1932

Abstract

It is well known that burning of vegetation stimulates new plant growth and landscape regeneration. The discovery that char and smoke from such fires promote seed germination in many species indicates the presence of chemical stimulants. Nitrogen oxides stimulate seed germination, but their importance in post-fire germination has been questioned. Cyanohydrins have been recently identified in aqueous smoke solutions and shown to stimulate germination of some species through the slow release of cyanide. However, the most information is available for karrikins, a family of butenolides related to 3-methyl-2-furo[2,3-]pyran-2-one. Karrikins stimulate seed germination and influence seedling growth. They are active in species not normally associated with fire, and in they require the F-box protein MAX2, which also controls responses to strigolactone hormones. We hypothesize that chemical similarity between karrikins and strigolactones provided the opportunity for plants to employ a common signal transduction pathway to respond to both types of compound, while tailoring specific developmental responses to these distinct environmental signals.

[Erratum, Closure]

An erratum has been published for this article:
Regulation of Seed Germination and Seedling Growth by Chemical Signals from Burning Vegetation
Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042811-105545
2012-06-02
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/arplant/63/1/annurev-arplant-042811-105545.html?itemId=/content/journals/10.1146/annurev-arplant-042811-105545&mimeType=html&fmt=ahah

Literature Cited

  1. Akiyama K, Matsuzaki K, Hayashi H. 1.  2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–27 [Google Scholar]
  2. Akiyama K, Ogasawara S, Ito S, Hayashi H. 2.  2010. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 51:1104–17 [Google Scholar]
  3. Baker KS, Steadman KJ, Plummer JA, Merritt DJ, Dixon KW. 3.  2005. The changing window of conditions that promotes germination of two fire ephemerals, Actinotus leucocephalus (Apiaceae) and Tersonia cyathiflora (Gyrostemonaceae). Ann. Bot. 96:1225–36 [Google Scholar]
  4. Baldwin IT, Morse L. 4.  1994. Up in smoke: II. Germination of Nicotiana attenuata in response to smoke-derived cues and nutrients in burned and un-burned soils. J. Chem. Ecol. 20:2373–91 [Google Scholar]
  5. Baldwin IT, Staszak-Kozinski L, Davidson R. 5.  1994. Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata Torr. Ex. Watson. J. Chem. Ecol. 20:2345–71 [Google Scholar]
  6. Baskin CC, Baskin JM. 6.  1998. Types of seed dormancy. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination27–48 San Diego: Academic [Google Scholar]
  7. Baudouin E.7.  2011. The language of nitric oxide signalling. Plant Biol. 13:233–42 [Google Scholar]
  8. Baxter BJM, Granger JE, van Staden J. 8.  1995. Plant-derived smoke and seed germination: Is all smoke good smoke? That is the burning question. S. Afr. J. Bot. 61:275–77 [Google Scholar]
  9. Bergmann C, Wegmann K, Frischmuth K, Samson E, Kranz A. 9.  et al. 1993. Stimulation of Orobanche-Crenata seed-germination by (+)-strigol and structural analogs dependence on constitution and configuration of the germination stimulants. J. Plant Physiol. 142:338–42 [Google Scholar]
  10. Besson-Bard A, Pugin A, Wendehenne D. 10.  2008. New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol. 59:21–39 [Google Scholar]
  11. Bethke PC, Libourel IGL, Reinohl V, Jones RL. 11.  2006. Sodium nitroprusside, cyanide, nitrite and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–12 [Google Scholar]
  12. Bewley JD.12.  1997. Seed germination and dormancy. Plant Cell 9:1055–66 [Google Scholar]
  13. Bradshaw SD, Dixon KW, Hopper SD, Lambers H, Turner SR. 13.  2011. Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends Plant Sci. 16:69–76 [Google Scholar]
  14. Brown NAC, van Staden J. 14.  1997. Smoke as a germination cue: a review. Plant Growth Regul. 22:115–24 [Google Scholar]
  15. Chiwocha SDS, Dixon KW, Flematti GR, Ghisalberti EL, Merritt DJ. 15.  et al. 2009. Karrikins: a new family of plant growth regulators in smoke. Plant Sci. 177:252–56 [Google Scholar]
  16. Chuvieco E, Giglio L, Justice C. 16.  2008. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Glob. Change Biol. 14:1488–502 [Google Scholar]
  17. Cohn MA, Chiles LA, Hughes JA, Boullion KJ. 17.  1987. Seed dormancy in red rice VI. Monocarboxylic acids: a new class of pH-dependant germination stimulants. Plant Physiol. 84:716–19 [Google Scholar]
  18. Commander LE, Merritt DJ, Rokich DP, Dixon KW. 18.  2009. Seed biology of Australian arid zone species: germination of 18 species used for rehabilitation. J. Arid Environ. 73:617–25 [Google Scholar]
  19. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. 19.  1966. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–90 [Google Scholar]
  20. Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P. 20.  et al. 1972. Germination stimulants. II. The structure of strigol—a potent seed germination stimulant for witchweed (Striga lutea Lour.). J. Am. Chem. Soc. 94:6198–99 [Google Scholar]
  21. Dagaut P, Glarborg P, Alzueta MU. 21.  2008. The oxidation of hydrogen cyanide and related chemistry. Prog. Energ. Combust. 34:1–46 [Google Scholar]
  22. Daws MI, Davies J, Pritchard HW, Brown NAC, van Staden J. 22.  2007. Butenolide from plant-derived smoke enhances germination and seedling growth of arable weeds species. Plant Growth Regul. 51:73–82 [Google Scholar]
  23. De Lange JH, Boucher C. 23.  1990. Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S. Afr. J. Bot. 56:700–3 [Google Scholar]
  24. Dixon KW, Merritt DJ, Flematti GR, Ghisalberti EL. 24.  2009. Karrikinolide—a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hortic. 813:155–70 [Google Scholar]
  25. Dixon KW, Roche S, Pate JS. 25.  1995. The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. Oecologia 101:185–92 [Google Scholar]
  26. Doherty LC, Cohn MA. 26.  2000. Seed dormancy in red rice (Oryza sativa). XI. Commercial liquid smoke elicits germination. Seed Sci. Res. 10:415–21 [Google Scholar]
  27. Downes KS, Lamont BB, Light ME, van Staden J. 27.  2010. The fire ephemeral Tersonia cyathiflora (Gyrostemonaceae) germinates in response to smoke but not the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one. Ann. Bot. 106:381–84 [Google Scholar]
  28. Drewes FE, Smith MT, van Staden J. 28.  1995. The effect of a plant derived smoke extract on the germination of light-sensitive lettuce seed. Plant Growth Regul. 16:205–9 [Google Scholar]
  29. Dziewanowska K, Niedzwiedz I, Chodelska I, Lewak S. 29.  1979. Hydrogen-cyanide and cyanogenic compounds in seeds. I. Influence of hydrogen-cyanide on germination of apple embryos. Physiol. Veg. 17:297–303 [Google Scholar]
  30. Fernandez-Aparicio M, Yoneyama K, Rubiales D. 30.  2011. The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci. Res. 21:55–61 [Google Scholar]
  31. Finkelstein R, Reeves W, Ariizumi T, Steber C. 31.  2008. Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 59:387–415 [Google Scholar]
  32. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 32.  2004. A compound from smoke that promotes seed germination. Science 305:977 [Google Scholar]
  33. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 33.  2004. Molecular weight of a germination-enhancing compound in smoke. Plant Soil 263:1–4 [Google Scholar]
  34. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 34.  2005. Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one. Tetrahedron Lett. 46:5719–21 [Google Scholar]
  35. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 35.  2008. Germination stimulant in smoke: isolation and identification. Bioactive Natural Products: Detection, Isolation and Structural Elucidation SM Colegate, RJ Molyneux 531–54 Boca Raton, FL: CRC [Google Scholar]
  36. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 36.  2009. Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. J. Agric. Food Chem. 57:9475–80 [Google Scholar]
  37. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD, Skelton BW, White AH. 37.  2005. Structural analysis of a potent seed germination stimulant. Aust. J. Chem. 58:505–6 [Google Scholar]
  38. Flematti GR, Goddard-Borger ED, Merritt DJ, Ghisalberti EL, Dixon KW, Trengove RD. 38.  2007. Preparation of 2H-furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity. J. Agric. Food Chem. 55:2189–94 [Google Scholar]
  39. Flematti GR, Merritt DJ, Piggott MJ, Trengove RD, Smith SM. 39.  et al. 2011. Burning vegetation produces cyanohydrins that liberate cyanide and promote seed germination. Nat. Commun. 2:360 [Google Scholar]
  40. Flematti GR, Scaffidi A, Dixon KW, Smith SM, Ghisalberti EL. 40.  2011. Production of the seed germination stimulant karrikinolide from combustion of simple carbohydrates. J. Agric. Food Chem. 59:1195–98 [Google Scholar]
  41. Flematti GR, Scaffidi A, Goddard-Borger ED, Heath CH, Nelson DC. 41.  et al. 2010. Structure-activity relationship of karrikin germination stimulants. J. Agric. Food Chem. 58:8612–17 [Google Scholar]
  42. Footitt S, Cohn MA. 42.  2001. Developmental arrest: from sea urchins to seeds. Seed Sci. Res. 11:3–16 [Google Scholar]
  43. Gardner MJ, Dalling KJ, Light ME, Jäger AK, van Staden J. 43.  2001. Does smoke substitute for red light in the germination of light-sensitive lettuce seeds by affecting gibberellin metabolism?. S. Afr. J. Bot. 67:636–40 [Google Scholar]
  44. Giba Z, Grubisic D, Konjevic R. 44.  2003. Nitrogen oxides as environmental sensors for seeds. Seed Sci. Res. 13:187–96 [Google Scholar]
  45. Glasspool IJ, Edwards D, Axe L. 45.  2004. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32:381–83 [Google Scholar]
  46. Gniazdowska A, Krasuska U, Bogatek R. 46.  2010. Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta 232:1397–407 [Google Scholar]
  47. Goddard-Borger ED, Ghisalberti EL, Stick RV. 47.  2007. Synthesis of the germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one and analogous compounds from carbohydrates. Eur. J. Org. Chem. 23:3925–34 [Google Scholar]
  48. Gomez-Polden V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA. 48.  et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94 [Google Scholar]
  49. Grossmann K.49.  1990. Plant growth retardants as tools in physiological research. Physiol. Plant. 78:640–48 [Google Scholar]
  50. Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT. 50.  2011. On the origins of nitric oxide. Trends Plant Sci. 16:160–68 [Google Scholar]
  51. Hendricks SB, Taylorson RB. 51.  1972. Promotion of seed germination by nitrates and cyanides. Nature 237:169–70 [Google Scholar]
  52. Jäger AK, Light ME, van Staden J. 52.  1996. Effects of source of plant material and temperature on the production of smoke extracts that promote germination of light-sensitive lettuce seeds. Environ. Exp. Bot. 36:421–29 [Google Scholar]
  53. Jain N, Ascough GD, van Staden J. 53.  2008. A smoke-derived butenolide alleviates HgCl2 and ZnCl2 inhibition of water uptake during germination and subsequent growth of tomato—possible involvement of aquaporins. J. Plant Physiol. 165:1422–27 [Google Scholar]
  54. Jain N, Soós V, Balazs E, van Staden J. 54.  2008. Changes in cellular macromolecules (DNA, RNA and protein) during seed germination in tomato, following the use of a butenolide, isolated from plant-derived smoke. Plant Growth Regul. 54:105–13 [Google Scholar]
  55. Jain N, van Staden J. 55.  2006. A smoke-derived butenolide improves early growth of tomato seedlings. Plant Growth Regul. 50:139–48 [Google Scholar]
  56. Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S. 56.  et al. 2011. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–16 [Google Scholar]
  57. Keeley JE, Fotheringham CJ. 57.  1997. Trace gas emissions and smoke-induced seed germination. Science 276:1248–50 [Google Scholar]
  58. Keeley JE, Fotheringham CJ. 58.  1998. Mechanism of smoke-induced seed germination in a post-fire chaparral annual. J. Ecol. 86:27–36 [Google Scholar]
  59. Keeley JE, Fotheringham CJ. 59.  1998. Smoke-induced seed germination in California chaparral. Ecology 79:2320–36 [Google Scholar]
  60. Keeley JE, Morton BA, Pedrosa A, Trotter P. 60.  1985. Role of allelopathy, heat and charred wood in the germination of chaparral herbs and suffrutescents. J. Ecol. 73:445–58 [Google Scholar]
  61. Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA. 61.  2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16:406–11 [Google Scholar]
  62. Keeley SC, Pizzorno M. 62.  1986. Charred wood stimulated germination of two fire-following herbs of the California chaparral and the role of hemicellulose. Am. J. Bot. 73:1289–97 [Google Scholar]
  63. Kepczynski J, Cembrowska D, van Staden J. 63.  2010. Releasing primary dormancy in Avena fatua L. caryopses by smoke-derived butenolide. Plant Growth Regul. 62:85–91 [Google Scholar]
  64. Krock B, Schmidt S, Hertweck C, Baldwin IT. 64.  2002. Vegetation-derived abscisic acid and four terpenes enforce dormancy in seeds of the post-fire annual, Nicotiana attenuata. Seed Sci. Res. 12:239–52 [Google Scholar]
  65. Kucera B, Cohn MA, Leubner-Metzger G. 65.  2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15:281–307 [Google Scholar]
  66. Kulkarni MG, Ascough GD, van Staden J. 66.  2008. Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. HortTechnology 18:449–54 [Google Scholar]
  67. Kulkarni MG, Sparg SG, Light ME, van Staden J. 67.  2006. Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide. J. Agron. Crop Sci. 192:395–98 [Google Scholar]
  68. Light ME, Burger BV, Staerk D, Kohout L, van Staden J. 68.  2010. Butenolides from plant-derived smoke: natural plant growth regulators with antagonistic actions on seed germination. J. Nat. Prod. 73:267–69 [Google Scholar]
  69. Light ME, Daws MI, van Staden J. 69.  2009. Smoke-derived butenolide: towards understanding its biological effects. S. Afr. J. Bot. 75:1–7 [Google Scholar]
  70. Light ME, Gardner MJ, Jäger AK, van Staden J. 70.  2002. Dual regulation of seed germination by smoke solutions. Plant Growth Regul. 37:135–41 [Google Scholar]
  71. Light ME, van Staden J. 71.  2003. The nitric oxide specific scavenger carboxy-PTIO does not inhibit smoke stimulated germination of Grand Rapids lettuce seeds. S. Afr. J. Bot. 69:217–19 [Google Scholar]
  72. Long RL, Stevens JC, Griffiths EM, Adamek M, Gorecki MJ. 72.  et al. 2011. Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide. Ann. Bot. 108:933–44 [Google Scholar]
  73. Long RL, Williams K, Griffiths EM, Flematti GR, Merritt DJ. 73.  et al. 2010. Prior hydration of Brassica tournefortii seeds reduces the stimulatory effect of karrikinolide on germination and increases seed sensitivity to abscisic acid. Ann. Bot. 105:1063–70 [Google Scholar]
  74. Major W, Roberts EH. 74.  1968. Dormancy in cereal seeds I. The effects of oxygen and respiratory inhibitors. J. Exp. Bot. 19:77–89 [Google Scholar]
  75. Mangnus EM, Dommerholt FJ, Dejong RLP, Zwanenburg B. 75.  1992. Improved synthesis of strigol analog GR24 and evaluation of the biological activity of its diastereomers. J. Agric. Food Chem. 40:1230–35 [Google Scholar]
  76. Matsuo K, Shindo M. 76.  2011. Efficient synthesis of karrikinolide via Cu(II)-catalyzed lactonization. Tetrahedron 67:971–75 [Google Scholar]
  77. Merritt DJ, Kristiansen MV, Flematti GR, Turner SR, Ghisalberti EL. 77.  et al. 2006. Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae. Seed Sci. Res. 16:29–35 [Google Scholar]
  78. Merritt DJ, Turner SR, Clarke S, Dixon KW. 78.  2007. Seed dormancy and germination stimulation syndromes for Australian temperate species. Aust. J. Bot. 55:336–44 [Google Scholar]
  79. Moreira B, Tormo J, Estrelles E, Pausas JG. 79.  2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann. Bot. 105:627–35 [Google Scholar]
  80. Nagase R, Katayama M, Mura H, Matsuo N, Tanabe Y. 80.  2008. Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one utilising direct and regioselective Ti-crossed aldol addition. Tetrahedron Lett. 49:4509–12 [Google Scholar]
  81. Nelson DC, Flematti GR, Riseborough JA, Ghisalberti EL, Dixon KW, Smith SM. 81.  2010. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107:7095–100 [Google Scholar]
  82. Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL. 82.  et al. 2009. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol. 149:863–73 [Google Scholar]
  83. Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR. 83.  et al. 2011. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 108:8897–902 [Google Scholar]
  84. Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C. 84.  2008. Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway. J. Exp. Bot. 59:2241–51 [Google Scholar]
  85. Oracz K, El-Maarouf-Bouteau H, Farrant JM, Cooper K, Belghazi M. 85.  et al. 2007. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 50:452–65 [Google Scholar]
  86. Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C. 86.  2009. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signalling during germination. Plant Physiol. 150:494–505 [Google Scholar]
  87. Pausas JG, Keeley JE. 87.  2009. A burning story: the role of fire in the history of life. Bioscience 59:593–601 [Google Scholar]
  88. Pechony O, Shindell DT. 88.  2010. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 107:19167–70 [Google Scholar]
  89. Preston CA, Baldwin IT. 89.  1999. Positive and negative signals regulate germination in the post-fire annual, Nicotiana attenuata. Ecology 80:481–94 [Google Scholar]
  90. Preston CA, Becker R, Baldwin IT. 90.  2004. Is ‘NO’ news good news? Nitrogen oxides are not components of smoke that elicits germination in two smoke-stimulated species, Nicotiana attenuata and Emmenanthe penduliflora. Seed Sci. Res. 14:73–79 [Google Scholar]
  91. Ricardo A, Carrigan MA, Olcott AN, Benner SA. 91.  2004. Borate minerals stabilize ribose. Science 303:196 [Google Scholar]
  92. Roberts E.92.  1969. Seed dormancy and oxidation processes. Symp. Soc. Exp. Biol. 23:161–92 [Google Scholar]
  93. Roche S, Dixon KW, Pate JS. 93.  1997. Seed ageing and smoke: partner cues in the amelioration of seed dormancy in selected Australian native species. Aust. J. Bot. 45:783–815 [Google Scholar]
  94. Roche S, Dixon KW, Pate JS. 94.  1998. For everything a season: smoke-induced seed germination and seedling recruitment in a Western Australian Banksia woodland. Aust. J. Ecol. 23:111–20 [Google Scholar]
  95. Scaffidi A, Flematti GR, Nelson DC, Dixon KW, Smith SM, Ghisalberti EL. 95.  2011. The synthesis and biological evaluation of labelled karrikinolides for the elucidation of the mode of action of the seed germination stimulant. Tetrahedron 67:152–57 [Google Scholar]
  96. Schwachtje J, Baldwin IT. 96.  2004. Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Sci. Res. 14:51–60 [Google Scholar]
  97. Scott AC, Glasspool IJ. 97.  2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl. Acad. Sci. USA 103:10861–65 [Google Scholar]
  98. Siegien I, Bogatek R. 98.  2006. Cyanide action in plants—from toxic to regulatory. Acta Physiol. Plant. 28:483–97 [Google Scholar]
  99. Smith CJ, Perfetti TA, Garg R, Hansch C. 99.  2003. IARC carcinogens reported in cigarette mainstream smoke and their calculated log P values. Food Chem. Toxicol. 41:807–17 [Google Scholar]
  100. Soós V, Juhasz A, Light ME, van Staden J, Balazs E. 100.  2009. Smoke-water-induced changes of expression pattern in Grand Rapids lettuce achenes. Seed Sci. Res. 19:37–49 [Google Scholar]
  101. Soós V, Sebestyen E, Juhasz A, Light ME, Kohout L. 101.  et al. 2010. Transcriptome analysis of germinating maize kernels exposed to smoke-water and the active compound KAR. BMC Plant Biol. 10:236 [Google Scholar]
  102. Soós V, Sebestyen E, Juhasz A, Pinter J, Light ME. 102.  et al. 2009. Stress-related genes define essential steps in the response of maize seedlings to smoke-water. Funct. Integr. Genomics 9:231–42 [Google Scholar]
  103. Sparg SG, Kulkarni MG, Light ME, van Staden J. 103.  2005. Improving seedling vigour of indigenous medicinal plants with smoke. Bioresour. Technol. 96:1323–30 [Google Scholar]
  104. Sparg SG, Kulkarni MG, van Staden J. 104.  2006. Aerosol smoke and smoke-water stimulation of seedling vigor of a commercial maize cultivar. Crop. Sci. 46:1336–40 [Google Scholar]
  105. Stevens JC, Merritt DJ, Flematti GR, Ghisalberti EL, Dixon KW. 105.  2007. Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant Soil 298:113–24 [Google Scholar]
  106. Sun K, Chen Y, Wagerle T, Linnstaedt D, Currie M. 106.  et al. 2008. Synthesis of butenolides as germination stimulants. Tetrahedron Lett. 49:2922–25 [Google Scholar]
  107. Taylorson RB, Hendricks SB. 107.  1973. Promotion of seed germination by cyanide. Plant Physiol. 52:23–27 [Google Scholar]
  108. Thanos CA, Rundel PW. 108.  1995. Fire-followers in chaparral: nitrogenous compounds trigger seed germination. J. Ecol. 83:207–16 [Google Scholar]
  109. Thomas PB, Morris EC, Auld TD, Haigh AM. 109.  2010. The interaction of temperature, water availability and fire cues regulates seed germination in a fire-prone landscape. Oecologia 162:293–302 [Google Scholar]
  110. Tieu A, Dixon KW, Meney KA, Sivasithamparam K. 110.  2001. The interaction of heat and smoke in the release of seed dormancy in seven species from southwestern Western Australia. Ann. Bot. 88:259–65 [Google Scholar]
  111. Tieu A, Dixon KW, Meney KA, Sivasithamparam K. 111.  2001. Interaction of soil burial and smoke on germination patterns in seeds of selected Australian native plants. Seed Sci. Res. 11:69–76 [Google Scholar]
  112. Tieu A, Dixon KW, Meney KA, Sivasithamparam K, Barrett RL. 112.  2001. Spatial and developmental variation in seed dormancy characteristics in the fire-responsive species Anigozanthos manglesii (Haemodoraceae) from Western Australia. Ann. Bot. 88:19–26 [Google Scholar]
  113. Turner SR, Merritt DJ, Renton MS, Dixon KW. 113.  2009. Seed moisture content affects afterripening and smoke responsiveness in three sympatric Australian native species from fire-prone environments. Austral Ecol. 34:866–77 [Google Scholar]
  114. Turner SR, Merritt DJ, Ridley EC, Commander LE, Baskin JM. 114.  et al. 2006. Ecophysiology of seed dormancy in the Australian endemic species Acanthocarpus preissii (Dasypogonaceae). Ann. Bot. 98:1137–44 [Google Scholar]
  115. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T. 115.  et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200 [Google Scholar]
  116. van Staden J, Drewes FE, Brown NAC. 116.  1995. Some chromatographic characteristics of germination stimulants in plant-derived smoke extracts. Plant Growth Regul. 17:241–49 [Google Scholar]
  117. van Staden J, Jäger AK, Light ME, Burger BV. 117.  2004. Isolation of the major germination cue from plant-derived smoke. S. Afr. J. Bot. 70:654–59 [Google Scholar]
  118. van Staden J, Jäger AK, Strydom A. 118.  1995. Interaction between a plant-derived smoke extract, light and phytohormones on the germination of light-sensitive lettuce seeds. Plant Growth Regul. 17:213–18 [Google Scholar]
  119. van Staden J, Sparg SG, Kulkarni MG, Light ME. 119.  2006. Post-germination effects of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2-one, and its potential as a preconditioning agent. Field Crops Res. 98:98–105 [Google Scholar]
  120. Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YM. 119a.  2012. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.. Development. In press [Google Scholar]
  121. Waters MT, Smith SM, Nelson DC. 120.  2011. Smoke signals and seed dormancy: where next for MAX2?. Plant Sig. Behav. 6:1418–22 [Google Scholar]
  122. Wicklow DT.121.  1977. Germination response in Emmenanthe penduliflora (Hydrophyllaceae). Ecology 58:201–5 [Google Scholar]
  123. Wigchert SCM, Zwanenburg B. 122.  1999. A critical account on the inception of Striga seed germination. J. Agric. Food Chem. 47:1320–25 [Google Scholar]
  124. Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y. 123.  2010. Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol. 51:1095–103 [Google Scholar]
  125. Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D. 124.  2009. Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag. Sci. 65:478–91 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042811-105545
Loading
/content/journals/10.1146/annurev-arplant-042811-105545
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error