1932

Abstract

In flowering plants, pollen tubes undergo tip growth to deliver two nonmotile sperm to the ovule where they fuse with an egg and central cell to achieve double fertilization. This extended journey involves rapid growth and changes in gene activity that manage compatible interactions with at least seven different cell types. Nearly half of the genome is expressed in haploid pollen, which facilitates genetic analysis, even of essential genes. These unique attributes make pollen an ideal system with which to study plant cell–cell interactions, tip growth, cell migration, the modulation of cell wall integrity, and gene expression networks. We highlight the signaling systems required for pollen tube navigation and the potential roles of Ca2+ signals. The dynamics of pollen development make sexual reproduction highly sensitive to heat stress. Understanding this vulnerability may generate strategies to improve seed crop yields that are under threat from climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100133
2019-04-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-050718-100133.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100133&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Amien S, Kliwer I, Márton ML, Debener T, Geiger D et al. 2010. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLOS Biol 8:e1000388Provides initial evidence for the idea that the synergid cell and pollen tube exchange signals that regulate sperm release.
    [Google Scholar]
  2. 2.  Beale KM, Leydon AR, Johnson MA 2012. Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr. Biol. 22:1090–94
    [Google Scholar]
  3. 3.  Bircheneder S, Dresselhaus T 2016. Why cellular communication during plant reproduction is particularly mediated by CRP signalling. J. Exp. Bot. 67:4849–61
    [Google Scholar]
  4. 4.  Boavida LC, Qin P, Broz M, Becker JD, McCormick S 2013. Arabidopsis tetraspanins are confined to discrete expression domains and cell types in reproductive tissues and form homo- and heterodimers when expressed in yeast. Plant Physiol 163:696–712
    [Google Scholar]
  5. 5.  Boisson-Dernier A, Franck CM, Lituiev DS, Grossniklaus U 2015. Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. PNAS 112:12211–16
    [Google Scholar]
  6. 6.  Boisson-Dernier A, Frietsch S, Kim TH, Dizon MB, Schroeder JI 2008. The peroxin loss-of-function mutation abstinence by mutual consent disrupts male-female gametophyte recognition. Curr. Biol. 18:63–68
    [Google Scholar]
  7. 7.  Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M et al. 2009. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–88
    [Google Scholar]
  8. 8.  Capron A, Gourgues M, Neiva LS, Faure JE, Berger F et al. 2008. Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell 20:3038–49
    [Google Scholar]
  9. 9.  Chapman LA, Goring DR 2010. Pollen–pistil interactions regulating successful fertilization in the Brassicaceae. J. Exp. Bot. 61:1987–99
    [Google Scholar]
  10. 10.  Chebli Y, Geitmann A 2017. Cellular growth in plants requires regulation of cell wall biochemistry. Curr. Opin. Cell Biol. 44:28–35
    [Google Scholar]
  11. 11.  Chebli Y, Kaneda M, Zerzour R, Geitmann A 2012. The cell wall of the Arabidopsis pollen tube—spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160:1940–55
    [Google Scholar]
  12. 12.  Chen LY, Shi DQ, Zhang WJ, Tang ZS, Liu J, Yang WC 2015. The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nat. Commun. 6:6030Provides a genetic link between cell wall integrity, sphingolipid signaling, turgor sensing, and growth regulation.
    [Google Scholar]
  13. 13.  Chen W, Gong P, Guo J, Li H, Li R et al. 2018. Glycolysis regulates pollen tube polarity via Rho GTPase signaling. PLOS Genet 14:e1007373
    [Google Scholar]
  14. 14.  Cheung AY, Wang H, Wu HM 1995. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–93
    [Google Scholar]
  15. 15.  Crawford BC, Ditta G, Yanofsky MF 2007. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr. Biol 17:1101–8
    [Google Scholar]
  16. 16.  Crawford BC, Yanofsky MF 2008. The formation and function of the female reproductive tract in flowering plants. Curr. Biol. 18:R972–78
    [Google Scholar]
  17. 17.  Curran A, Chang IF, Chang CL, Garg S, Miguel RM et al. 2011. Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates. Front. Plant Sci. 2:36
    [Google Scholar]
  18. 18.  Damineli DSC, Portes MT, Feijó JA 2017. Oscillatory signatures underlie growth regimes in Arabidopsis pollen tubes: computational methods to estimate tip location, periodicity, and synchronization in growing cells. J. Exp. Bot. 68:3267–81
    [Google Scholar]
  19. 19.  Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I 2018. Calcium transport across plant membranes: mechanisms and functions. New Phytol 220:49–69
    [Google Scholar]
  20. 20.  Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T et al. 2014. Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nat. Commun 5:4645
    [Google Scholar]
  21. 21.  Driouich A, Follet-Gueye ML, Bernard S, Kousar S, Chevalier L et al. 2012. Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants. Front. Plant Sci. 3:79
    [Google Scholar]
  22. 22.  Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L et al. 2014. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun 5:3129
    [Google Scholar]
  23. 23.  Duran-Flores D, Heil M 2016. Sources of specificity in plant damaged-self recognition. Curr. Opin. Plant Biol. 32:77–87
    [Google Scholar]
  24. 24.  Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J et al. 2007. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–60
    [Google Scholar]
  25. 25.  Fabrice TN, Vogler H, Draeger C, Munglani G, Gupta S et al. 2018. LRX proteins play a crucial role in pollen grain and pollen tube cell wall development. Plant Physiol 176:1981–92
    [Google Scholar]
  26. 26.  Fang K, Gao S, Zhang W, Xing Y, Cao Q, Qin L 2016. Addition of phenylboronic acid to Malus domestica pollen tubes alters calcium dynamics, disrupts actin filaments and affects cell wall architecture. PLOS ONE 11:e0149232
    [Google Scholar]
  27. 27.  Faure JE, Rotman N, Fortune P, Dumas C 2002. Fertilization in Arabidopsis thaliana wild type: developmental stages and time course. Plant J 30:481–88
    [Google Scholar]
  28. 28.  Fédry J, Forcina J, Legrand P, Péhau-Arnaudet G, Haouz A et al. 2018. Evolutionary diversification of the HAP2 membrane insertion motifs to drive gamete fusion across eukaryotes. PLOS Biol 16:e2006357Defines a gamete fusion mechanism for flowering plants.
    [Google Scholar]
  29. 29.  Fédry J, Liu Y, Péhau-Arnaudet G, Pei J, Li W et al. 2017. The ancient gamete fusogen HAP2 is a eukaryotic class II fusion protein. Cell 168:904–15.e10
    [Google Scholar]
  30. 30.  Feher A, Lajko DB 2015. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins. Plant Sci 237:93–107
    [Google Scholar]
  31. 31.  Feng QN, Kang H, Song SJ, Ge FR, Zhang YL et al. 2016. Arabidopsis RhoGDIs are critical for cellular homeostasis of pollen tubes. Plant Physiol 170:841–56
    [Google Scholar]
  32. 32.  Ferris PJ, Pavlovic C, Fabry S, Goodenough UW 1997. Rapid evolution of sex-related genes in Chlamydomonas. PNAS 94:8634–39
    [Google Scholar]
  33. 33.  Fiebig A, Kimport R, Preuss D 2004. Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. PNAS 101:3286–91
    [Google Scholar]
  34. 34.  Fragkostefanakis S, Mesihovic A, Hu Y, Schleiff E 2016. Unfolded protein response in pollen development and heat stress tolerance. Plant Reprod 29:81–91
    [Google Scholar]
  35. 35.  Franck C, Westermann J, Bürssner S, Lentz R, Lituiev DS, Boisson-Dernier A 2018. The protein phosphatases ATUNIS1 and ATUNIS2 regulate cell wall integrity in tip-growing cells. Plant Cell 30:1906–23
    [Google Scholar]
  36. 36.  Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM et al. 2007. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. PNAS 104:14531–36
    [Google Scholar]
  37. 37.  Gao QF, Gu LL, Wang HQ, Fei CF, Fang X et al. 2016. Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. PNAS 113:3096–101Shows that cyclic nucleotide-gated channels are critical for pollen tube guidance and normal Ca2+ oscillations during tip growth.
    [Google Scholar]
  38. 38.  Gao XQ, Liu CZ, Li DD, Zhao TT, Li F et al. 2016. The Arabidopsis KINβγ subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reactive oxygen species in pollen. PLOS Genet 12:e1006228
    [Google Scholar]
  39. 39.  Ge Z, Bergonci T, Zhao Y, Zou Y, Du S et al. 2017. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358:1596–600
    [Google Scholar]
  40. 40.  Giorno F, Wolters-Arts M, Mariani C, Rieu I 2013. Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants 2:489–506
    [Google Scholar]
  41. 41.  Gou JY, Miller LM, Hou G, Yu XH, Chen XY, Liu CJ 2012. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell 24:50–65
    [Google Scholar]
  42. 42.  Grebnev G, Ntefidou M, Kost B 2017. Secretion and endocytosis in pollen tubes: models of tip growth in the spot light. Front. Plant Sci. 8:154
    [Google Scholar]
  43. 43.  Grossniklaus U 2017. Polyspermy produces tri-parental seeds in maize. Curr. Biol. 27:R1300–2
    [Google Scholar]
  44. 44.  Gui CP, Dong X, Liu HK, Huang WJ, Zhang D et al. 2014. Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbing mode. Plant Cell 26:3538–55
    [Google Scholar]
  45. 45.  Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T 2014. Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat. Commun 5:4722
    [Google Scholar]
  46. 46.  Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A et al. 2011. Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr. Biol 21:497–502Provides a temporal and spatial map for gamete interactions and double fertilization.
    [Google Scholar]
  47. 47.  Hamilton ES, Jensen GS, Maksaev G, Katims A, Sherp AM, Haswell ES 2015. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350:438–41
    [Google Scholar]
  48. 48.  Hepler PK 2016. The cytoskeleton and its regulation by calcium and protons. Plant Physiol 170:3–22
    [Google Scholar]
  49. 49.  Hepler PK, Rounds CM, Winship LJ 2013. Control of cell wall extensibility during pollen tube growth. Mol. Plant 6:998–1017
    [Google Scholar]
  50. 50.  Hepler PK, Winship LJ 2015. The pollen tube clear zone: clues to the mechanism of polarized growth. J. Integr. Plant Biol. 57:79–92
    [Google Scholar]
  51. 51.  Heslop-Harrison J, Heslop-Harrison Y 1992. Germination of monocolpate angiosperm pollen: effects of inhibitory factors and the Ca2+-channel blocker, nifedipine. Ann. Bot. 69:395–403
    [Google Scholar]
  52. 52.  Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T 1998. Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10:2019–32
    [Google Scholar]
  53. 53.  Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S et al. 2001. Pollen tube attraction by the synergid cell. Science 293:1480–83
    [Google Scholar]
  54. 54.  Hiscock SJ, McInnis SM 2003. Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends Plant Sci 8:606–13
    [Google Scholar]
  55. 55.  Hou Y, Guo X, Cyprys P, Zhang Y, Bleckmann A et al. 2016. Maternal ENODLs are required for pollen tube reception in Arabidopsis. Curr. Biol 26:2343–50
    [Google Scholar]
  56. 56.  Huck N, Moore JM, Federer M, Grossniklaus U 2003. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–59
    [Google Scholar]
  57. 57.  Ishka MR, Brown E, Weigand C, Tillet RL, Schlauch KA et al. 2018. A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC Genom 19:549Shows that pollen and vegetative cells have different responses to heat stress, potentially because of selection pressures that favor pollen that grow as fast as possible.
    [Google Scholar]
  58. 58.  Iwano M, Entani T, Shiba H, Kakita M, Nagai T et al. 2009. Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol 150:1322–34
    [Google Scholar]
  59. 59.  Iwano M, Ngo QA, Entani T, Shiba H, Nagai T et al. 2012. Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development 139:4202–9
    [Google Scholar]
  60. 60.  Iwano M, Shiba H, Miwa T, Che F-S, Takayama S et al. 2004. Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant Physiol 136:3562–71
    [Google Scholar]
  61. 61.  Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ et al. 2005. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–96
    [Google Scholar]
  62. 62.  Johnson MA, von Besser K, Zhou Q, Smith E, Aux G et al. 2004. Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971–82
    [Google Scholar]
  63. 63.  Kasahara RD, Maruyama D, Hamamura Y, Sakakibara T, Twell D, Higashiyama T 2012. Fertilization recovery after defective sperm cell release in Arabidopsis. Curr. Biol 22:1084–9
    [Google Scholar]
  64. 64.  Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN 2005. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–92
    [Google Scholar]
  65. 65.  Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G et al. 2010. Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–71
    [Google Scholar]
  66. 66.  Kielian M, Rey FA 2006. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat. Rev. Microbiol. 4:67–76
    [Google Scholar]
  67. 67.  Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM 2003. Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. PNAS 100:16125–30
    [Google Scholar]
  68. 68.  Lee YJ, Yang Z 2008. Tip growth: signaling in the apical dome. Curr. Opin. Plant Biol. 11:662–71
    [Google Scholar]
  69. 69.  Lennon K, Roy S, Hepler P, Lord E 1998. The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth. Sex. Plant Reprod. 11:49–59
    [Google Scholar]
  70. 70.  Leydon AR, Beale KM, Woroniecka K, Castner E, Chen J et al. 2013. Three MYB transcription factors control pollen tube differentiation required for sperm release. Curr. Biol. 23:1209–14
    [Google Scholar]
  71. 71.  Leydon AR, Tsukamoto T, Dunatunga D, Qin Y, Johnson MA, Palanivelu R 2015. Pollen tube discharge completes the process of synergid degeneration that is initiated by pollen tube–synergid interaction in Arabidopsis. Plant Physiol 169:485–96
    [Google Scholar]
  72. 72.  Leydon AR, Weinreb C, Venable E, Reinders A, Ward JM, Johnson MA 2017. The molecular dialog between flowering plant reproductive partners defined by SNP-informed RNA-sequencing. Plant Cell 29:984–1006
    [Google Scholar]
  73. 73.  Li C, Yeh FL, Cheung AY, Duan Q, Kita D et al. 2015. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4:e06587
    [Google Scholar]
  74. 74.  Li HJ, Meng JG, Yang WC 2018. Multilayered signaling pathways for pollen tube growth and guidance. Plant Reprod 31:31–41
    [Google Scholar]
  75. 75.  Li HJ, Zhu SS, Zhang MX, Wang T, Liang L et al. 2015. Arabidopsis CBP1 is a novel regulator of transcription initiation in central cell–mediated pollen tube guidance. Plant Cell 27:2880–93
    [Google Scholar]
  76. 76.  Li S, Gu Y, Yan A, Lord E, Yang Z-B 2008. RIP1 (ROP interactive partner 1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth. Mol. Plant 1:1021–35
    [Google Scholar]
  77. 77.  Li Y, Tan X, Wang M, Li B, Zhao Y et al. 2017. Exocyst subunit SEC3A marks the germination site and is essential for pollen germination in Arabidopsis thaliana. Sci. Rep 7:40279
    [Google Scholar]
  78. 78.  Liang Y, Tan ZM, Zhu L, Niu QK, Zhou JJ et al. 2013. MYB97, MYB101 and MYB120 function as male factors that control pollen tube–synergid interaction in Arabidopsis thaliana fertilization. PLOS Genet 9:e1003933
    [Google Scholar]
  79. 79.  Lindner H, Kessler SA, Muller LM, Shimosato-Asano H, Boisson-Dernier A, Grossniklaus U 2015. TURAN and EVAN mediate pollen tube reception in Arabidopsis synergids through protein glycosylation. PLOS Biol 13:e1002139
    [Google Scholar]
  80. 80.  Liu J, Zhong S, Guo X, Hao L, Wei X et al. 2013. Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male–female attraction in Arabidopsis. Curr. Biol 23:993–98
    [Google Scholar]
  81. 81.  Liu L, Zheng C, Kuang B, Wei L, Yan L et al. 2016. Receptor-like kinase RUPO interacts with potassium transporters to regulate pollen tube growth and integrity in rice. PLOS Genet 12:7e1006085
    [Google Scholar]
  82. 82.  Liu X, Castro C, Wang Y, Noble J, Ponvert N et al. 2016. The role of LORELEI in pollen tube reception at the interface of the synergid cell and pollen tube requires the modified eight-cysteine motif and the receptor-like kinase FERONIA. Plant Cell 28:1035–52
    [Google Scholar]
  83. 83.  Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S et al. 2008. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 22:1051–68
    [Google Scholar]
  84. 84.  Loraine AE, McCormick S, Estrada A, Patel K, Qin P 2013. RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiol 162:1092–109
    [Google Scholar]
  85. 85.  Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N et al. 2011. Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell 23:81–93
    [Google Scholar]
  86. 86.  Malho R, Trewavas AJ 1996. Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–49
    [Google Scholar]
  87. 87.  Mangano S, Juarez SP, Estevez JM 2016. ROS regulation of polar growth in plant cells. Plant Physiol 171:1593–605
    [Google Scholar]
  88. 88.  Marondedze C, Wong A, Thomas L, Irving H, Gehring C 2017. Cyclic nucleotide monophosphates in plants and plant signaling. Handb. Exp. Pharmacol. 238:87–103
    [Google Scholar]
  89. 89.  Márton ML, Cordts S, Broadhvest J, Dresselhaus T 2005. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–76
    [Google Scholar]
  90. 90.  Márton ML, Fastner A, Uebler S, Dresselhaus T 2012. Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr. Biol. 22:1194–98
    [Google Scholar]
  91. 91.  Maruyama D, Hamamura Y, Takeuchi H, Susaki D, Nishimaki M et al. 2013. Independent control by each female gamete prevents the attraction of multiple pollen tubes. Dev. Cell 25:317–23
    [Google Scholar]
  92. 92.  Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A et al. 2017. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358:1600–3Identifies a signaling module consisting of secreted proteins (RALFs) and receptors (RLK-LRX complex) responsible for pollen tube cell wall integrity.
    [Google Scholar]
  93. 93.  Michard E, Lima PT, Borges F, Silva AC, Portes MT et al. 2011. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–37
    [Google Scholar]
  94. 94.  Michard E, Simon AA, Tavares B, Wudick MM, Feijó JA 2017. Signaling with ions: the keystone for apical cell growth and morphogenesis in pollen tubes. Plant Physiol 173:91–111
    [Google Scholar]
  95. 95.  Misamore MJ, Gupta S, Snell WJ 2003. The Chlamydomonas Fus1 protein is present on the mating type plus fusion organelle and required for a critical membrane adhesion event during fusion with minus gametes. Mol. Biol. Cell 14:2530–42
    [Google Scholar]
  96. 96.  Mittler R, Finka A, Goloubinoff P 2012. How do plants feel the heat. ? Trends Biochem. Sci. 37:118–25
    [Google Scholar]
  97. 97.  Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T et al. 2009. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr. Biol. 19:1327–31
    [Google Scholar]
  98. 98.  Mizukami AG, Inatsugi R, Jiao J, Kotake T, Kuwata K et al. 2016. The AMOR arabinogalactan sugar chain induces pollen tube competency to respond to ovular guidance. Curr. Biol. 26:81091–7
    [Google Scholar]
  99. 99.  Mollet JC, Leroux C, Dardelle F, Lehner A 2013. Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants 2:107–47
    [Google Scholar]
  100. 100.  Mollet JC, Park SY, Nothnagel EA, Lord EM 2000. A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:1737–50
    [Google Scholar]
  101. 101.  Mori T, Igawa T, Tamiya G, Miyagishima SY, Berger F 2014. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis. Curr. Biol 24:170–75
    [Google Scholar]
  102. 102.  Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T 2006. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8:64–71
    [Google Scholar]
  103. 103.  Muller F, Rieu I 2016. Acclimation to high temperature during pollen development. Plant Reprod 29:107–18
    [Google Scholar]
  104. 104.  Nakel T, Tekleyohans DG, Mao Y, Fuchert G, Vo D, Gross-Hardt R 2017. Triparental plants provide direct evidence for polyspermy induced polyploidy. Nat. Commun. 8:1033
    [Google Scholar]
  105. 105.  Ngo QA, Vogler H, Lituiev DS, Nestorova A, Grossniklaus U 2014. A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev. Cell 29:491–500
    [Google Scholar]
  106. 106.  Obermeyer G, Feijó J, eds. 2017. Pollen Tip Growth: From Biophysical Aspects to Systems Biology. Cham, Switzerland: Springer.
  107. 107.  Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H et al. 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–61
    [Google Scholar]
  108. 108.  Palanivelu R, Brass L, Edlund AF, Preuss D 2003. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59
    [Google Scholar]
  109. 109.  Palanivelu R, Johnson MA 2010. Functional genomics of pollen tube-pistil interactions in Arabidopsis. Biochem. Soc. Trans 38:593–97
    [Google Scholar]
  110. 110.  Palanivelu R, Preuss D 2006. Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7
    [Google Scholar]
  111. 111.  Palanivelu R, Tsukamoto T 2012. Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. WIREs Dev. Biol. 1:96–113
    [Google Scholar]
  112. 112.  Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA et al. 2000. A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:151–64
    [Google Scholar]
  113. 113.  Pérez Di Giorgio JA, Barberini ML, Amodeo G, Muschietti JP 2016. Pollen aquaporins: What are they there for?. Plant Signal. Behav. 11:e1217375
    [Google Scholar]
  114. 114.  Preuss D, Lemieux B, Yen G, Davis RW 1993. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7:974–85
    [Google Scholar]
  115. 115.  Qin Y, Leydon AR, Manziello A, Pandey R, Mount D et al. 2009. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLOS Genet 5:e1000621Defines pistil-induced gene expression in the pollen tube; aids in discovery of LURE receptors.
    [Google Scholar]
  116. 116.  Qin Y, Wysocki RJ, Somogyi A, Feinstein Y, Franco JY et al. 2011. Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils. Plant J 68:800–15
    [Google Scholar]
  117. 117.  Rotman N, Gourgues M, Guitton AE, Faure JE, Berger F 2008. A dialogue between the Sirène pathway in synergids and the fertilization independent seed pathway in the central cell controls male gamete release during double fertilization in Arabidopsis. Mol. Plant 1:659–66
    [Google Scholar]
  118. 118.  Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE 2003. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr. Biol 13:432–36
    [Google Scholar]
  119. 119.  Rounds CM, Bezanilla M 2013. Growth mechanisms in tip-growing plant cells. Annu. Rev. Plant Biol. 64:243–65
    [Google Scholar]
  120. 120.  Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF 2004. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. PNAS 101:9502–7
    [Google Scholar]
  121. 121.  Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, Muschietti JP 2018. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett 592:233–43
    [Google Scholar]
  122. 122.  Shiu SH, Bleecker AB 2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. PNAS 98:10763–68
    [Google Scholar]
  123. 123.  Smith DK, Harper JF, Wallace IS 2018. A potential role for protein O-fucosylation during pollen-pistil interactions. Plant Signal. Behav. 13:e1467687
    [Google Scholar]
  124. 124.  Sprunck S, Hackenberg T, Englhart M, Vogler F 2014. Same same but different: sperm-activating EC1 and ECA1 gametogenesis-related family proteins. Biochem. Soc. Trans. 42:401–7
    [Google Scholar]
  125. 125.  Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T 2012. Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–97
    [Google Scholar]
  126. 126.  Steinberg G, Peñalva MA, Riquelme M, Wosten HA, Harris SD 2017. Cell biology of hyphal growth. Microbiol. Spectr. 5:1–34
    [Google Scholar]
  127. 127.  Steinhorst L, Kudla J 2013. Calcium—a central regulator of pollen germination and tube growth. Biochim. Biophys. Acta 1833:1573–81
    [Google Scholar]
  128. 128.  Stephan O, Cottier S, Fahlén S, Montes-Rodriguez A, Sun J et al. 2014. RISAP is a TGN-associated RAC5 effector regulating membrane traffic during polar cell growth in tobacco. Plant Cell 26:4426–47
    [Google Scholar]
  129. 129.  Stone LM, Seaton KA, Kuo J, McComb JA 2004. Fast pollen tube growth in Conospermum species. Ann. Bot. 93:369–78
    [Google Scholar]
  130. 130.  Swanson WJ, Vacquier VD 2002. The rapid evolution of reproductive proteins. Nat. Rev. Genet. 3:137–44
    [Google Scholar]
  131. 131.  Takeuchi H, Higashiyama T 2012. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLOS Biol 10:e1001449Defines LUREs of Arabidopsis and is critical for the discovery of LURE receptors.
    [Google Scholar]
  132. 132.  Takeuchi H, Higashiyama T 2016. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–48
    [Google Scholar]
  133. 133.  Tang W, Ezcurra I, Muschietti J, McCormick S 2002. A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14:2277–87
    [Google Scholar]
  134. 134.  Tsukamoto T, Qin Y, Huang Y, Dunatunga D, Palanivelu R 2010. A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant J 62:571–88
    [Google Scholar]
  135. 135.  Tunc-Ozdemir M, Rato C, Brown E, Rogers S, Mooneyham A et al. 2013. Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility. PLOS ONE 8:e55277
    [Google Scholar]
  136. 136.  Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR et al. 2013. A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161:1010–20
    [Google Scholar]
  137. 137.  Twell D 2011. Male gametogenesis and germline specification in flowering plants. Sex. Plant Reprod. 24:149–60
    [Google Scholar]
  138. 138.  Vogler F, Schmalzl C, Englhart M, Bircheneder M, Sprunck S 2014. Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod 27:153–67
    [Google Scholar]
  139. 139.  Volz R, Heydlauff J, Ripper D, von Lyncker L, Gross-Hardt R 2013. Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block. Dev. Cell 25:310–16
    [Google Scholar]
  140. 140.  Wang T, Liang L, Xue Y, Jia PF, Chen W et al. 2016. A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241–44Among the first papers to describe pollen tube guidance receptor complexes (also see 132).
    [Google Scholar]
  141. 141.  Wang X, Wang K, Yin G, Liu X, Liu M et al. 2018. Pollen-expressed leucine-rich repeat extensins are essential for pollen germination and growth. Plant Physiol 176:1993–2006
    [Google Scholar]
  142. 142.  Williams EG, Knox BR, Rouse JL 1982. Pollination sub-systems distinguished by pollen tube arrest after incompatible interspecific crosses in Rhododendron (Ericaceae). J. Cell Sci. 53:255–77
    [Google Scholar]
  143. 143.  Williams JH, Edwards JA, Ramsey AJ 2016. Economy, efficiency, and the evolution of pollen tube growth rates. Am. J. Bot. 103:471–83
    [Google Scholar]
  144. 144.  Williams JS, Wu L, Li S, Sun P, Kao TH 2015. Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions. Front. Plant Sci. 6:41
    [Google Scholar]
  145. 145.  Wong JL, Wessel GM 2006. Defending the zygote: search for the ancestral animal block to polyspermy. Curr. Top. Dev. Biol. 72:1–151
    [Google Scholar]
  146. 146.  Wu HM, Wong E, Ogdahl J, Cheung AY 2000. A pollen tube growth-promoting arabinogalactan protein from Nicotiana alata is similar to the tobacco TTS protein. Plant J 22:165–76
    [Google Scholar]
  147. 147.  Wudick MM, Feijó JA 2014. At the intersection: merging Ca2+ and ROS signaling pathways in pollen. Mol. Plant 7:1595–97
    [Google Scholar]
  148. 148.  Wudick MM, Portes MT, Michard E, Rosas-Santiago P, Lizzio MA et al. 2018. CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis. Science 360:533–36
    [Google Scholar]
  149. 149.  Zhang X, Liu W, Nagae TT, Takeuchi H, Zhang H et al. 2017. Structural basis for receptor recognition of pollen tube attraction peptides. Nat. Commun. 8:1331
    [Google Scholar]
  150. 150.  Zhu J, Yuan S, Wei G, Qian D, Wu X et al. 2014. Annexin5 is essential for pollen development in Arabidopsis. Mol. Plant 7:751–54
    [Google Scholar]
  151. 151.  Zhu L, Chu LC, Liang Y, Zhang XQ, Chen LQ, Ye D 2018. The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant J 95:474–86
    [Google Scholar]
  152. 152.  Zinn KE, Tunc-Ozdemir M, Harper JF 2010. Temperature stress and plant sexual reproduction: uncovering the weakest links. J. Exp. Bot. 61:1959–68
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100133
Loading
/content/journals/10.1146/annurev-arplant-050718-100133
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error