1932

Abstract

The alternative oxidase is a membrane-bound ubiquinol oxidase found in the majority of plants as well as many fungi and protists, including pathogenic organisms such as . It catalyzes a cyanide- and antimycin-A-resistant oxidation of ubiquinol and the reduction of oxygen to water, short-circuiting the mitochondrial electron-transport chain prior to proton translocation by complexes III and IV, thereby dramatically reducing ATP formation. In plants, it plays a key role in cellular metabolism, thermogenesis, and energy homeostasis and is generally considered to be a major stress-induced protein. We describe recent advances in our understanding of this protein's structure following the recent successful crystallization of the alternative oxidase from . We focus on the nature of the active site and ubiquinol-binding channels and propose a mechanism for the reduction of oxygen to water based on these structural insights. We also consider the regulation of activity at the posttranslational and retrograde levels and highlight challenges for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042811-105432
2013-04-29
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/arplant/64/1/annurev-arplant-042811-105432.html?itemId=/content/journals/10.1146/annurev-arplant-042811-105432&mimeType=html&fmt=ahah

Literature Cited

  1. Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M. 1.  et al. 2000. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struct. Biol. 7:910–17 [Google Scholar]
  2. Affourtit C, Albury MS, Crichton PG, Moore AL. 2.  2002. Exploring the molecular nature of alternative oxidase regulation and catalysis. FEBS Lett. 510:122–26 [Google Scholar]
  3. Affourtit C, Albury MS, Moore AL. 3.  2000. The active site of the plant alternative oxidase: structural and mechanistic considerations. Pest. Manag. Sci. 56:31–38 [Google Scholar]
  4. Affourtit C, Krab K, Moore AL. 4.  2001. Control of plant mitochondrial respiration. Biochim. Biophys. Acta 1504:58–69 [Google Scholar]
  5. Affourtit C, Moore AL. 5.  2004. Purification of the plant alternative oxidase from Arum maculatum: measurement, stability and metal requirement. Biochim. Biophys. Acta 1608:181–89 [Google Scholar]
  6. Ajayi WU, Chaudhuri M, Hill GC. 6.  2002. Site-directed mutagenesis reveals the essentiality of the conserved residues in the putative diiron active site of the trypanosome alternative oxidase. J. Biol. Chem. 277:8187–93 [Google Scholar]
  7. Albury MS, Affourtit C, Crichton PG, Moore AL. 7.  2002. Structure of the plant alternative oxidase site-directed mutagenesis provides new information on the active site and membrane topology. J. Biol. Chem. 277:1190–94 [Google Scholar]
  8. Albury MS, Affourtit C, Moore AL. 8.  1998. A highly conserved glutamate residue (E270) is essential for plant alternative oxidase activity. J. Biol. Chem. 273:30301–6 [Google Scholar]
  9. Albury MS, Elliott C, Moore AL. 9.  2009. Towards a structural elucidation of the alternative oxidase in plants. Physiol. Plant. 137:316–27 [Google Scholar]
  10. Albury MS, Elliott C, Moore AL. 10.  2010. Ubiquinol-binding site in the alternative oxidase: Mutagenesis reveals features important for substrate binding and inhibition. Biochim. Biophys. Acta 1797:1933–39 [Google Scholar]
  11. Andersson ME, Nordlund P. 11.  1999. A revised model of the active site of alternative oxidase. FEBS Lett. 449:17–22 [Google Scholar]
  12. Arcangeli G. 12.  1879. L'Amorphophallus titanum Beccari. J. Bot. Soc. Ital. 11:217–23 [Google Scholar]
  13. Bartlett DW, Clough JM, Goodwin JR, Hall AA, Hammer M. 13.  et al. 2002. The strobilurins fungicides. Pest. Manag. Sci. 58:649–62 [Google Scholar]
  14. Behan RK, Lippard SJ. 14.  2010. The aging-associated enzyme CLK-1 is a member of the carboxylate-bridged diiron family of proteins. Biochemistry 49:9679–81 [Google Scholar]
  15. Bendall DS, Bonner WD Jr. 15.  1971. Cyanide-insensitive respiration in plant mitochondria. Plant Physiol. 47:236–45 [Google Scholar]
  16. Berthold DA. 16.  1998. Isolation of mutants of the Arabadopsis thaliana alternative oxidase (ubiquinol:oxygen oxidoreductase) resistant to salicylhydroxamic acid. Biochim. Biophys. Acta 1364:73–83 [Google Scholar]
  17. Berthold DA, Andersson ME, Nordlund P. 17.  2000. New insight into the structure and function of the alternative oxidase. Biochim. Biophys. Acta 1460:241–54 [Google Scholar]
  18. Berthold DA, Siedow JN. 18.  1993. Partial purification of the cyanide-resistant alternative oxidase of skunk cabbage (Symplocarpus foetidus) mitochondria. Plant Physiol. 101:113–19 [Google Scholar]
  19. Berthold DA, Stenmark P. 19.  2003. Membrane-bound di-iron carboxylate proteins. Annu. Rev. Plant Biol. 54:497–517 [Google Scholar]
  20. Berthold DA, Voevodskaya N, Stenmark P, Gräslund A, Nordlund P. 20.  2002. EPR studies of the mitochondrial alternative oxidase: evidence for a diiron carboxylate center. J. Biol. Chem. 277:43608–14 [Google Scholar]
  21. Besson-Bard A, Pugin A, Wendehenne D. 21.  2008. New insights into nitric oxide signalling in plants. Annu. Rev. Plant Biol. 59:21–39 [Google Scholar]
  22. Bhate RH, Ramasarma T. 22.  2009. Evidence for H2O2 as the product of reduction of oxygen by alternative oxidase in mitochondria from potato tubers. Arch. Biochem. Biophys. 486:165–69 [Google Scholar]
  23. Bonner WD, Clarke SD, Rich PR. 23.  1986. Partial purification and characterization of the quinol oxidase activity of Arum maculatum mitochondria. Plant Physiol. 80:838–42 [Google Scholar]
  24. Burch-Smith TM, Brunkard JO, Choi YG, Zambryski PC. 24.  2011. Organelle-nucleus cross-talk regulates plant intercellular communication via plasmodesmata. Proc. Natl. Acad. Sci. USA 108:1451–60 [Google Scholar]
  25. Carré JE, Crichton PG, Affourtit C, Albury MS, Moore AL. 25.  2011. Interaction of purified plant alternative oxidase from Arum maculatum with pyruvate. FEBS Lett. 585:397–401 [Google Scholar]
  26. Caspary R. 26.  1855. Uber warmeentwicklung in der bluthe der Victoria regia. Monatsber. Königl. Preuss. Akad. Wiss. Berlin 3:711–56 [Google Scholar]
  27. Chaudhuri M, Ott RD, Saha L, Williams S, Hill GC. 27.  2005. The Trypanosoma alternative oxidase exists as a monomer in Trypanosoma brucei mitochondria. Parasitol. Res. 96:178–83 [Google Scholar]
  28. Crichton PG, Affourtit C, Albury MS, Carré JE, Moore AL. 28.  2005. Constitutive activity of Sauromatum guttatum alternative oxidase in Schizosaccharomyces pombe implicates residues in addition to conserved cysteines in α-keto acid activation. FEBS Lett. 579:331–36 [Google Scholar]
  29. Crichton PG, Albury MS, Affourtit C, Moore AL. 29.  2010. Mutagenesis of the Sauromatum guttatum alternative oxidase reveals features important for oxygen binding and catalysis. Biochim. Biophys. Acta 1797:732–37 [Google Scholar]
  30. Del Rizzo PA, Bi Y, Dunn SD, Shilton BH. 30.  2002. The “second stalk” of Escherichia coli ATP synthase: structure of the isolated dimerization domain. Biochemistry 41:6875–84 [Google Scholar]
  31. Djajanegara I, Finnegan PM, Mathieu C, McCabe T, Whelan J. 31.  et al. 2002. Regulation of alternative oxidase gene expression in soybean. Plant Mol. Biol. 50:735–42 [Google Scholar]
  32. Dojcinovic D, Krosting J, Harris AJ, Wagner D, Rhoads DM. 32.  2005. Identification of a region of the Arabidopsis AtAOX1a promoter necessary for mitochondrial retrograde regulation of expression. Plant Mol. Biol. 58:159–75 [Google Scholar]
  33. Efremov RG, Baradaran R, Sazanov LA. 33.  2010. The architecture of respiratory complex I. Nature 465:441–45 [Google Scholar]
  34. Elthon TE, McIntosh L. 34.  1986. Characterisation and solubilisation of the alternative oxidase of Sauromatum guttatum mitochondria. Plant Physiol. 82:1–6 [Google Scholar]
  35. Elthon TE, McIntosh L. 35.  1987. Identification of the alternative terminal oxidase of higher plant mitochondria. Proc. Natl. Acad. Sci. USA 84:8399–403 [Google Scholar]
  36. Eubel H, Jänsch L, Braun H-P. 36.  2003. New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol. 133:274–86 [Google Scholar]
  37. Fato R, Cavazzoni M, Castelluccio C, Parenti Castelli G, Palmer G. 37.  et al. 1993. Steady-state kinetics of ubiquinol–cytochrome c reductase in bovine heart submitochondrial particles: diffusional effects. Biochem. J. 290:225–36 [Google Scholar]
  38. Fernandez-Ortuno D, Tores JA, de Vicente A, Perez-Garcia A. 38.  2008. Field resistance to QoI fungicides in Podosphaera fusca is not supported by typical mutations in the mitochondrial cytochrome b gene. Pest. Manag. Sci. 62:694–702 [Google Scholar]
  39. Fernandez-Ortuno D, Tores JA, de Vicente A, Perez-Garcia A. 39.  2008. Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. Int. Microbiol. 11:1–9 [Google Scholar]
  40. Finnegan P, Soole KL, Umbach AL. 40.  2004. Alternative mitochondrial electron transport proteins in higher plants. Plant Mitochondria: From Genome to Function Adv. Photosynth. Respir. 17, ed. DA Day, AH Millar, J Whelan 163–230 Dordrecht: Springer [Google Scholar]
  41. Fisher N, Rich PR. 41.  2000. A motif for quinone binding sites in respiratory and photosynthetic systems. J. Mol. Biol. 296:1153–62 [Google Scholar]
  42. Fontecave M. 42.  1998. Ribonucleotide reductases and radical reactions. Cell. Mol. Life Sci. 54:684–95 [Google Scholar]
  43. Friedle S, Reisner E, Lippard S. 43.  2010. Current challenges of modelling the diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39:2768–79 [Google Scholar]
  44. Fu A, Park S, Rodermel S. 44.  2005. Sequences required for the activity of PTOX (IMMUTANS), a plastid terminal oxidase: in vitro and in planta mutagenesis of iron-binding sites and a conserved sequence that corresponds to Exon 8. J. Biol. Chem. 280:42489–96 [Google Scholar]
  45. Fukai Y, Amino H, Hirawake H, Yabu Y, Ohta N. 45.  et al. 1999. Functional expression of the ascofuranone-sensitive Trypanosoma brucei brucei alternative oxidase in the cytoplasmic membrane of Escherichia coli. Comp. Biochem. Physiol. C 124:141–48 [Google Scholar]
  46. Gao J, Thelen JJ, Dunke AK, Xu D. 46.  2010. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol. Cell. Proteomics 9:2586–600 [Google Scholar]
  47. Garreau M. 47.  1851. Mémoire sur les relations qui existent entre l'oxygéne consommé par le spadice de l'Arum italicum, en état de paroxysme, et la chaleur qui se produit. Ann. Sci. Nat. Bot. Ser. 3 16:250–56 [Google Scholar]
  48. Gibbons C, Montgomery MG, Leslie AGW, Walker JE. 48.  2000. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nat. Struct. Biol. 7:1055–61 [Google Scholar]
  49. Giraud E, Van Aken O, Ho LHM, Whelan J. 49.  2009. The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of alternative oxidase1α. Plant Physiol. 150:1286–96 [Google Scholar]
  50. Gomes CM, Le Gall J, Xavier AV, Teixeira M. 50.  2001. Could a diiron-containing four-helix-bundle protein have been a primitive oxygen reductase?. Chem. Biochem. 7:583–87 [Google Scholar]
  51. Grant N, Onada Y, Kakizaki Y, Ito K, Watling J. 51.  et al. 2009. Two Cys or not two Cys? That is the question; alternative oxidase in the thermogenic plant sacred lotus. Plant Physiol. 150:987–95 [Google Scholar]
  52. Gray GR, Villarimo AR, Whitehead CL, McIntosh L. 52.  2004. Transgenic tobacco (Nicotiana tabacum L.) plants with increased expression levels of mitochondrial NADP+-dependent isocitrate dehydrogenase: evidence implicating this enzyme in the redox activation of the alternative oxidase. Plant Cell Physiol. 45:1413–25 [Google Scholar]
  53. Guy JE, Whittle E, Kumaran D, Lindqvist Y, Shanklin J. 53.  2007. The crystal structure of the ivy D4-16:0-ACP desaturase reveals structural details of the oxidized active site and potential determinants of regioselectivity. J. Biol. Chem. 282:19863–71 [Google Scholar]
  54. Hogbom M, Stenmark P, Voevodskaya N, McClary G, Graslund A. 54.  et al. 2004. The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass. Science 305:245–48 [Google Scholar]
  55. Hooker JD. 55.  1981. Amorphophallus titanum: native of Sumatra. Curtis's Bot. Mag. 3:477153–55 [Google Scholar]
  56. Horsefield R, Yankovskaya V, Sexton G, Whittingham W, Shiomi K. 56.  et al. 2006. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. J. Biol. Chem. 281:7309–16 [Google Scholar]
  57. Huq S, Palmer JM. 57.  1978. Isolation of a cyanide-resistant duroquinol oxidase from Arum maculatum mitochondria. FEBS Lett. 95:217–20 [Google Scholar]
  58. Ito K, Ogata T, Kakizaki Y, Elliott C, Albury MS. 58.  et al. 2011. Identification of a gene for pyruvate-insensitive mitochondrial alternative oxidase expressed in the thermogenic appendices in Arum maculatum. Plant Physiol. 157:1721–32 [Google Scholar]
  59. Iwata M, Lee Y, Yamashita T, Yagi T, Iwata S. 59.  et al. 2012. The structure of the yeast NADH dehydrogenase (Ndi1) reveals overlapping binding sites for water- and lipid-soluble substrates. Proc. Natl. Acad. Sci. USA 109:15247–52 [Google Scholar]
  60. Iwata S, Lee JW, Okada K, Lee JK, Iwata M. 60.  et al. 1998. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71 [Google Scholar]
  61. Jacoby RP, Taylor NL, Miller AH. 61.  2011. The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci. 16:614–23 [Google Scholar]
  62. James WO, Beevers H. 62.  1950. The respiration of Arum spadix. A rapid respiration, resistant to cyanide. New Phytol. 49:353–74 [Google Scholar]
  63. James WO, Elliott DC. 63.  1955. Cyanide-resistant mitochondria from the spadix of an Arum. Nature 175:89 [Google Scholar]
  64. Jin S, Kurtz DM Jr, Liu ZJ, Rose J, Wang BC. 64.  2002. X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase. J. Am. Chem. Soc. 124:9845–55 [Google Scholar]
  65. Kakizaki Y, Moore AL, Ito K. 65.  2012. Different molecular bases underlie the mitochondrial respiratory activity in the homoeothermic spadices of Symplocarpus renifolius and the transiently thermogenic appendices of Arum maculatum. Biochem. J. 445:237–46 [Google Scholar]
  66. Kay CJ, Palmer JM. 66.  1985. Solubilization of the alternative oxidase from cuckoo-pint (Arum maculatum) mitochondria: stimulation by high concentrations of ions and effects of specific inhibitors. Biochem. J. 228:309–18 [Google Scholar]
  67. Kido Y, Sakamoto K, Nakamura K, Harada M, Suzuki T. 67.  et al. 2010. Purification and kinetic characterisation of recombinant alternative oxidase from Trypanosoma brucei brucei. Biochim. Biophys. Acta 1797:443–50 [Google Scholar]
  68. Kido Y, Shiba T, Inaoka DK, Sakamoto K, Nara T. 68.  et al. 2010. Crystallization and preliminary crystallographic analysis of cyanide-insensitive alternative oxidase from Trypanosoma brucei brucei. Acta. Crystallogr. F 66:275–78 [Google Scholar]
  69. Kobayashi K, Otegui MS, Krishnakumar S, Mindrinos M, Zambryski P. 69.  2007. INCREASED SIZE EXCLUSION LIMIT2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell 19:1885–97 [Google Scholar]
  70. Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G. 70.  et al. 2007. Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–19 [Google Scholar]
  71. Kraiczy P, Haase U, Gencic S, Flindt S, Anke T. 71.  et al. 1996. The molecular basis for the natural resistance of the cytochrome bc1 complex from strobilurin-producing basidiomycetes to centre QP inhibitors. Eur. J. Biochem. 235:54–63 [Google Scholar]
  72. Kumar AM, Soll D. 72.  1992. Arabidopsis alternative oxidase sustains Escherichia coli respiration. Proc. Natl. Acad. Sci. USA 89:10842–46 [Google Scholar]
  73. Lamarck JB. 73.  1778. Flore Française, ou description Succincte de toutes les Plantes qui croissent naturellement en France 3 Paris: Impr. Natl., 2nd. ed. [Google Scholar]
  74. Maréchal A, Kido Y, Kita K, Moore AL, Rich PR. 74.  2009. Three redox states of Trypanosoma brucei alternative oxidase identified by infrared spectroscopy and electrochemistry. J. Biol. Chem. 284:31827–33 [Google Scholar]
  75. McDonald AE. 75.  2009. Alternative oxidase: What information can protein sequence comparisons give us?. Physiol. Plant. 137:328–41 [Google Scholar]
  76. Medek P, Benes P, Sochor J. 76.  2007. Computation of tunnels in protein molecules using Delaunay triangulation. J. WSCG 15:107–14 [Google Scholar]
  77. Meeuse BJD. 77.  1975. Thermogenic respiration in aroids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 26:117–26 [Google Scholar]
  78. Millar AH, Day DA. 78.  1996. Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett. 398:155–58 [Google Scholar]
  79. Millar AH, Whelan J, Soole KL, Day DA. 79.  2011. Organization and regulation of mitochondrial respiration in plants. Annu. Rev. Plant Biol. 62:79–104 [Google Scholar]
  80. Millar AH, Wiskich J, Whelan J, Day DA. 80.  1993. Organic acid activation of the alternative oxidase of plant mitochondria. FEBS Lett. 329:259–62 [Google Scholar]
  81. Minagawa N, Sakajo S, Komiyama T, Yoshimoto A. 81.  1990. Essential role of ferrous iron in cyanide-resistant respiration Hansenula anomola. FEBS Lett. 267:114–16 [Google Scholar]
  82. Minagawa N, Yabu Y, Kita K, Nagai K, Ohta N. 82.  et al. 1996. An antibiotic, ascofuranone, specifically inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma brucei brucei. Mol. Biochem. Parasitol. 81:127–36 [Google Scholar]
  83. Miyake K. 83.  1898. Some physiological observations on Nelumbo nucifera. Bot. Mag. Tokyo 12:112–17 [Google Scholar]
  84. Møller IM, Rasmussen AG, Siedow JN, Vanlerberghe GC. 84.  2010. The product of the alternative oxidase is still H2O. Arch. Biochem. Biophys. 495:93–94 [Google Scholar]
  85. Moore AL, Albury MS. 85.  2008. Further insights into the structure of the alternative oxidase: from plants to parasites. Biochem. Soc. Trans. 36:1022–26 [Google Scholar]
  86. Moore AL, Albury MS, Crichton P, Affourtit C. 86.  2002. Function of the alternative oxidase: Is it still a scavenger?. Trends Plant Sci. 7:478–81 [Google Scholar]
  87. Moore AL, Bonner WD Jr, Rich PR. 87.  1978. The determination of the proton motive force during cyanide insensitive respiration in plant mitochondria. Arch. Biochem. Biophys. 186:298–306 [Google Scholar]
  88. Moore AL, Carré JE, Affourtit C, Albury MS, Crichton PG. 88.  et al. 2008. Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein. Biochim. Biophys. Acta 1777:327–30 [Google Scholar]
  89. Moore AL, Umbach AL, Siedow JN. 89.  1995. Structure-function relationship of the alternative oxidase of plant mitochondria: a model of the active site. J. Bioenerg. Biomembr. 27:367–77 [Google Scholar]
  90. Nakamura K, Sakamoto K, Kido Y, Fujimoto Y, Suzuki T. 90.  et al. 2005. Mutational analysis of the Trypanosoma vivax alternative oxidase: The E(X)6Y motif is conserved in both mitochondrial alternative oxidase and plastid terminal oxidase and is indispensable for enzyme activity. Biochem. Biophys. Res. Commun. 334:593–600 [Google Scholar]
  91. Nihei C, Fukai Y, Kawai K, Osanai A, Yabu Y. 91.  et al. 2003. Purification of active recombinant trypanosome alternative oxidase. FEBS Lett. 538:35–40 [Google Scholar]
  92. Nordlund P, Eklund H. 92.  1993. Structure and function of the Escherichia coli ribonucleotide reductase protein R2. J. Mol. Biol. 232:123–64 [Google Scholar]
  93. Okunuki K. 93.  1939. Über den Gaswechsel der Pollen. II.. Acta Phytochim. 11:27–64 [Google Scholar]
  94. Onda Y, Kato Y, Abe Y, Ito T, Ito-Inaba Y. 94.  et al. 2007. Pyruvate-sensitive AOX exists as a non-covalently associated dimer in the homeothermic spadix of the skunk cabbage, Symplocarpus renifolius. FEBS Lett. 581:5852–58 [Google Scholar]
  95. Page CC, Moser CC, Chen X, Dutton PL. 95.  1999. Natural engineering in principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52 [Google Scholar]
  96. Picot D, Loll PJ, Garavito RM. 96.  1994. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367:243–49 [Google Scholar]
  97. Ramírez-Aguilar SJ, Keuthe M, Rocha M, Fedyaev VV, Kramp K. 97.  et al. 2011. The composition of plant mitochondrial supercomplexes changes with oxygen availability. J. Biol. Chem. 286:43045–53 [Google Scholar]
  98. Rasmusson AG, Fernie AR, van Dongen JT. 98.  2009. Alternative oxidase: a defence against metabolic fluctuations?. Physiol. Plant. 137:371–82 [Google Scholar]
  99. Rastogi VK, Girvin ME. 99.  1999. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–68 [Google Scholar]
  100. Rhoads DM, McIntosh L. 100.  1991. Isolation and characterization of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott). Proc. Natl. Acad. Sci. USA 88:2122–26 [Google Scholar]
  101. Rhoads DM, Subbaiah CC. 101.  2007. Mitochondrial retrograde regulation in plants. Mitochondrion 7:177–94 [Google Scholar]
  102. Rhoads DM, Umbach AL, Sweet CR, Lennon AM, Rauch GS. 102.  et al. 1998. Regulation of the cyanide-resistant alternative oxidase of plant mitochondria. Identification of the cysteine residue involved in α-keto acid stimulation and intersubunit disulfide bond formation. J. Biol. Chem. 273:30750–56 [Google Scholar]
  103. Rich PR. 103.  1978. Quinol oxidation in Arum maculatum mitochondria and its application to the assay, solubilisation and partial purification of the alternative oxidase. FEBS Lett. 96:252–56 [Google Scholar]
  104. Rich PR. 104.  1996. Quinone binding sites of membrane proteins as targets for inhibitors. Pestic. Sci. 47:287–96 [Google Scholar]
  105. Rich PR, Moore AL. 105.  1976. The involvement of the proton motive ubiquinone cycle in the respiratory chain of higher plants and its relation to the branchpoint of the alternate pathway. FEBS Lett. 65:339–44 [Google Scholar]
  106. Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P. 106.  1993. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–43 [Google Scholar]
  107. Sakamoto H, Miyoshi M, Ohshima K, Kuwabara K, Kano T. 107.  et al. 1989. Role of the isoprenyl tail of ubiquinone in reaction with respiratory enzymes: studies with bovine heart mitochondrial complex I and Escherichia coli bo-type ubiquinol oxidase. Biochemistry 37:15106–13 [Google Scholar]
  108. Schmidt PP, Rova U, Katterle B, Thelander L, Gräslund A. 108.  1998. Kinetic evidence that a radical transfer pathway in protein R2 of mouse ribonucleotide reductase is involved in generation of the tyrosyl free radical. J. Biol. Chem. 273:21463–72 [Google Scholar]
  109. Schonbaum GR, Bonner WD Jr, Storey BT, Bahr JT. 109.  1971. Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol. 47:126–28 [Google Scholar]
  110. Schwarzländer M, König A-C, Sweetlove LJ, Finkemeier I. 110.  2012. The impact of impaired mitochondrial function on retrograde signalling: a meta-analysis of transcriptomic responses. J. Exp. Bot. 63:1735–50 [Google Scholar]
  111. Shan X, Que L Jr. 111.  2005. Intermediates in the oxygenation of a nonheme diiron(II) complex, including the first evidence for a bound superoxo species. Proc. Natl. Acad. Sci. USA 102:5340–45 [Google Scholar]
  112. Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C. 112.  et al. 2013. Structure of the trypanosome cyanide-insensitive alternative oxidase. Proc. Natl. Acad. Sci. USA. In press [Google Scholar]
  113. Shimizu H, Osanai A, Sakamoto K, Inaoka DK, Shiba T. 113.  et al. 2012. Crystal structure of mitochondrial quinol-fumarate reductase from the parasitic nematode Ascaris suum. J. Biochem. 151:589–92 [Google Scholar]
  114. Shinkarev VP. 114.  2006. Ubiquinone (coenzyme Q10) binding sites: low dielectric constant of the gate prevents the escape of the semiquinone. FEBS Lett. 580:2534–39 [Google Scholar]
  115. Siedow JN, Umbach AL, Moore AL. 115.  1995. The active site of the cyanide-resistant oxidase from plant mitochondria contains a binuclear iron center. FEBS Lett. 362:10–14 [Google Scholar]
  116. Silverstein TP. 116.  2011. Photosynthetic water oxidation versus mitochondrial oxygen reduction: distinct mechanistic parallels. J. Bioenerg. Biomembr. 43:437–46 [Google Scholar]
  117. Sluse FE, Jarmunszkiewicz W. 117.  2004. Regulation of electron transport in the respiratory chain of plant mitochondria. Plant Mitochondria: From Genome to Function Adv. Photosynth. Respir. 17, ed. DA Day, AH Millar, J Whelan 231–46 Dordrecht: Springer [Google Scholar]
  118. Sunderhaus S, Klodmann J, Lenz C, Braun H-P. 118.  2010. Supramolecular structure of the OXPHOS system in highly thermogenic tissue of Arum maculatum. Plant Physiol. Biochem. 48:265–72 [Google Scholar]
  119. Szeto SSW, Reinke SN, Sykes BD, Lemire BD. 119.  2007. Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate. J. Biol. Chem. 282:27518–26 [Google Scholar]
  120. Umbach AL, Gonzàlez-Meler MA, Sweet CR, Siedow JN. 120.  2002. Activation of the plant mitochondrial alternative oxidase: insights from site-directed mutagenesis. Biochim. Biophys. Acta 1554:118–28 [Google Scholar]
  121. Umbach AL, Siedow JN. 121.  1993. Covalent and noncovalent dimers of the cyanide-resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol. 103:845–54 [Google Scholar]
  122. Umbach AL, Siedow JN. 122.  1996. The reaction of the soybean cotyledon mitochondrial cyanide-resistant oxidase with sulfhydryl reagents suggests that α-keto acid activation involves the formation of a thiohemiacetal. J. Biol. Chem. 271:25019–26 [Google Scholar]
  123. Umbach AL, Siedow JN. 123.  2000. The cyanide-resistant alternative oxidase from the fungi Pichia stipitis and Neurospora crassa are monomeric and lack regulatory features of the plant enzyme. Arch. Biochem. Biophys. 378:234–45 [Google Scholar]
  124. Van Aken O, Giraud E, Clifton R, Whelan J. 124.  2009. Alternative oxidase: a target and regulator of stress responses. Physiol. Plant. 137:354–61 [Google Scholar]
  125. van Dongren JT, Gupta KJ, Ramírez-Aguilar SJ, Araújo WL, Nunes-Nesi A. 125.  et al. 2011. Regulation of respiration in plants: a role for alternative metabolic pathways. J. Plant Physiol. 168:1434–43 [Google Scholar]
  126. Van Herk AWH. 126.  1937. Chemical processes in Sauromatum flowers. Proc. Acad. Sci. Amst. 40:709–19 [Google Scholar]
  127. Van Herk AWH. 127.  1937. Chemical processes in Sauromatum spikes. II. Proc. Acad. Sci. Amst. 40:607–14 [Google Scholar]
  128. Van Herk AWH, Badenhuizen NP. 128.  1934. Respiration and catalase action in the Sauromatum spadix. Proc. Acad. Sci. Amst. 37:99–105 [Google Scholar]
  129. Vanlerberghe GC, McIntosh L. 129.  1994. Mitochondrial electron transport regulation of nuclear gene expression. Studies with the alternative oxidase gene of tobacco. Plant Physiol. 105:867–74 [Google Scholar]
  130. Vanlerberghe GC, McIntosh L. 130.  1996. Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria. Plant Physiol. 111:589–95 [Google Scholar]
  131. Vanlerberghe G, McIntosh L, Yip J. 131.  1998. Molecular localization of a redox-modulated process regulating plant mitochondrial electron transport. Plant Cell 10:1551–60 [Google Scholar]
  132. Wendt KU, Poralla K, Schulz GE. 132.  1997. Structure and function of a squalene cyclase. Science 277:1811–15 [Google Scholar]
  133. Wikström M. 133.  2012. Active site intermediates in the reduction of O2 by cytochrome oxidase, and their intermediates. Biochim. Biophys. Acta 1817:468–75 [Google Scholar]
  134. Wilkens S, Borchardt D, Weber J, Senior AE. 134.  2005. Structural characterization of the interaction of the δ and α subunits of the Escherichia coli F1F0-ATP synthase by NMR spectroscopy. Biochemistry 44:11786–94 [Google Scholar]
  135. Wood PM, Hollomon DW. 135.  2003. A critical evaluation of the role of alternative oxidase in the performance of strobilurins and related fungicides acting at the Qo site of Complex III. Pest Manag. Sci. 59:499–511 [Google Scholar]
  136. Yabu Y, Yoshida A, Suzuki T, Nihei C, Kawai K. 136.  et al. 2003. The efficacy of ascofuranone in a consecutive treatment on Trypanosoma brucei brucei in mice. Parasitol. Int. 52:155–64 [Google Scholar]
  137. Yabu Y, Yoshida A, Suzuki T, Nihei C, Kawai K. 137.  et al. 2006. Chemotherapeutic efficacy of ascofuranone in Trypanosoma vivax-infected mice without glycerol. Parasitol. Int. 55:39–43 [Google Scholar]
  138. Yang XD, Yu L, He DY, Yu CA. 138.  1998. The quinone-binding site in succinate-ubiquinone reductase from Escherichia coli: quinone-binding domain and amino acids involved in quinone binding. J. Biol. Chem. 273:31916–23 [Google Scholar]
  139. Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E. 139.  et al. 1998. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–29 [Google Scholar]
  140. Zhang QS, Hoefnagel MHN, Wiskich JT. 140.  1996. Alternative oxidase from Arum and soybean: its stabilization during purification. Physiol. Plant. 96:51–58 [Google Scholar]
  141. Zhang Z, Huang L, Schulmeister VM, Chi YI, Kim KK. 141.  et al. 1998. Electron transfer by domain movement in cytochrome bc1. Nature 392:677–84 [Google Scholar]
  142. Zottini M, Formentin E, Scattolin M, Carimi F, Lo Schiavo F. 142.  et al. 2002. Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Lett. 515:75–78 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042811-105432
Loading
/content/journals/10.1146/annurev-arplant-042811-105432
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error