholar]
  9. Baerreis DA, Bryson RA. 1965.. Climatic episodes and the dating of Mississippian cultures. . Wis. Archeol. 46::20320
    [Google Scholar]
  10. Baerreis DA, Bryson RA Kutzbach JE. 1976.. Climate and culture in the western Great Lakes region. . Midcont. J. Archaeol. 1::3958
    [Google Scholar]
  11. Baires SE, Baltus MR, Buchanan ME. 2015.. Correlation does not equal causation: questioning the Great Cahokia Flood. . PNAS 112:(29):E3753
    [Crossref] [Google Scholar]
  12. Batchelor CJ, Marcott SA, Orland IJ, Kitajima K. 2022.. Late Holocene increase of winter precipitation in mid-continental North America from a seasonally resolved speleothem record. . Geology 50:(7):78185
    [Crossref] [Google Scholar]
  13. Bellorado BA, Anderson KC. 2013.. Early Pueblo responses to climate variability: farming traditions, land tenure, and social power in the eastern Mesa Verde region. . KIVA 78::377416
    [Crossref] [Google Scholar]
  14. Bennett JW. 1944.. The interaction of culture and environment in the smaller societies. . Am. Anthropol. 46:(4):46178
    [Crossref] [Google Scholar]
  15. Benson LV, Berry MS. 2009.. Climate change and cultural response in the prehistoric American Southwest. . KIVA 75::89119
    [Crossref] [Google Scholar]
  16. Benson LV, Berry MS, Jolie EA, Spangler JD, Stahle DW, Hattori EM. 2007.. Possible impacts of early-11th-, middle-12th, and late-13th-century droughts on western Native Americans and the Mississippian Cahokians. . Quat. Sci. Rev. 26::33650
    [Crossref] [Google Scholar]
  17. Benson LV, Pauketat TR, Cook ER. 2009.. Cahokia's boom and bust in the context of climate change. . Am. Antiq. 74::46783
    [Crossref] [Google Scholar]
  18. Bird BW, Wilson JJ, Gilhooly WP III, Steinman BA, Stamps L. 2017.. Midcontinental Native American population dynamics and late Holocene hydroclimate extremes. . Nat. Sci. Rep. 7::41628
    [Google Scholar]
  19. Blaauw M, Christen JA, Mauquoy D, van der Plicht J, Bennett KD. 2007.. Testing the timing of radiocarbon-dated events between proxy archives. . Holocene 17:(2):28388
    [Crossref] [Google Scholar]
  20. Blanton DB, Thomas DH. 2008.. Paleoclimates and human responses along the central Georgia coast: a tree-ring perspective. . In Native American Landscapes of St. Catherine's Island, Georgia: I. The Theoretical Framework, ed. DH Thomas , pp. 799806. Am. Mus. Nat. Hist. Anthropol. (AMNH) Pap. 88 . New York:: AMNH
    [Google Scholar]
  21. Blitz JH. 2010.. New perspectives in Mississippian archaeology. . J. Archaeol. Res. 18:(1):139
    [Crossref] [Google Scholar]
  22. Braidwood RJ. 1974.. The Iraq Jarmo project. . See Willey 1974 , pp. 5983
  23. Brannan S. 2022.. Population aggregation and dispersal as a driver for settlement change in the Lower Chattahoochee River Valley between AD 1100 and 1500. . See Cook & Comstock 2022a , pp. 30120
  24. Brennan TK, Betzenhauser AM, Landsell MB, Plocher LA, Potter VE, Blodgett DF. 2018.. Community organization of the East St. Louis precinct. . See Emerson et al. 2018 , pp. 147202
  25. Bronk Ramsey C. 2009.. Bayesian analysis of radiocarbon dates. . Radiocarbon 51:(1):33760
    [Crossref] [Google Scholar]
  26. Bull ID, Lockheart MJ, Elhmmali MM, Roberts DJ, Evershed RP. 2002.. The origin of faeces by means of biomarker detection. . Environ. Int. 27::64754
    [Crossref] [Google Scholar]
  27. Bull ID, Simpson IA, van Bergen PF, Evershed RP. 1999.. Muck ‘n’ molecules: organic geochemical methods for detecting ancient manuring. . Antiquity 73::8696
    [Crossref] [Google Scholar]
  28. Caldwell JR. 1958.. Trend and Tradition in the Prehistory of the Eastern United States. Am. Anthropol. Assoc. Mem. 88 . Menasha, WI:: Am. Anthropol. Assoc.
    [Google Scholar]
  29. Church MJ, Arge SV, Brewington S, McGovern TH, Woollett JM, et al. 2005.. Puffins, pigs, cod and barley: palaeoeconomy at Undir Junkarinsfløtti, Sandoy, Faroe Islands. . Environ. Archaeol. 10:(2):17997
    [Crossref] [Google Scholar]
  30. Clark JGD. 1954.. Excavations at Star Carr: An Early Mesolithic Site at Seamer near Scarborough, Yorkshire. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  31. Cobb CR. 2022.. Reassessing migration and climate change during the Mississippian Period. . See Cook & Comstock 2022a , pp. 37997
  32. Comstock AR. 2017.. Climate change, migration, and the emergence of village life on the Mississippian periphery: a Middle Ohio Valley case study. PhD Diss. , Dep. Anthropol., Ohio State Univ., Columbus:
    [Google Scholar]
  33. Comstock AR, Cook RA. 2018.. Climate change and migration along a Mississippian periphery: a Fort Ancient example. . Am. Antiq. 83:(1):91108
    [Crossref] [Google Scholar]
  34. Cook BI, Seager R, Heim RR Jr., Vose RS, Herweijer C, Woodhouse C. 2010.. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. . J. Quat. Sci. 25:(1):4861
    [Crossref] [Google Scholar]
  35. Cook BI, Smerdon JE, Seager R, Cook ER. 2014.. Pan-continental droughts in North America over the last millennium. . J. Clim. 27::38397
    [Crossref] [Google Scholar]
  36. Cook RA, Comstock AR, eds. 2022a.. Following the Mississippian Spread: Climate Change and Migration in the Eastern US (ca. AD 1000–1600). New York:: Springer
    [Google Scholar]
  37. Cook RA, Comstock AR. 2022b.. Moving in and moving on: climate change and Mississippian migration in the Middle Ohio Valley. . See Cook & Comstock 2022a , pp. 197226
  38. Cordell LS, Van West CR, Dean JS, Muenchrath DA. 2007.. Mesa Verde settlement history and relocation: climate change, social networks, and ancestral Pueblo migration. . KIVA 72::379405
    [Crossref] [Google Scholar]
  39. Dai A. 2013.. Increasing drought under global warming in observations and models. . Nat. Clim. Change 3::5258
    [Crossref] [Google Scholar]
  40. Delcourt PA, Delcourt HR. 1987.. Long-Term Forest Dynamics of the Temperate Zone: A Case Study of Late-Quaternary Forests in Eastern North America. New York:: Springer-Verlag
    [Google Scholar]
  41. Delcourt PA, Delcourt HR, Ison CR, Sharp WE, Gremillion KJ. 1998.. Prehistoric human use of fire, the eastern agricultural complex, and Appalachian oak-chestnut forests: paleoecology of Cliff Palace Pond, Kentucky. . Am. Antiq. 63::26378
    [Crossref] [Google Scholar]
  42. Denniston RF, González LA, Asmerom Y, Baker RG, Reagan MK, Bettis EA III. 1999.. Evidence for increased cool season moisture during the middle Holocene. . Geology 27::81518
    [Crossref] [Google Scholar]
  43. Dorale JA, González IA, Reagan MK, Pickett DA, Murrell MT, Baker RG. 1992.. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeast Iowa. . Science 258::162630
    [Crossref] [Google Scholar]
  44. Douglass AE. 1929.. The secret of the Southwest solved by talkative tree rings. . Nat. Geogr. Mag. 56::73670
    [Google Scholar]
  45. Dugmore AJ, Keller C, McGovern TH. 2007.. Norse Greenland settlement: reflections on climate change, trade, and the contrasting fates of human settlements in the North Atlantic islands. . Arctic Anthropol. 44:(1):1236
    [Crossref] [Google Scholar]
  46. Emerson TE. 1997.. Cahokia and the Archaeology of Power. Tuscaloosa:: Univ. Ala. Press
    [Google Scholar]
  47. Emerson TE. 2018.. Greater Cahokia—chiefdom, state, or city? Urbanism in the North American midcontinent, AD 1050–1250. . See Emerson et al. 2018 , pp. 487535
  48. Emerson TE, Alt SM, Pauketat TR. 2008.. Locating American Indian religion at Cahokia and beyond. . In Religion, Archaeology, and the Material World, ed. L Fogelin , pp. 21636. Cent. Archaeol. Investig. Occas. Pap. 36 . Carbondale:: Cent. Archaeol. Investig., South. Ill. Univ.
    [Google Scholar]
  49. Emerson TE, Hedman KM, Fort MA, Emerson KE. 2022.. Late pre-contact ethnogenesis, resilience, and movement in the face of climate variation in the Upper Illinois River Valley. . See Cook & Comstock 2022a , pp. 13967
  50. Emerson TE, Hedman KM, Simon ML, Fort MA, Witt KE. 2020.. Isotopic confirmation of the timing and intensity of maize consumption in Greater Cahokia. . Am. Antiq. 85::24162
    [Crossref] [Google Scholar]
  51. Emerson TE, Koldehoff BH, Brennan TK, eds. 2018.. Revealing Greater Cahokia, North America's First Native City: Rediscovery and Large-Scale Excavations of the East St. Louis Precinct. Urbana:: Ill. State Archaeol. Survey, Univ. Ill.
    [Google Scholar]
  52. Faranda D, Bourdin S, Ginesta M, Krouma M, Noyelle R, et al. 2022.. A climate-change attribution retrospective of some impactful weather extremes of 2021. . Weather Clim. Dyn. 3:(4):131140
    [Crossref] [Google Scholar]
  53. Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, et al. 2012.. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  54. Francis JA, Skific N, Vavrus SJ, Cohen J. 2022.. Measuring “weather whiplash” events in North America: a new large-scale regime approach. . J. Geophys. Res. Atmospheres 127:(17):e2022JD036717
    [Crossref] [Google Scholar]
  55. Griffin JB. 1961.. Some correlations of climatic and cultural change in eastern North American prehistory. . Ann. New York Acad. Sci. 95::71017
    [Crossref] [Google Scholar]
  56. Hally DJ, Chamblee JF. 2019.. The temporal distribution and duration of Mississippian polities in Alabama, Georgia, Mississippi, and Tennessee. . Am. Antiq. 84:(3):42037
    [Crossref] [Google Scholar]
  57. Handmer J, Honda Y, Kundzewicz Z, Arnell N, Benito G, et al. 2012.. Changes in impacts of climate extremes: human systems and ecosystems. . See Field et al. 2012 , pp. 23190
  58. Harris OJT, Cipolla CN. 2017.. Archaeological Theory in the New Millennium: Introducing Current Perspectives. London:: Routledge
    [Google Scholar]
  59. Hedman KM, Emerson TE, Fort MA, Lambert JM, Betzenhauser AM, Pauketat TR. 2022.. Corn, climate, and the human population of Greater Cahokia. . See Cook & Comstock 2022a , pp. 3764
  60. Iseminger WR. 1990.. The Archaeology of the Cahokia Palisade. Springfield:: Ill. Hist. Preserv. Agency
    [Google Scholar]
  61. Keigwin LD, Curry WB, Lehman SJ, Johnsen S. 1994.. The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago. . Nature 371:(6495):32326
    [Crossref] [Google Scholar]
  62. Kelly JE. 2009.. Contemplating Cahokia's collapse. . In Global Perspectives on the Collapse of Complex Systems, ed. JA Railey, RM Reycraft , pp. 14768. Albuquerque, NM:: Maxwell Mus. Anthropol.
    [Google Scholar]
  63. Kintigh KW, Altschul JH, Beaudry MC, Drennan RD, Kinzig AP, et al. 2014.. Grand challenges for archaeology. . Am. Antiq. 79::524
    [Crossref] [Google Scholar]
  64. Kintigh KW, Ingram SE. 2018.. Was the drought really responsible? Assessing statistical relationships between climate extremes and cultural transitions. . J. Archaeol. Sci. 89::2531
    [Crossref] [Google Scholar]
  65. Krus AM. 2016.. The timing of Precolumbian militarization in the U.S. Midwest and Southeast. . Am. Antiq. 81::37588
    [Crossref] [Google Scholar]
  66. Krus AM, Cook RA, Hamilton D. 2015.. Bayesian chronological modeling of SunWatch, a Fort Ancient village in Dayton, Ohio. . Radiocarbon 57::96577
    [Crossref] [Google Scholar]
  67. Krus AM, Hermann EW, Friberg CM, Bird BW, Wilson JJ. 2023.. Social change and late Holocene hydroclimate variability in southwest Indiana. . J. Anthropol. Archaeol. 69::101486
    [Crossref] [Google Scholar]
  68. Latour B. 1993.. We Have Never Been Modern, transl. C Porter. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  69. Leeming R, Ball A, Ashbolt N, Nichols P. 1996.. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. . Water Res. 30::2893900
    [Crossref] [Google Scholar]
  70. Ljungqvist FC, Piermattei A, Seim A, Krusic PJ, Büntgen U, et al. 2020.. Ranking of tree-ring based hydroclimate reconstructions of the past millennium. . Quat. Sci. Rev. 230::106074
    [Crossref] [Google Scholar]
  71. MacNeish RS. 1967.. An interdisciplinary approach to an archaeological problem. . In Prehistory of the Tehuacán Valley, Vol. 1: Environment and Subsistence, ed. DS Byers , pp. 1424. Austin:: Univ. Tex. Press
    [Google Scholar]
  72. MacNeish RS. 1974.. Reflections on my search for the beginnings of agriculture in Mexico. . See Willey 1974 , pp. 20734
  73. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, et al. 2009.. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. . Science 326::125660
    [Crossref] [Google Scholar]
  74. McGovern TH, Bigelow G, Amorosi T, Russell D. 1988.. Northern islands, human error, and environmental degradation: a view of social and ecological change in the Medieval North Atlantic. . Hum. Ecol. 16::22570
    [Crossref] [Google Scholar]
  75. Meeks SC, Anderson DG. 2013.. Drought, subsistence stress, and population dynamics: assessing Mississippian abandonment of the vacant quarter. . In Soils, Climate, and Society: Archaeological Investigations in Ancient America, ed. JD Wingard, SE Hayes , pp. 6183. Boulder:: Univ. Colo. Press
    [Google Scholar]
  76. Mehta JM, Rodning CB. 2022.. Environment, climate, and Mississippian origins in the Lower Mississippi Valley and the Mississippi River Delta. . See Cook & Comstock 2022a , pp. 35778
  77. Milner GR. 1986.. Mississippian period population density in a segment of the Central Mississippi River Valley. . Am. Antiq. 51::22738
    [Crossref] [Google Scholar]
  78. Milner GR. 1998.. The Cahokia Chiefdom: The Archaeology of a Mississippian Society. Washington, DC:: Smithson. Inst. Press
    [Google Scholar]
  79. Muller J. 1997.. Mississippian Political Economy. New York:: Plenum
    [Google Scholar]
  80. Munoz SE, Giosan L, Blusztajn J, Rankin C, Stinchcomb GE. 2019.. Radiogenic fingerprinting reveals anthropogenic and buffering controls on sediment dynamics of the Mississippi River system. . Geology 47:(3):27174
    [Crossref] [Google Scholar]
  81. Munoz SE, Gruley KE, Massie A, Fike DA, Schroeder S, Williams JW. 2015.. Cahokia's emergence and decline coincided with shifts of flood frequency on the Mississippi River. . PNAS 112:(20):631924
    [Crossref] [Google Scholar]
  82. Munoz SE, Schroeder S, Fike DA, Williams JW. 2014.. A record of sustained prehistoric and historic land use from the Cahokia region, Illinois, USA. . Geology 42::499502
    [Crossref] [Google Scholar]
  83. Napora KG. 2021.. Refining cultural and environmental temporalities at the Late Archaic-Early Woodland Transition on the Georgia coast, USA. PhD Diss. , Dep. Anthropol., Univ. Ga., Athens:
    [Google Scholar]
  84. Nolan KC, Cook RA. 2010.. Volatile climate conditions Cahokia: comment on Benson, Pauketat & Cook 2009. . Am. Antiq. 75:(4):97883
    [Crossref] [Google Scholar]
  85. Ollendorf AL. 1993.. Changing landscapes in the American bottom (USA): an interdisciplinary investigation with an emphasis on the Late-Prehistoric and Early-Prehistoric periods. PhD Diss. , Univ. Minn., Minneapolis:
    [Google Scholar]
  86. Palmer WC. 1965.. Meteorological drought. Weather Bur. Res. Pap. 45 , US Dep. Commer., Washington, DC:
    [Google Scholar]
  87. Pauketat TR. 1994.. The Ascent of Chiefs: Cahokia and Mississippian Politics in Native North America. Tuscaloosa:: Univ. Ala. Press
    [Google Scholar]
  88. Pauketat TR. 1998.. Refiguring the archaeology of Greater Cahokia. . J. Archaeol. Res. 6:(1):4589
    [Google Scholar]
  89. Pauketat TR. 2002.. A fourth-generation synthesis of Cahokia and Mississippianization. . Midcont. J. Archaeol. 27::14970
    [Google Scholar]
  90. Pauketat TR. 2019.. Fragile Cahokian and Chacoan orders and infrastructures. . In The Evolution of Fragility: Setting the Terms, ed. N Yoffee , pp. 89108. Cambridge, UK:: McDonald Inst. Archaeol. Res., Univ. Cambridge:
    [Google Scholar]
  91. Pauketat TR, Fortier AC, Alt SM, Emerson TE. 2013.. A Mississippian conflagration at East St. Louis and its political-historical implications. . J. Field Archaeol. 38::21026
    [Crossref] [Google Scholar]
  92. Pauketat TR, Lopinot NH. 1997.. Cahokian population dynamics. . In Cahokia: Domination and Ideology in the Mississippian World, ed. TR Pauketat, TE Emerson , pp. 10323. Lincoln:: Univ. Neb. Press
    [Google Scholar]
  93. Pompeani DP, Abbott MB, Steinman BA, Bain DJ. 2013.. Lake sediments record prehistoric lead pollution related to early copper production in North America. . Environ. Sci. Technol. 47::554552
    [Crossref] [Google Scholar]
  94. Pompeani DP, Bird BW, Wilson JJ, Gilhooly WP III, Hillman AL, et al. 2021.. Severe Little Ice Age drought in the midcontinental United States during the Mississippian abandonment of Cahokia. . Sci. Rep. 11::13829
    [Crossref] [Google Scholar]
  95. Pompeani DP, Hillman AL, Finkenbinder MS, Bain DJ, Correa-Metrio A, et al. 2019.. The environmental impact of a pre-Columbian city based on geochemical insights from lake sediment cores recovered near Cahokia. . Quat. Res. 91:(2):71428
    [Crossref] [Google Scholar]
  96. Prost K, Birk JJ, Lehndorff E, Gerlach R, Amelung W. 2017.. Steroid biomarkers revisited—improved source identification of faecal remains in archaeological soil material. . PLOS ONE 12:(1):e0164882
    [Crossref] [Google Scholar]
  97. Ritchison BT, Anderson DG. 2022.. “ Vacant quarters and population movements”: legacy data and the investigation of a large-scale emigration event from the Savannah River Valley to the Georgia Coast. . See Cook & Comstock 2022a , pp. 25798
  98. Rivera-Collazo I. 2022.. Environment, climate and people: exploring human responses to climate change. . J. Anthropol. Archaeol. 68::101460
    [Crossref] [Google Scholar]
  99. Rogers JD, Smith BD, eds. 2005.. Mississippian Communities and Households. Tuscaloosa:: Univ. Ala. Press
    [Google Scholar]
  100. Schiffer MB. 1975.. Archaeology as behavioral science. . Am. Anthropol. 77:(4):83648
    [Crossref] [Google Scholar]
  101. Schroeder S. 2004a.. Current research on Late Precontact societies of the midcontinental United States. . J. Archaeol. Res. 12:(4):31172
    [Crossref] [Google Scholar]
  102. Schroeder S. 2004b.. Power and place: agency, ecology, and history in the American Bottom, Illinois. . Antiquity 78::81227
    [Crossref] [Google Scholar]
  103. Schroeder S, White AJ, Stevens LR, Munoz SE. 2022.. Regional migration and Cahokian population change in the context of climate change and hydrological events. . See Cook & Comstock 2022a , pp. 65109
  104. Schwartz DW. 1957.. Climate change and culture history in the Grand Canyon Region. . Am. Antiq. 22::37277
    [Crossref] [Google Scholar]
  105. Schwindt DM, Bocinsky RK, Ortman SG, Glowacki DM, Varien MD, Kohler TA. 2016.. The social consequences of climate change in the central Mesa Verde region. . Am. Antiq. 81::7496
    [Crossref] [Google Scholar]
  106. Seneviratne S, Nicholls N, Easterling D, Goodess CM, Kanae S, et al. 2012.. Changes in climate extremes and their impacts on the natural physical environment. . See Field et al. 2012 , pp. 109230
  107. Shaw J. 2016.. Archaeology, climate change and environmental ethics: diachronic perspectives on human:non-human:environment worldviews, activism and care. . World Archaeol. 48::44965
    [Crossref] [Google Scholar]
  108. Shennan S, Downey SS, Timpson A, Edinborough K, Colledge S, et al. 2013.. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. . Nat. Comm. 4::2486
    [Crossref] [Google Scholar]
  109. Simon ML. 2017.. Reevaluating the evidence for Middle Woodland maize from the Holding site. . Am. Antiq. 82:(1):14050
    [Crossref] [Google Scholar]
  110. Smith BD. 1978.. Variation in Mississippian settlement patterns. . In Mississippian Settlement Patterns, pp. 479503. New York:: Acad. Press
    [Google Scholar]
  111. Stahle DW, Cleaveland MK. 1994.. Tree-ring reconstructed rainfall over the southeastern U.S.A. during the Medieval Warm Period and Little Ice Age. . Clim. Change 26::199212
    [Crossref] [Google Scholar]
  112. Stahle DW, Cook ER, White JWC. 1985.. Tree-ring dating of baldcypress and the potential for millennia-long chronologies in the Southeast. . Am. Antiq. 50:(4):796802
    [Crossref] [Google Scholar]
  113. Stahle DW, Fye FK, Cook ER, Griffin RD. 2007.. Tree-ring reconstructed megadroughts over North America since AD 1300. . Clim. Change 83::13349
    [Crossref] [Google Scholar]
  114. Steffensen JP, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, et al. 2008.. High-resolution Greenland ice core data show abrupt climate change happens in few years. . Science 321:(5889):68084
    [Crossref] [Google Scholar]
  115. Stephenson K, King A, Smith KY. 2015.. Space and time: the culture historical setting for the Hollywood phase of the middle Savannah River Valley. . In Archaeological Perspectives on the Southern Appalachians: A Multiscalar Approach, ed. RA Gougeon, MS Meyers , pp. 17198. Knoxville:: Univ. Tenn. Press
    [Google Scholar]
  116. Steward JH, Setzler FM. 1938.. Function and configuration in archaeology. . Am. Antiq. 4:(1):410
    [Crossref] [Google Scholar]
  117. Taylor WW. 1948.. A Study of Archaeology. Am. Anthropol. Assoc. Mem. 69 . Carbondale:: South. Ill. Univ., Cent. Archaeol. Investig.
    [Google Scholar]
  118. Taylor ZP, Horn SP, Finkelstein DB. 2013.. Maize pollen concentrations in Neotropical lake sediments as an indicator of the scale of prehistoric agriculture. . Holocene 23:(1):7884
    [Crossref] [Google Scholar]
  119. Thomas J. 2004.. Archaeology and Modernity. London:: Routledge
    [Google Scholar]
  120. Thomas K, Hardy RD, Lazrus H, Mendez M, Orlove B, Rivera-Collazo I, et al. 2019.. Explaining differential vulnerability to climate change: a social science review. . WIREs Clim. Change 10:(2):e565
    [Crossref] [Google Scholar]
  121. Thompson VD, Krus AM. 2018.. Contemplating the history and future of radiocarbon dating in the American Southeast. . Southeast. Archaeol. 37::111
    [Crossref] [Google Scholar]
  122. Trigger BG. 2006.. A History of Archaeological Thought. Cambridge, UK:: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  123. Trubitt MBD. 2000.. Mound building and prestige goods exchange: changing strategies in the Cahokia chiefdom. . Am. Antiq. 65::66990
    [Crossref] [Google Scholar]
  124. Wahl D, Anderson L, Estrada-Belli F, Tokovinine A. 2019.. Palaeoenvironmental, epigraphic and archaeological evidence of total warfare among the Classic Maya. . Nat. Hum. Behav. 3:(10):104954
    [Crossref] [Google Scholar]
  125. Wedel WR. 1941.. Environment and Native Subsistence Economies in the Central Great Plains. Smithson. Misc. Collect . Vol. 101. Washington, DC:: Smithson. Inst.
    [Google Scholar]
  126. Wedel WR. 1953.. Some aspects of human ecology in the Central Plains. . Am. Anthropol. 55:(4):499514
    [Crossref] [Google Scholar]
  127. White AJ, Stevens LR, Lorenzi V, Munoz SE, Lipo CP, Schroeder S. 2018.. An evaluation of fecal stanols as indicators of population change at Cahokia, Illinois. . J. Archaeol. Sci. 93::12934
    [Crossref] [Google Scholar]
  128. White AJ, Stevens LR, Lorenzi V, Munoz SE, Schroeder S, et al. 2019.. Fecal stanols show simultaneous flooding and seasonal precipitation change correlate with Cahokia's population decline. . PNAS 116:(12):564166
    [Crossref] [Google Scholar]
  129. Willey GR, ed. 1974.. Archaeological Researches in Retrospect. Cambridge, MA:: Winthrop
    [Google Scholar]
  130. Wilson JJ, Bird BW. 2022.. Drought, diet, demography, and diaspora during the Mississippian Period: a view from the Central Illinois River Valley. . See Cook & Comstock 2022a , pp. 11337
  131. Yoffee N, Fowles SM. 2011.. Archaeology in the humanities. . Diogenes 58:(1–2):3552
    [Crossref] [Google Scholar]
  132. Zaro G, Nystrom KC, Keefer DK. 2013.. Environmental catastrophe and the archaeological record: complexities of volcanism, floods, and farming in South Coastal Peru, A.D. 1200–1700. . Andean Past 11::17
    [Google Scholar]
  133. Zhou T, Zhang W, Zhang L, Clark R, Qian C, et al. 2022.. 2021: a year of unprecedented climate extremes in eastern Asia, North America, and Europe. . Adv. Atmos. Sci. 39:(10):1598607
    [Crossref] [Google Scholar]
  134. Zych TJ, Richards JD. 2022.. Pushing and pulling the Mississippian Moment into the western Great Lakes. . See Cook & Comstock 2022a , pp. 16994
/content/journals/10.1146/annurev-anthro-101819-110206
Loading
/content/journals/10.1146/annurev-anthro-101819-110206
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error