1932

Abstract

The eighteenth-century Malthusian prediction of population growth outstripping food production has not yet come to bear. Unprecedented agricultural land expansions since 1700, and technological innovations that began in the 1930s, have enabled more calorie production per capita than was ever available before in history. This remarkable success, however, has come at a great cost. Agriculture is a major cause of global environmental degradation. Malnutrition persists among large sections of the population, and a new epidemic of obesity is on the rise. We review both the successes and failures of the global food system, addressing ongoing debates on pathways to environmental health and food security. To deal with these challenges, a new coordinated research program blending modern breeding with agro-ecological methods is needed. We call on plant biologists to lead this effort and help steer humanity toward a safe operating space for agriculture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040256
2018-04-29
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040256.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040256&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilar J, Gramig GG, Hendrickson JR, Archer DW, Forcella F, Liebig MA. 1.  2015. Crop species diversity changes in the United States: 1978–2012. PLOS ONE 10:e0136580 [Google Scholar]
  2. Aide TM, Clark ML, Grau HR, López-Carr D, Levy MA. 2.  et al. 2013. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45:262–71 [Google Scholar]
  3. Aizen MA, Garibaldi LA, Cunningham SA, Klein AM. 3.  2008. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18:1572–75 [Google Scholar]
  4. Alavanja MCR, Ross MK, Bonner MR. 4.  2013. Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA Cancer J. Clin. 63:120–42 [Google Scholar]
  5. Alexandratos N, Bruinsma J. 5.  2012. World agriculture towards 2030/2050: the 2012 revision ESA Work. Pap. No. 12–03, Agric. Dev. Econ. Div., Food Agric. Organ., United Nations, Rome [Google Scholar]
  6. Alston JM, Babcock BA, Pardey PG. 6.  2010. The Shifting Patterns of Agricultural Production and Productivity Worldwide CARD Books, Book 2. Ames, IA: Midwest Agribus. Trade Res. Inf. Cent. 482 pp. http://lib.dr.iastate.edu/card_books/2 [Google Scholar]
  7. Angelsen A, Kaimowitz D. 7.  2001. Agricultural Technologies and Tropical Deforestation Wallingford, UK: CABI Publ., Cent. Int. For. Res. 422 pp. [Google Scholar]
  8. Ausubel JH, Wernick IK, Waggoner PE. 8.  2013. Peak farmland and the prospect for land sparing. Popul. Dev. Rev. 38:221–42 [Google Scholar]
  9. Awokuse TO, Xie R. 9.  2015. Does agriculture really matter for economic growth in developing countries?. Can. J. Agric. Econ. 63:77–99 [Google Scholar]
  10. Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M. 10.  et al. 2012. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2:182–85 [Google Scholar]
  11. Badgley C, Perfecto I, Chappell M, Samulon A. 11.  2007. Strengthening the case for organic agriculture: response to Alex Avery. Renew. Agric. Food Syst. 22:323–24 [Google Scholar]
  12. Barrett CB.12.  2010. Measuring food insecurity. Science 327:825–28 [Google Scholar]
  13. Beal T, Massiot E, Arsenault JE, Smith MR, Hijmans RJ. 13.  2017. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLOS ONE 12:1–20 [Google Scholar]
  14. Ben-Ari T, Makowski D. 14.  2016. Analysis of the trade-off between high crop yield and low yield instability at the global scale. Environ. Res. Lett. 11:104005 [Google Scholar]
  15. Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P. 15.  2012. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol. Rev. 87:52–71 [Google Scholar]
  16. Bennetzen EH, Smith P, Porter JR. 16.  2016. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob. Change Biol. 22:763–81 [Google Scholar]
  17. Bevan MW, Uauy C, Wulff BBH, Zhou J, Krasileva K, Clark MD. 17.  2017. Genomic innovation for crop improvement. Nature 543:346–54 [Google Scholar]
  18. Borlaug N.18.  2007. Feeding a hungry world. Science 318:359 [Google Scholar]
  19. Bramley RGV.19.  2009. Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application. Crop. Pasture Sci. 60:197–217 [Google Scholar]
  20. Brittain C, Potts SG. 20.  2011. The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl. Biol. 12:321–31 [Google Scholar]
  21. Brooker RW, Bennett AE, Cong W-F, Daniell TJ, George TS. 21.  et al. 2015. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–17 [Google Scholar]
  22. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA. 22.  et al. 2008. Facilitation in plant communities: the past, the present, and the future. J. Ecol. 96:18–34 [Google Scholar]
  23. Bullock DS, Ruffo ML, Bullock DG, Bollero GA. 23.  2009. The value of variable rate technology: an information-theoretic approach. Am. J. Agric. Econ. 91:209–23 [Google Scholar]
  24. Burney JA, Naylor RL, Postel SL. 24.  2013. The case for distributed irrigation as a development priority in sub-Saharan Africa. PNAS 110:12513–17 [Google Scholar]
  25. Capper JL, Cady RA, Bauman DE. 25.  2009. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 87:2160–67 [Google Scholar]
  26. Carlson KM, Gerber JS, Mueller ND, Herrero M, MacDonald GK. 26.  et al. 2016. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7:1–34 [Google Scholar]
  27. Carpenter S, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. 27.  1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Issues Ecol 4:1–12 [Google Scholar]
  28. Cassidy ES, West PC, Gerber JS, Foley JA. 28.  2013. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8:034015 [Google Scholar]
  29. Cassman KG, Dobermann A, Walters DT, Yang H. 29.  2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28:315–58 [Google Scholar]
  30. Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H. 30.  et al. 2016. Global conservation priorities for crop wild relatives. Nat. Plants 2:16022 [Google Scholar]
  31. Connor DJ, Mínguez MI. 31.  2012. Evolution not revolution of farming systems will best feed and green the world. Glob. Food Secur. 1:106–13 [Google Scholar]
  32. Davis DR, Epp MD, Riordan HD. 32.  2004. Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J. Am. Coll. Nutr. 23:669–82 [Google Scholar]
  33. Davis KF, Yu K, Herrero M, Havlik P, Carr JA, D'Odorico P. 33.  2015. Historical trade-offs of livestock's environmental impacts. Environ. Res. Lett. 10:125013 [Google Scholar]
  34. de Vries FT, Liiri ME, Bjørnlund L, Setälä HM, Christensen S, Bardgett RD. 34.  2012. Legacy effects of drought on plant growth and the soil food web. Oecologia 170:821–33 [Google Scholar]
  35. Deepak KR, Jonathan AF. 35.  2013. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8:044041 [Google Scholar]
  36. Delgado C, Rosegrant M, Steinfeld H, Ehui S, Courbois C. 36.  1999. Livestock to 2020: the next food revolution Discuss. Pap. No. 28, Food, Agric. Environ. Div., Int. Food Policy Res. Inst Washington, DC: [Google Scholar]
  37. Desneux N, Decourtye A, Delpuech J-M. 37.  2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52:81–106 [Google Scholar]
  38. Despommier D.38.  2011. The Vertical Farm: Feeding the World in the 21st Century London: Picador [Google Scholar]
  39. Di Cesare M, Bentham J, Stevens GA, Zhou B, Danaei G. 39.  et al. 2016. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387:1377–96 [Google Scholar]
  40. Diaz RJ, Rosenberg R. 40.  2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–29 [Google Scholar]
  41. Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL. 41.  et al. 2017. Quantifying the influence of global warming on unprecedented extreme climate events. PNAS 114:4881–86 [Google Scholar]
  42. Doll P, Schmied HM, Schuh C, Portmann FT, Eicker A. 42.  2014. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resourc. Res. 50:5375–77 [Google Scholar]
  43. Ellis EC, Ramankutty N. 43.  2008. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6:439–47 [Google Scholar]
  44. Erb K-H, Lauk C, Kastner T, Mayer A, Theurl MC, Haberl H. 44.  2016. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7:11382 [Google Scholar]
  45. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. 45.  2008. How a century of ammonia synthesis changed the world. Nat. Geosci. 1:636–39 [Google Scholar]
  46. Evenson RE, Gollin D. 46.  2003. Assessing the impact of the Green Revolution, 1960 to 2000. Science 300:758–62 [Google Scholar]
  47. Evenson RE, Gollin D. 47.  2003. Crop Variety Improvement and Its Effect on Productivity: The Impact of International Agricultural Research Wallingford, UK: CABI Publ. 522 pp. [Google Scholar]
  48. Ewers RM, Scharlemann JPW, Balmford A, Green RE. 48.  2009. Do increases in agricultural yield spare land for nature?. Glob. Change Biol. 15:1716–26 [Google Scholar]
  49. Fedoroff NV, Battisti DS, Beachy RN, Cooper PJM, Fischhoff DA. 49.  et al. 2010. Radically rethinking agriculture for the 21st century. Science 327:833–34 [Google Scholar]
  50. Figueres C, Schellnhuber HJ, Whiteman G, Rockström J, Hobley A, Rahmstorf S. 50.  2017. Three years to safeguard our climate. Nature 546:593–95 [Google Scholar]
  51. Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J. 51.  et al. 2014. Land sparing versus land sharing: moving forward. Conserv. Lett. 7:149–57 [Google Scholar]
  52. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS. 52.  et al. 2011. Solutions for a cultivated planet. Nature 478:337–42 [Google Scholar]
  53. 53. Food Agric. Organ 2008. An Introduction to the Basic Concepts of Food Security Rome: Food Agric. Organ [Google Scholar]
  54. 54. Food Agric. Organ./Int. Fund Agric. Dev./World Food Progr 2015. The State of Food Insecurity in the World. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome: Food Agric. Organ [Google Scholar]
  55. Fraser E, Legwegoh A, KC K, CoDyre M, Dias G. 55.  et al. 2016. Biotechnology or organic? Extensive or intensive? Global or local? A critical review of potential pathways to resolve the global food crisis. Trends Food Sci. Technol. 48:78–87 [Google Scholar]
  56. Frelat R, Lopez-Ridaura S, Giller KE, Herrero M, Douxchamps S. 56.  et al. 2015. Drivers of household food availability in sub-Saharan Africa based on big data from small farms. PNAS 113:458–63 [Google Scholar]
  57. Fuglie K, Wang SL. 57.  2012. Productivity growth in global agriculture. Popul. Dev. Rev. 27:361–65 [Google Scholar]
  58. Funk C, Rainie L. 58.  2015. Public and scientists’ views on science and society. Pew Res. Cent. Jan:29 [Google Scholar]
  59. Garibaldi LA, Carvalheiro LG, Vaissiere BE, Gemmill-Herren B, Hipolito J. 59.  et al. 2016. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351:388–91 [Google Scholar]
  60. Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R. 60.  et al. 2011. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14:1062–72 [Google Scholar]
  61. George R, McFarlane D, Nulsen B. 61.  1997. Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeol. J. 5:6–21 [Google Scholar]
  62. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P. 62.  et al. 2010. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. PNAS 107:16732–37 [Google Scholar]
  63. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA. 63.  et al. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–81 [Google Scholar]
  64. Gilbert M, Conchedda G, Van Boeckel TP, Cinardi G, Linard C. 64.  et al. 2015. Income disparities and the global distribution of intensively farmed chicken and pigs. PLOS ONE 10:e0133381 [Google Scholar]
  65. Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC. 65.  et al. 2010. Increased food and ecosystem security via perennial grains. Science 328:1638–39 [Google Scholar]
  66. Grau R, Kuemmerle T, Macchi L. 66.  2013. Beyond “land sparing versus land sharing”: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr. Opin. Environ. Sustain. 5:477–83 [Google Scholar]
  67. Green RE, Cornell SJ, Scharlemann JPW, Balmford A. 67.  2005. Farming and the fate of wild nature. Science 307:550–55 [Google Scholar]
  68. Grigg DB.68.  1987. The industrial revolution and land transformation. Land Transformation in Agriculture MG Wolman, FGA Fournier 79–109 Chichester, UK: John Wiley & Sons [Google Scholar]
  69. Gurr GM, Lu Z, Zheng X, Xu H, Zhu P. 69.  et al. 2016. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2:16014 [Google Scholar]
  70. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A. 70.  et al. 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1:1–9 [Google Scholar]
  71. Halweil B.71.  2002. Home grown: the case for local food in a global market Pap. 163, Worldwatch Inst Washington, DC: [Google Scholar]
  72. Hart JF.72.  1968. Loss and abandonment of cleared farm land in the eastern United States. Ann. Assoc. Am. Geogr. 58:417–40 [Google Scholar]
  73. Herrero M, Havlík P, Valin H, Notenbaert A, Rufino MC. 73.  et al. 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. PNAS 110:20888–93 [Google Scholar]
  74. Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S. 74.  et al. 2010. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327:822–25 [Google Scholar]
  75. Herrero M, Thornton PK, Power B, Bogard JR, Remans R. 75.  et al. 2017. Farming and the geography of nutrient production for human use: a transdisciplinary analysis. Lancet Planet. Health 1:e33–42 [Google Scholar]
  76. Hertel TW, Ramankutty N, Baldos ULC. 76.  2014. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. PNAS 111:13799–804 [Google Scholar]
  77. Hoekstra AY, Mekonnen MM. 77.  2012. The water footprint of humanity. PNAS 109:3232–37 [Google Scholar]
  78. Hunter MC, Hunter MC, Smith RG, Schipanski ME, Atwood LW. 78.  2017. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67:385–90 [Google Scholar]
  79. Iizumi T, Ramankutty N. 79.  2016. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 11:034003 [Google Scholar]
  80. Ingram J.80.  2011. A food systems approach to researching food security and its interactions with global environmental change. Food Secur 3:417–31 [Google Scholar]
  81. Isbell F, Adler PR, Eisenhauer N, Fornara D, Kimmel K. 81.  et al. 2017. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105:871–79 [Google Scholar]
  82. Iverson AL, Marín LE, Ennis KK, Gonthier DJ, Connor-Barrie BT. 82.  et al. 2014. Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis. J. Appl. Ecol. 51:1593–602 [Google Scholar]
  83. Jarvis DI, Brown AHD, Cuong PH, Collado-Panduro L, Latournerie-Moreno L. 83.  et al. 2008. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. PNAS 105:5326–31 [Google Scholar]
  84. Kemper N.84.  2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8:1–13 [Google Scholar]
  85. Kissinger G, Herold M, De Sy V. 85.  2012. Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers Vancouver, Can.: Lexeme Consult [Google Scholar]
  86. Kremen C.86.  2005. Managing ecosystem services: What do we need to know about their ecology?. Ecol. Lett. 8:468–79 [Google Scholar]
  87. Kremen C.87.  2015. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. N.Y. Acad. Sci. 1355:52–76 [Google Scholar]
  88. Kremen C, Miles A. 88.  2012. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17:40 [Google Scholar]
  89. Kummu M, de Moel H, Porkka M, Siebert S, Varis O, Ward PJ. 89.  2012. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438:477–89 [Google Scholar]
  90. Lang T, Barling D. 90.  2012. Food security and food sustainability: reformulating the debate. Geogr. J. 178:313–26 [Google Scholar]
  91. Larsen TH, Williams NM, Kremen C. 91.  2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8:538–47 [Google Scholar]
  92. Lepers E, Lambin EF, Janetos AC, DeFries R, Achard F. 92.  et al. 2005. A synthesis of information on rapid land-cover change for the period 1981–2000. Bioscience 55:115–24 [Google Scholar]
  93. Lesk C, Rowhani P, Ramankutty N. 93.  2016. Influence of extreme weather disasters on global crop production. Nature 529:84–87 [Google Scholar]
  94. Letourneau DK, Armbrecht I, Rivera BS, Lerma J, Carmona EJ. 94.  et al. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21:9–21 [Google Scholar]
  95. Lin BB.95.  2011. Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience 61:183–93 [Google Scholar]
  96. Lobell DB, Schlenker W, Costa-Roberts J. 96.  2011. Climate trends and global crop production since 1980. Science 333:616–20 [Google Scholar]
  97. Lowder SK, Skoet J, Raney T. 97.  2016. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev 87:16–29 [Google Scholar]
  98. Manning P.98.  2012. The impact of nitrogen enrichment on ecosystems and their services. Soil Ecology and Ecosystem Services DH Wall, RD Bardgett, V Behan-Pelletier, JE Herrick, TH Jones et al.256–67 Oxford, UK: Oxford Univ. Press [Google Scholar]
  99. McBratney A, Whelan B, Ancev T, Bouma J. 99.  2005. Future directions of precision agriculture. Precis. Agric. 6:7–23 [Google Scholar]
  100. McNeill JR.100.  2000. An Environmental History of the Twentieth-Century World New York: WW Norton421 pp [Google Scholar]
  101. McNeill JR, Winiwarter V. 101.  2004. Breaking the sod: humankind, history, and soil. Science 304:1627–29 [Google Scholar]
  102. Micklin P.102.  2007. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 35:47–72 [Google Scholar]
  103. Moreno-Mateos D, Barbier EB, Jones PC, Jones HP, Aronson J. 103.  et al. 2017. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8:14163 [Google Scholar]
  104. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. 104.  2012. Closing yield gaps through nutrient and water management. Nature 490:254–57 [Google Scholar]
  105. Neuschulz EL, Mueller T, Schleuning M, Böhning-Gaese K. 105.  2016. Pollination and seed dispersal are the most threatened processes of plant regeneration. Sci. Rep. 6:29839 [Google Scholar]
  106. Newbold T, Bennett DJ, Choimes A, Collen B, Day J. 106.  et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520:45–50 [Google Scholar]
  107. Ng M, Fleming T, Robinson M, Thomson B, Graetz N. 107.  et al. 2014. Global. regional. national prevalence of overweight and obesity in children and adults during 1980–2013. a systematic analysis for the Global Burden of Disease Study 2013. Lancet 6736:1–16 [Google Scholar]
  108. Oldeman LR.108.  1994. Global extent of soil degradation. ISRIC Bi-Annual Report 1991–9219–36 Wageningen, Neth: ISRIC [Google Scholar]
  109. Osborne TM, Wheeler TR. 109.  2013. Evidence for a climate signal in trends of global crop yield variability over the past 50 years. Environ. Res. Lett. 8:024001 [Google Scholar]
  110. Parton WJ, Gutmann MP, Merchant ER, Hartman MD, Adler PR. 110.  et al. 2015. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000. PNAS 112:E4681–88 [Google Scholar]
  111. Pereira HM, Navarro LM, Martins IS. 111.  2012. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resourc. 37:25–50 [Google Scholar]
  112. Phalan B, Green RE, Dicks LV, Dotta G, Feniuk C. 112.  et al. 2016. How can higher-yield farming help to spare nature?. Science 351:450–51 [Google Scholar]
  113. Poffenbarger H, Artz G, Dahlke G, Edwards W, Hanna M. 113.  et al. 2017. An economic analysis of integrated crop-livestock systems in Iowa, U.S.A. Agric. Syst. 157:51–69 [Google Scholar]
  114. Ponisio LC, M'Gonigle LK, Mace KC, Palomino J, de Valpine P, Kremen C. 114.  2015. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282:1–7 [Google Scholar]
  115. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 115.  2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25:345–53 [Google Scholar]
  116. Quinton J, Govers G, van Oost K, Bardgett RD. 116.  2010. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3:311–14 [Google Scholar]
  117. Ramankutty N, Evan AT, Monfreda C, Foley JA. 117.  2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22:GB1003 [Google Scholar]
  118. Ramankutty N, Foley JA. 118.  1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13:997–1027 [Google Scholar]
  119. Ramankutty N, Foley JA, Norman J, McSweeney K. 119.  2002. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11:377–92 [Google Scholar]
  120. Ramankutty N, Heller E, Rhemtulla J. 120.  2010. Prevailing myths about agricultural abandonment and forest regrowth in the United States. Ann. Assoc. Am. Geogr. 100:502–12 [Google Scholar]
  121. Ray DK, Gerber JS, MacDonald GK, West PC. 121.  2015. Climate variation explains a third of global crop yield variability. Nat. Commun. 6:5989 [Google Scholar]
  122. Ray DK, Mueller ND, West PC, Foley JA. 122.  2013. Yield trends are insufficient to double global crop production by 2050. PLOS ONE 8:e66428 [Google Scholar]
  123. Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA. 123.  2012. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3:1293 [Google Scholar]
  124. Redman C.124.  1999. Human Impact on Ancient Environments Tucson: Univ. Ariz. Press288 pp [Google Scholar]
  125. Richards JF.125.  1990. Land transformation. The Earth as Transformed by Human Action BL Turner, WC Clark, RW Kates, JF Richards, JT Mathews, WB Meyer 163–78 New York: Cambridge Univ. Press [Google Scholar]
  126. Rodell M, Velicogna I, Famiglietti JS. 126.  2009. Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002 [Google Scholar]
  127. Romeu-Dalmau C, Bonsall MB, Willis KJ, Dolan L. 127.  2015. Asiatic cotton can generate similar economic benefits to Bt cotton under rainfed conditions. Nat. Plants 115072 [Google Scholar]
  128. Ronald PC, Adamchak RW. 128.  2008. Tomorrow's Table: Organic Farming, Genetics, and the Future of Food New York: Oxford Univ. Press232 pp [Google Scholar]
  129. Rudel TK, Schneider L, Uriarte M, Turner BL, DeFries R. 129.  et al. 2009. Agricultural intensification and changes in cultivated areas, 1970–2005. PNAS 106:20675–80 [Google Scholar]
  130. Ryschawy J, Choisis N, Choisis J-P, Gibon A. 130.  2013. Paths to last in mixed crop-livestock farming: lessons from an assessment of farm trajectories of change. Animal 7:673–81 [Google Scholar]
  131. Satterthwaite D, McGranahan G, Tacoli C. 131.  2010. Urbanization and its implications for food and farming. Philos. Trans. R. Soc. B 365:2809–20 [Google Scholar]
  132. Schierhorn F, Müller D, Beringer T, Prishchepov AV, Kuemmerle T, Balmann A. 132.  2013. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob. Biogeochem. Cycles 27:1175–85 [Google Scholar]
  133. Seto KC, Ramankutty N. 133.  2016. Hidden linkages between urbanization and food systems. Science 352:943–45 [Google Scholar]
  134. Seufert V, Ramankutty N. 134.  2017. Many shades of gray—the context-dependent performance of organic agriculture. Sci. Adv. 3:e1602638 [Google Scholar]
  135. Siebert S, Doll P. 135.  2010. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384:198–217 [Google Scholar]
  136. Siegel KR, Ali MK, Srinivasiah A, Nugent RA, Narayan KMV. 136.  2014. Do we produce enough fruits and vegetables to meet global health need?. PLOS ONE 9:e104059 [Google Scholar]
  137. Simmons IG.137.  1987. Transformation of the land in pre-industrial time. Land Transformation in Agriculture MG Wolman, FGA Fournier 45–77 Chichester, UK: John Wiley & Sons [Google Scholar]
  138. Smith LC, Haddad L. 138.  2015. Reducing child undernutrition: past drivers and priorities for the post-MDG era. World Dev 68:180–204 [Google Scholar]
  139. Smith P, Bustamante M, Ahammad H, Clark H, Dong H. 139.  et al. 2014. Agriculture. Forestry and Other Land Use. AFOLU. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change OR Edenhofer, M Pichs, Y Sokona, E Farahani, S Kadner et al.811–922 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  140. Spera SA, Cohn AS, Vanwey LK, Mustard JF, Rudorff BF. 140.  et al. 2014. Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics. Environ. Res. Lett. 9:12 [Google Scholar]
  141. Stangel PJ.141.  1993. Nutrient cycling and its importance in sustaining crop–livestock systems in sub-Saharan Africa: an overview. In Livestock and Sustainable Nutrient Cycling in Mixed Farming Systems of sub-Saharan Africa. Volume I: Conference Summary, Addis Ababa, Ethiopia: International Livestock Centre for Africa [Google Scholar]
  142. Stanley DA, Garratt MPD, Wickens JB, Wickens VJ, Potts SG, Raine NE. 142.  2015. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528:548–50 [Google Scholar]
  143. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I. 143.  et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:1259855 [Google Scholar]
  144. Stehfest E, Bouwman L, van Vuuren DP, den Elzen MGJ, Eickhout B, Kabat P. 144.  2009. Climate benefits of changing diet. Clim. Change 95:83–102 [Google Scholar]
  145. Stevens CJ, Dise NB, Mountford JO, Gowing DJ. 145.  2004. Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–79 [Google Scholar]
  146. Stevenson JR, Villoria N, Byerlee D, Kelley T, Maredia M. 146.  2013. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. PNAS 110:8363–68 [Google Scholar]
  147. Stewart WM, Dibb DW, Johnston AE, Smyth TJ. 147.  2005. The contribution of commercial fertilizer nutrients to food production. Agron. J. 97:1–6 [Google Scholar]
  148. Storkey J, Macdonald AJ, Poulton PR, Scott T, Köhler IH. 148.  et al. 2015. Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528:401–4 [Google Scholar]
  149. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT. 149.  et al. 2011. The global obesity pandemic: shaped by global drivers and local environments. Lancet 378:804–14 [Google Scholar]
  150. Ter C.150.  2012. Soil productivity and erosion. Soil Ecology and Ecosystem Services DH Wall, RD Bardgett, V Behan-Pelletier, JE Herrick, H Jones et al.301–14 Oxford, UK: Oxford Univ. Press [Google Scholar]
  151. Thornton PK, Herrero M. 151.  2015. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Change 5:830–36 [Google Scholar]
  152. Tilman D.152.  1999. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. PNAS 96:5995–6000 [Google Scholar]
  153. Tilman D, Balzer C, Hill J, Befort BL. 153.  2011. Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–64 [Google Scholar]
  154. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. 154.  2002. Agricultural sustainability and intensive production practices. Nature 418:671–77 [Google Scholar]
  155. Tilman D, Clark M. 155.  2014. Global diets link environmental sustainability and human health. Nature 515:518–22 [Google Scholar]
  156. Tilman D, Fargione J, Wolff B, D'Antonio C, Dobson A. 156.  et al. 2001. Forecasting agriculturally driven global environmental change. Science 292:281–84 [Google Scholar]
  157. Tiwari S, Daidone S, Ruvalcaba MA, Prifti E, Handa S. 157.  et al. 2016. Impact of cash transfer programs on food security and nutrition in sub-Saharan Africa: a cross-country analysis. Glob. Food Secur. 11:72–83 [Google Scholar]
  158. Tollenaar M, Lee EA. 158.  2002. Yield potential, yield stability and stress tolerance in maize. Field Crops Res 75:161–69 [Google Scholar]
  159. Tomlinson I.159.  2013. Doubling food production to feed the 9 billion: a critical perspective on a key discourse of food security in the UK. J. Rural Stud. 29:81–90 [Google Scholar]
  160. Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van der Putten WH. 160.  et al. 2015. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21:973–85 [Google Scholar]
  161. Tuck SL, Winqvist C, Mota F, Ahnström J, Turnbull LA, Bengtsson J. 161.  2014. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51:746–55 [Google Scholar]
  162. Tulchinsky TH.162.  2010. Micronutrient deficiency conditions: global health issues. Public Health Rev 32:243–55 [Google Scholar]
  163. Turner BL, Clark WC, Kates RW, Richards JF, Mathews JT, Meyer WB. 163.  1990. The Earth as Transformed by Human Action New York: Cambridge Univ. Press713 pp [Google Scholar]
  164. Turner BL II, McCandless S. 164.  2004. How humankind came to rival nature: a brief history of the human-environment condition and the lessons learned. Earth System Analysis for Sustainability: Dahlem Workshop Report No. 91 WC Clark, P Crutzen, H-J Schellnhuber 227–43 Cambridge, MA: MIT Press [Google Scholar]
  165. 165. United Nations 2017. World population prospects: the 2017 revision, key findings and advance tables Work. Pap. No. ESA/P/WP/248 Dep. Econ. Soc. Aff., Popul. Div New York: [Google Scholar]
  166. 166. US Dep. Agric 2017. Crop Production: Historical Track Records Washington, DC: Natl. Agric. Stat. Serv., US Dep. Agric. [Google Scholar]
  167. van de Wouw M, van Hintum T, Kik C, van Treuren R, Visser B. 167.  2010. Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor. Appl. Genet. 120:1241–52 [Google Scholar]
  168. Vandermeer J, Perfecto I. 168.  2007. The agricultural matrix and a future paradigm for conservation. Conserv. Biol. 21:274–77 [Google Scholar]
  169. Veresoglou SD, Barto EK, Menexes G, Rillig MC. 169.  2013. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol 62:961–69 [Google Scholar]
  170. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA. 170.  et al. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7:737–50 [Google Scholar]
  171. Waggoner PE.171.  1994. How Much Land Can Ten Billion People Spare for Nature Ames, IA: Counc. Agric. Sci. Technol. [Google Scholar]
  172. Waggoner PE.172.  1995. How much land can ten billion people spare for nature? Does technology make a difference?. Technol. Soc. 17:17–34 [Google Scholar]
  173. West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA. 173.  et al. 2014. Leverage points for improving global food security and the environment. Science 345:325–28 [Google Scholar]
  174. West PC, Gibbs HK, Monfreda C, Wagner J, Barford CC. 174.  et al. 2010. Trading carbon for food: global comparison of carbon stocks versus crop yields on agricultural land. PNAS 107:19645–48 [Google Scholar]
  175. Williams M.175.  1989. Americans and Their Forests: A Historical Geography New York: Cambridge Univ. Press599 pp. [Google Scholar]
  176. Wittman H.176.  2011. Food sovereignty: a new rights framework for food and nature?. Environ. Soc. Adv. Res. 2:87–105 [Google Scholar]
  177. 177. World Bank 2017. World Development Indicators Washington, DC: World Bank http://data.worldbank.org/data-catalog/world-development-indicators [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040256
Loading
/content/journals/10.1146/annurev-arplant-042817-040256
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error