1932

Abstract

Mathematical modeling of plant metabolism enables the plant science community to understand the organization of plant metabolism, obtain quantitative insights into metabolic functions, and derive engineering strategies for manipulation of metabolism. Among the various modeling approaches, metabolic pathway analysis can dissect the basic functional modes of subsections of core metabolism, such as photorespiration, and reveal how classical definitions of metabolic pathways have overlapping functionality. In the many studies using constraint-based modeling in plants, numerous computational tools are currently available to analyze large-scale and genome-scale metabolic networks. For 13C-metabolic flux analysis, principles of isotopic steady state have been used to study heterotrophic plant tissues, while nonstationary isotope labeling approaches are amenable to the study of photoautotrophic and secondary metabolism. Enzyme kinetic models explore pathways in mechanistic detail, and we discuss different approaches to determine or estimate kinetic parameters. In this review, we describe recent advances and challenges in modeling plant metabolism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100221
2020-04-29
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/arplant/71/1/annurev-arplant-050718-100221.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100221&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Allen DK, Ohlrogge JB, Shachar-Hill Y 2009. The role of light in soybean seed filling metabolism. Plant J 58:220–34
    [Google Scholar]
  2. 2. 
    Allen DK, Ratcliffe RG. 2009. Quantification of isotope label. Plant Metabolic Networks J Schwender 105–49 New York: Springer
    [Google Scholar]
  3. 3. 
    Allen DK, Shachar-Hill Y, Ohlrogge JB 2007. Compartment-specific labeling information in 13C metabolic flux analysis of plants. Phytochemistry 68:2197–210
    [Google Scholar]
  4. 4. 
    Allen DK, Young JD. 2013. Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos. Plant Physiol 161:1458–75
    [Google Scholar]
  5. 5. 
    Alonso AP, Dale VL, Shachar-Hill Y 2010. Understanding fatty acid synthesis in developing maize embryos using metabolic flux analysis. Metab. Eng. 12:488–97
    [Google Scholar]
  6. 6. 
    Alonso AP, Raymond P, Hernould M, Rondeau-Mouro C, de Graaf A et al. 2007. A metabolic flux analysis to study the role of sucrose synthase in the regulation of the carbon partitioning in central metabolism in maize root tips. Metab. Eng. 9:419–32
    [Google Scholar]
  7. 7. 
    Alonso AP, Val DL, Shachar-Hill Y 2011. Central metabolic fluxes in the endosperm of developing maize seeds and their implications for metabolic engineering. Metab. Eng. 13:96–107
    [Google Scholar]
  8. 8. 
    Antoniewicz MR. 2013. Tandem mass spectrometry for measuring stable-isotope labeling. Curr. Opin. Biotechnol. 24:48–53
    [Google Scholar]
  9. 9. 
    Bao A, Burritt DJ, Chen H, Zhou X, Cao D, Tran LP 2019. The CRISPR/Cas9 system and its applications in crop genome editing. Crit. Rev. Biotechnol. 39:321–36
    [Google Scholar]
  10. 10. 
    Bauwe H, Hagemann M, Fernie AR 2010. Photorespiration: players, partners and origin. Trends Plant Sci 15:330–36
    [Google Scholar]
  11. 11. 
    Beauvoit BP, Colombié S, Monier A, Andrieu MH, Biais B et al. 2014. Model-assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion. Plant Cell 26:3224–42
    [Google Scholar]
  12. 12. 
    Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S et al. 2008. A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–13
    [Google Scholar]
  13. 13. 
    Beurton-Aimar M, Beauvoit B, Monier A, Vallée F, Dieuaide-Noubhani M, Colombié S 2011. Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells. BMC Syst. Biol. 5:95
    [Google Scholar]
  14. 14. 
    Bogart E, Myers CR. 2016. Multiscale metabolic modeling of C4 plants: connecting nonlinear genome-scale models to leaf-scale metabolism in developing maize leaves. PLOS ONE 11:e0151722
    [Google Scholar]
  15. 15. 
    Borisjuk L, Neuberger T, Schwender J, Heinzel N, Sunderhaus S et al. 2013. Seed architecture shapes embryo metabolism in oilseed rape. Plant Cell 25:1625–40
    [Google Scholar]
  16. 16. 
    Canas RA, Yesbergenova-Cuny Z, Simons M, Chardon F, Armengaud P et al. 2017. Exploiting the genetic diversity of maize using a combined metabolomic, enzyme activity profiling, and metabolic modeling approach to link leaf physiology to kernel yield. Plant Cell 29:919–43
    [Google Scholar]
  17. 17. 
    Cao HX, Wang W, Le HT, Vu GT 2016. The power of CRISPR-Cas9-induced genome editing to speed up plant breeding. Int. J. Genom. 2016:5078796
    [Google Scholar]
  18. 18. 
    Cheah YE, Young JD. 2018. Isotopically nonstationary metabolic flux analysis (INST-MFA): putting theory into practice. Curr. Opin. Biotechnol. 54:80–87
    [Google Scholar]
  19. 19. 
    Chen F, Dong W, Zhang J, Guo X, Chen J et al. 2018. The sequenced angiosperm genomes and genome databases. Front. Plant Sci. 9:418
    [Google Scholar]
  20. 20. 
    Chen X, Alonso AP, Shachar-Hill Y 2013. Dynamic metabolic flux analysis of plant cell wall synthesis. Metab. Eng. 18:78–85
    [Google Scholar]
  21. 21. 
    Chen X, Schreiber K, Appel J, Makowka A, Fahnrich B et al. 2016. The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. PNAS 113:5441–46
    [Google Scholar]
  22. 22. 
    Cheung CY, Williams TC, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ 2013. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. Plant J 75:1050–61
    [Google Scholar]
  23. 23. 
    Chew YH, Wenden B, Flis A, Mengin V, Taylor J et al. 2014. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. PNAS 111:E4127–36
    [Google Scholar]
  24. 24. 
    Christensen AJ, Srinivasan V, Hart JC, Marshall-Colon A 2018. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security. Nutr. Rev. 76:332–47
    [Google Scholar]
  25. 25. 
    Cloutier M, Chen J, De Dobbeleer C, Perrier M, Jolicoeur M 2009. A systems approach to plant bioprocess optimization. Plant Biotechnol. J. 7:939–51
    [Google Scholar]
  26. 26. 
    Cloutier M, Chen J, Tatge F, McMurray-Beaulieu V, Perrier M, Jolicoeur M 2009. Kinetic metabolic modelling for the control of plant cells cytoplasmic phosphate. J. Theor. Biol. 259:118–31
    [Google Scholar]
  27. 27. 
    Cloutier M, Perrier M, Jolicoeur M 2007. Dynamic flux cartography of hairy roots primary metabolism. Phytochemistry 68:2393–404
    [Google Scholar]
  28. 28. 
    Colon AM, Sengupta N, Rhodes D, Dudareva N, Morgan J 2010. A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida. Plant J 62:64–76
    [Google Scholar]
  29. 29. 
    Crown SB, Antoniewicz MR. 2013. Parallel labeling experiments and metabolic flux analysis: past, present and future methodologies. Metab. Eng. 16:21–32
    [Google Scholar]
  30. 30. 
    Curien G, Bastien O, Robert-Genthon M, Cornish-Bowden A, Cárdenas ML, Dumas R 2009. Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol. Syst. Biol. 5:271
    [Google Scholar]
  31. 31. 
    Curien G, Ravenel S, Dumas R 2003. A kinetic model of the branch-point between methionine and threonine biosynthesis pathways in Arabidopsis thaliana. Eur. J. Biochem 270:4615–27
    [Google Scholar]
  32. 32. 
    Dal'Molin CGO, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK 2010. C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154:1871–85
    [Google Scholar]
  33. 33. 
    Dal'Molin CGO, Quek LE, Saa PA, Nielsen LK 2015. A multi-tissue genome-scale metabolic modeling framework for the analysis of whole plant systems. Front. Plant Sci. 6:4
    [Google Scholar]
  34. 34. 
    De Vries FWTP. 1975. The cost of maintenance processes in plant cells. Ann. Bot. 39:77–92
    [Google Scholar]
  35. 35. 
    Duncan KD, Fyrestam J, Lanekoff I 2019. Advances in mass spectrometry based single-cell metabolomics. Analyst 144:782–93
    [Google Scholar]
  36. 36. 
    Ellens KW, Christian N, Singh C, Satagopam VP, May P, Linster CL 2017. Confronting the catalytic dark matter encoded by sequenced genomes. Nucleic Acids Res 45:11495–514
    [Google Scholar]
  37. 37. 
    Fang X, Wallqvist A, Reifman J 2012. Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia. PLOS Comput. Biol. 8:e1002688
    [Google Scholar]
  38. 38. 
    Faraji M, Fonseca LL, Escamilla-Treviño L, Barros-Rios J, Engle NL et al. 2018. A dynamic model of lignin biosynthesis in Brachypodium distachyon. Biotechnol. Biofuels 11:253
    [Google Scholar]
  39. 39. 
    Faraji M, Fonseca LL, Escamilla-Treviño L, Dixon RA, Voit EO 2015. Computational inference of the structure and regulation of the lignin pathway in Panicum virgatum. Biotechnol. Biofuels 8:151
    [Google Scholar]
  40. 40. 
    Fell DA. 2005. Metabolic control analysis. Systems Biology L Alberghina, H Westerhoff 69–80 Berlin: Springer
    [Google Scholar]
  41. 41. 
    Fernie AR, Geigenberger P, Stitt M 2005. Flux an important, but neglected, component of functional genomics. Curr. Opin. Plant Biol. 8:174–82
    [Google Scholar]
  42. 42. 
    Fiorani F, Schurr U. 2013. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 64:267–91
    [Google Scholar]
  43. 43. 
    Ghosh A, Nilmeier J, Weaver D, Adams PD, Keasling JD et al. 2014. A peptide-based method for 13C Metabolic Flux Analysis in microbial communities. PLOS Comput. Biol. 10:e1003827
    [Google Scholar]
  44. 44. 
    Goncalves E, Bucher J, Ryll A, Niklas J, Mauch K et al. 2013. Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. Mol. Biosyst. 9:1576–83
    [Google Scholar]
  45. 45. 
    Grafahrend-Belau E, Junker A, Eschenroder A, Muller J, Schreiber F, Junker BH 2013. Multiscale metabolic modeling: dynamic flux balance analysis on a whole-plant scale. Plant Physiol 163:637–47
    [Google Scholar]
  46. 46. 
    Guldberg CM, Waage P. 1899. Untersuchungen über die chemischen Affinitäten [Experiments concerning chemical affinity]. In Ostwald's Klassiker der Exacten Wissenshaften 104, transl. R Abegg 10–125 Leipzig, Ger: Wilhelm Engleman
    [Google Scholar]
  47. 47. 
    Gunawardena J. 2014. Time-scale separation – Michaelis and Menten's old idea, still bearing fruit. FEBS J 281:473–88
    [Google Scholar]
  48. 48. 
    Guo L, Wang P, Jaini R, Dudareva N, Chapple C, Morgan JA 2018. Dynamic modeling of subcellular phenylpropanoid metabolism in Arabidopsis lignifying cells. Metab. Eng. 49:36–46
    [Google Scholar]
  49. 49. 
    Haario H, Laine M, Mira A, Saksman E 2006. DRAM: efficient adaptive MCMC. Stat. Comput. 16:339–54
    [Google Scholar]
  50. 50. 
    Hanson AD, Henry CS, Fiehn O, de Crecy-Lagard V 2016. Metabolite damage and metabolite damage control in plants. Annu. Rev. Plant Biol. 67:131–52
    [Google Scholar]
  51. 51. 
    Haque S, Ahmad JS, Clark NM, Williams CM, Sozzani R 2019. Computational prediction of gene regulatory networks in plant growth and development. Curr. Opin. Plant Biol. 47:96–105
    [Google Scholar]
  52. 52. 
    Hay JO, Schwender J. 2011. Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos. Plant J 67:526–41
    [Google Scholar]
  53. 53. 
    Hay JO, Shi H, Heinzel N, Hebbelmann I, Rolletschek H, Schwender J 2014. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis. Front. Plant Sci. 5:724
    [Google Scholar]
  54. 54. 
    Heavner BD, Smallbone K, Price ND, Walker LP 2013. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database 2013 bat059
    [Google Scholar]
  55. 55. 
    Heinrich R, Schuster S. 1996. The Regulation of Cellular Systems New York: Chapman Hall
    [Google Scholar]
  56. 56. 
    Heinzle E, Matsuda F, Miyagawa H, Wakasa K, Nishioka T 2007. Estimation of metabolic fluxes, expression levels and metabolite dynamics of a secondary metabolic pathway in potato using label pulse-feeding experiments combined with kinetic network modelling and simulation. Plant J 50:176–87
    [Google Scholar]
  57. 57. 
    Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A et al. 2019. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14:639–702
    [Google Scholar]
  58. 58. 
    Heise R, Arrivault S, Szecowka M, Tohge T, Nunes-Nesi A et al. 2014. Flux profiling of photosynthetic carbon metabolism in intact plants. Nat. Protoc. 9:1803–24
    [Google Scholar]
  59. 59. 
    Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS et al. 2016. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. J. Exp. Bot. 67:3015–26
    [Google Scholar]
  60. 60. 
    Hooper CM, Castleden IR, Tanz SK, Aryamanesh N, Millar AH 2017. SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 45:D1064–74
    [Google Scholar]
  61. 61. 
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J et al. 2006. COPASI–a COmplex PAthway SImulator. Bioinformatics 22:3067–74
    [Google Scholar]
  62. 62. 
    Horn F, Jackson R. 1972. General mass action kinetics. Arch. Ration. Mech. 47:81–116
    [Google Scholar]
  63. 63. 
    Hudig M, Schmitz J, Engqvist MKM, Maurino VG 2018. Biochemical control systems for small molecule damage in plants. Plant Signal. Behav. 13:e1477906
    [Google Scholar]
  64. 64. 
    Huma B, Kundu S, Poolman MG, Kruger NJ, Fell DA 2018. Stoichiometric analysis of the energetics and metabolic impact of photorespiration in C3 plants. Plant J 96:1228–41
    [Google Scholar]
  65. 65. 
    Imam S, Schauble S, Brooks AN, Baliga NS, Price ND 2015. Data-driven integration of genome-scale regulatory and metabolic network models. Front. Microbiol. 6:409
    [Google Scholar]
  66. 66. 
    Ishii N, Nakahigashi K, Baba T, Robert M, Soga T et al. 2007. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–97
    [Google Scholar]
  67. 67. 
    Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V 2008. Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys. J. 95:1487–99
    [Google Scholar]
  68. 67a. 
    Johnson KA, Goody RS 2011. The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50:826469
    [Google Scholar]
  69. 68. 
    Junker BH, Lonien J, Heady LE, Rogers A, Schwender J 2007. Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source. Phytochemistry 68:2232–42
    [Google Scholar]
  70. 69. 
    Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
    [Google Scholar]
  71. 70. 
    Kaundal R, Saini R, Zhao PX 2010. Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis. Plant Physiol 154:36–54
    [Google Scholar]
  72. 71. 
    Kern A, Tilley E, Hunter IS, Legisa M, Glieder A 2007. Engineering primary metabolic pathways of industrial micro-organisms. J. Biotechnol. 129:6–29
    [Google Scholar]
  73. 72. 
    Khersonsky O, Tawfik DS. 2010. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79:471–505
    [Google Scholar]
  74. 73. 
    Khodayari A, Maranas CD. 2016. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat. Commun. 7:13806
    [Google Scholar]
  75. 74. 
    Kim HU, Kim TY, Lee SY 2008. Metabolic flux analysis and metabolic engineering of microorganisms. Mol. Biosyst. 4:113–20
    [Google Scholar]
  76. 75. 
    Kim MK, Lun DS. 2014. Methods for integration of transcriptomic data in genome-scale metabolic models. Comput. Struct. Biotechnol. J. 11:59–65
    [Google Scholar]
  77. 76. 
    Klamt S, Stelling J. 2003. Two approaches for metabolic pathway analysis. Trends Biotechnol 21:64–69
    [Google Scholar]
  78. 77. 
    Knoke B, Textor S, Gershenzon J, Schuster S 2008. Mathematical modelling of aliphatic glucosinolate chain length distribution in Arabidopsis thaliana leaves. Phytochem. Rev. 8:39–51
    [Google Scholar]
  79. 78. 
    Küken A, Nikoloski Z. 2019. Computational approaches to design and test plant synthetic metabolic pathways. Plant Physiol 179:894–906
    [Google Scholar]
  80. 79. 
    Kummel A, Panke S, Heinemann M 2006. Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinform 7:512
    [Google Scholar]
  81. 80. 
    Laisk A, Eichelmann H, Oja V 2006. C3 photosynthesis in silico. Photosynth. Res 90:45–66
    [Google Scholar]
  82. 81. 
    Lee JM, Gianchandani EP, Eddy JA, Papin JA 2008. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLOS Comput. Biol. 4:e1000086
    [Google Scholar]
  83. 82. 
    Lee Y, Escamilla-Treviño L, Dixon RA, Voit EO 2012. Functional analysis of metabolic channeling and regulation in lignin biosynthesis: a computational approach. PLOS Comput. Biol. 8:e1002769
    [Google Scholar]
  84. 83. 
    Lee Y, Voit EO. 2010. Mathematical modeling of monolignol biosynthesis in Populus xylem. Math. Biosci 228:78–89
    [Google Scholar]
  85. 84. 
    Lewis NE, Nagarajan H, Palsson BO 2012. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10:291–305
    [Google Scholar]
  86. 85. 
    Libourel IG, Gehan JP, Shachar-Hill Y 2007. Design of substrate label for steady state flux measurements in plant systems using the metabolic network of Brassica napus embryos. Phytochemistry 68:2211–21
    [Google Scholar]
  87. 86. 
    Lichtenthaler HK. 1999. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:47–65
    [Google Scholar]
  88. 87. 
    Liu J, Brazier-Hicks M, Edwards R 2009. A kinetic model for the metabolism of the herbicide safener fenclorim in Arabidopsis thaliana. Biophys. Chem 143:85–94
    [Google Scholar]
  89. 88. 
    Ma F, Jazmin LJ, Young JD, Allen DK 2014. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. PNAS 111:16967–72
    [Google Scholar]
  90. 89. 
    Machado D, Herrgard M. 2014. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLOS Comput. Biol. 10:e1003580
    [Google Scholar]
  91. 90. 
    Mahadevan R, Edwards JS, Doyle FJ III 2002. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J 83:1331–40
    [Google Scholar]
  92. 91. 
    Mallmann J, Heckmann D, Brautigam A, Lercher MJ, Weber AP et al. 2014. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. eLife 3:e02478
    [Google Scholar]
  93. 92. 
    Martin HG, Kumar VS, Weaver D, Ghosh A, Chubukov V et al. 2015. A method to constrain genome-scale models with 13C labeling data. PLOS Comput. Biol. 11:e1004363
    [Google Scholar]
  94. 93. 
    Mertens E. 1991. Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme. FEBS Lett 285:1–5
    [Google Scholar]
  95. 94. 
    Michael TP, VanBuren R. 2015. Progress, challenges and the future of crop genomes. Curr. Opin. Plant Biol. 24:71–81
    [Google Scholar]
  96. 95. 
    Deleted in proof
  97. 96. 
    Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T 2012. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. PNAS 109:339–44
    [Google Scholar]
  98. 97. 
    Morgan JA, Rhodes D. 2002. Mathematical modeling of plant metabolic pathways. Metab. Eng. 4:80–89
    [Google Scholar]
  99. 98. 
    Nagele T, Henkel S, Hormiller I, Sauter T, Sawodny O et al. 2010. Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism. Plant Physiol 153:260–72
    [Google Scholar]
  100. 99. 
    Nagele T, Weckwerth W. 2014. Mathematical modeling reveals that metabolic feedback regulation of SnRK1 and hexokinase is sufficient to control sugar homeostasis from energy depletion to full recovery. Front. Plant Sci. 5:365
    [Google Scholar]
  101. 100. 
    Nargund S, Sriram G. 2013. Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks. Mol. Biosyst. 9:99–112
    [Google Scholar]
  102. 101. 
    Niedenführ S, Wiechert W, Nöh K 2015. How to measure metabolic fluxes: a taxonomic guide for 13C fluxomics. Curr. Opin. Biotechnol. 34:82–90
    [Google Scholar]
  103. 102. 
    Oberhardt MA, Chavali AK, Papin JA 2009. Flux balance analysis: interrogating genome-scale metabolic networks. Methods Mol. Biol. 500:61–80
    [Google Scholar]
  104. 103. 
    O'Brien EJ, Monk JM, Palsson BO 2015. Using genome-scale models to predict biological capabilities. Cell 161:971–87
    [Google Scholar]
  105. 104. 
    Olsen KM, Slimestad R, Lea US, Brede C, Lovdal T et al. 2009. Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies. Plant Cell Environ 32:286–99
    [Google Scholar]
  106. 105. 
    Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE et al. 2015. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. PNAS 112:8529–36
    [Google Scholar]
  107. 106. 
    Pfau T, Christian N, Masakapalli SK, Sweetlove LJ, Poolman MG, Ebenhoh O 2018. The intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling. Sci. Rep. 8:12504
    [Google Scholar]
  108. 107. 
    Plaxton WC, Podestá FE. 2006. The functional organization and control of plant respiration. Crit. Rev. Plant Sci. 25:159–98
    [Google Scholar]
  109. 108. 
    Poolman MG, Miguet L, Sweetlove LJ, Fell DA 2009. A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151:1570–81
    [Google Scholar]
  110. 109. 
    Price ND, Reed JL, Palsson BO 2004. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2:886–97
    [Google Scholar]
  111. 110. 
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J et al. 2006. The path forward for biofuels and biomaterials. Science 311:484–89
    [Google Scholar]
  112. 111. 
    Ratcliffe RG, Shachar-Hill Y. 2006. Measuring multiple fluxes through plant metabolic networks. Plant J 45:490–511
    [Google Scholar]
  113. 112. 
    Reed JL. 2012. Shrinking the metabolic solution space using experimental datasets. PLOS Comput. Biol. 8:e1002662
    [Google Scholar]
  114. 113. 
    Rios-Estepa R, Lange I, Lee JM, Lange BM 2010. Mathematical modeling-guided evaluation of biochemical, developmental, environmental, and genotypic determinants of essential oil composition and yield in peppermint leaves. Plant Physiol 152:2105–19
    [Google Scholar]
  115. 114. 
    Rios-Estepa R, Turner GW, Lee JM, Croteau RB, Lange BM 2008. A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint. PNAS 105:2818–23
    [Google Scholar]
  116. 115. 
    Robaina-Estevez S, Daloso DM, Zhang Y, Fernie AR, Nikoloski Z 2017. Resolving the central metabolism of Arabidopsis guard cells. Sci. Rep. 7:8307
    [Google Scholar]
  117. 116. 
    Rohwer JM. 2012. Kinetic modelling of plant metabolic pathways. J. Exp. Bot. 63:2275–92
    [Google Scholar]
  118. 117. 
    Rohwer JM, Botha FC. 2001. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358:437–45
    [Google Scholar]
  119. 118. 
    Rolletschek H, Grafahrend-Belau E, Munz E, Radchuk V, Kartäusch R et al. 2015. Metabolic architecture of the cereal grain and its relevance to maximize carbon use efficiency. Plant Physiol 169:1698–713
    [Google Scholar]
  120. 119. 
    Roscher A, Kruger NJ, Ratcliffe RG 2000. Strategies for metabolic flux analysis in plants using isotope labelling. J. Biotechnol. 77:81–102
    [Google Scholar]
  121. 120. 
    Rossi MT, Kalde M, Srisakvarakul C, Kruger NJ, Ratcliffe RG 2017. Cell-type specific metabolic flux analysis: a challenge for metabolic phenotyping and a potential solution in plants. Metabolites 7:59
    [Google Scholar]
  122. 121. 
    Rost B. 2002. Enzyme function less conserved than anticipated. J. Mol. Biol. 318:595–608
    [Google Scholar]
  123. 122. 
    Ruhl M, Hardt WD, Sauer U 2011. Subpopulation-specific metabolic pathway usage in mixed cultures as revealed by reporter protein-based 13C analysis. Appl. Environ. Microbiol. 77:1816–21
    [Google Scholar]
  124. 123. 
    Schilling CH, Letscher D, Palsson BO 2000. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203:229–48
    [Google Scholar]
  125. 124. 
    Schilling CH, Palsson BO. 2000. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J. Theor. Biol. 203:249–83
    [Google Scholar]
  126. 125. 
    Schilling CH, Schuster S, Palsson BO, Heinrich R 1999. Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15:296–303
    [Google Scholar]
  127. 126. 
    Schlapfer P, Zhang P, Wang C, Kim T, Banf M et al. 2017. Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol 173:2041–59
    [Google Scholar]
  128. 127. 
    Schuster S, Dandekar T, Fell DA 1999. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17:53–60
    [Google Scholar]
  129. 128. 
    Schuster S, Fell DA, Dandekar T 2000. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18:326–32
    [Google Scholar]
  130. 129. 
    Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E et al. 2003. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26
    [Google Scholar]
  131. 130. 
    Schwender J. 2008. Metabolic flux analysis as a tool in metabolic engineering of plants. Curr. Opin. Biotechnol. 19:131–37
    [Google Scholar]
  132. 131. 
    Schwender J. 2011. Experimental flux measurements on a network scale. Front. Plant Sci. 2:63
    [Google Scholar]
  133. 132. 
    Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y 2004. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–82
    [Google Scholar]
  134. 133. 
    Schwender J, Hebbelmann I, Heinzel N, Hildebrandt T, Rogers A et al. 2015. Quantitative multilevel analysis of central metabolism in developing oilseeds of oilseed rape during in vitro culture. Plant Physiol 168:828–48
    [Google Scholar]
  135. 134. 
    Schwender J, Shachar-Hill Y, Ohlrogge JB 2006. Mitochondrial metabolism in developing embryos of Brassica napus. J. Biol. Chem 281:34040–47
    [Google Scholar]
  136. 135. 
    Shastri AA, Morgan JA. 2007. A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotrophic microorganisms. Phytochemistry 68:2302–12
    [Google Scholar]
  137. 136. 
    Shaw R, Cheung CYM. 2018. A dynamic multi-tissue flux balance model captures carbon and nitrogen metabolism and optimal resource partitioning during Arabidopsis growth. Front. Plant Sci. 9:884
    [Google Scholar]
  138. 137. 
    Shi H, Schwender J. 2016. Mathematical models of plant metabolism. Curr. Opin. Biotechnol. 37:143–52
    [Google Scholar]
  139. 138. 
    Sievänen R, Godin C, DeJong TM, Nikinmaa E 2014. Functional-structural plant models: a growing paradigm for plant studies. Ann. Bot. 114:599–603
    [Google Scholar]
  140. 139. 
    Simons-Senftle MN, Sarkar D, Maranas CD 2018. Modeling plant metabolism: advancements and future capabilities. Engineering Nitrogen Utilization in Crop Plants A Shrawat, A Zayed, DA Lightfoot 57–76 Cham, Switz.: Springer
    [Google Scholar]
  141. 140. 
    Steuer R, Nesi AN, Fernie AR, Gross T, Blasius B, Selbig J 2007. From structure to dynamics of metabolic pathways: application to the plant mitochondrial TCA cycle. Bioinformatics 23:1378–85
    [Google Scholar]
  142. 141. 
    Suthers PF, Burgard AP, Dasika MS, Nowroozi F, Van Dien S et al. 2007. Metabolic flux elucidation for large-scale models using 13C labeled isotopes. Metab. Eng. 9:387–405
    [Google Scholar]
  143. 142. 
    Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG 2010. Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–70
    [Google Scholar]
  144. 143. 
    Sweetlove LJ, Nielsen J, Fernie AR 2017. Engineering central metabolism – a grand challenge for plant biologists. Plant J 90:749–63
    [Google Scholar]
  145. 144. 
    Sweetlove LJ, Williams TCR, Cheung CYM, Ratcliffe RG 2013. Modelling metabolic CO2 evolution – a fresh perspective on respiration. Plant Cell Environ 36:1631–40
    [Google Scholar]
  146. 145. 
    Szecowka M, Heise R, Tohge T, Nunes-Nesi A, Vosloh D et al. 2013. Metabolic fluxes in an illuminated Arabidopsis rosette. Plant Cell 25:694–714
    [Google Scholar]
  147. 146. 
    Tabe-Bordbar S, Marashi SA. 2013. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism. Biotechnol. Lett. 35:2039–44
    [Google Scholar]
  148. 147. 
    Teusink B, Passarge J, Reijenga CA, Esgalhado E, Van der Weijden CC et al. 2000. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267:5313–29
    [Google Scholar]
  149. 148. 
    Thiele I, Hyduke DR, Steeb B, Fankam G, Allen DK et al. 2011. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst. Biol. 5:8
    [Google Scholar]
  150. 149. 
    Thiele I, Palsson BO. 2010. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5:93–121
    [Google Scholar]
  151. 150. 
    Tian W, Skolnick J. 2003. How well is enzyme function conserved as a function of pairwise sequence identity. J. Mol. Biol. 333:863–82
    [Google Scholar]
  152. 151. 
    Tran LM, Rizk ML, Liao JC 2008. Ensemble modeling of metabolic networks. Biophys. J. 95:5606–17
    [Google Scholar]
  153. 152. 
    Tummler K, Klipp E. 2018. The discrepancy between data for and expectations on metabolic models: how to match experiments and computational efforts to arrive at quantitative predictions. Curr. Opin. Syst. Biol. 8:1–6
    [Google Scholar]
  154. 153. 
    Uys L, Botha FC, Hofmeyr JHS, Rohwer JM 2007. Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 68:2375–92
    [Google Scholar]
  155. 154. 
    Varma A, Palsson BO. 1994. Metabolic flux balancing: basic concepts, scientific and practical use. Nat. Biotechnol. 12:994–98
    [Google Scholar]
  156. 155. 
    Voit EO. 2008. Modelling metabolic networks using power-laws and S-systems. Essays Biochem 45:29–40
    [Google Scholar]
  157. 156. 
    Vranova E, Coman D, Gruissem W 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 64:665–700
    [Google Scholar]
  158. 157. 
    Vrugt JA. 2016. Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation. Environ. Model. Softw. 75:273–316
    [Google Scholar]
  159. 158. 
    Wang JP, Naik PP, Chen HC, Shi R, Lin CY et al. 2014. Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. Plant Cell 26:894–914
    [Google Scholar]
  160. 159. 
    Wang Y, Bräutigam A, Weber AP, Zhu XG 2014. Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis. J. Exp. Bot. 65:3567–78
    [Google Scholar]
  161. 160. 
    Wang Y, Long SP, Zhu XG 2014. Elements required for an efficient NADP-malic enzyme type C4 photosynthesis. Plant Physiol 164:2231–46
    [Google Scholar]
  162. 161. 
    Wang Z, Danziger SA, Heavner BD, Ma S, Smith JJ et al. 2017. Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast. PLOS Comput. Biol. 13:e1005489
    [Google Scholar]
  163. 162. 
    Weber APM, Bar-Even A. 2019. Update: improving the efficiency of photosynthetic carbon reactions. Plant Physiol 179:803–12
    [Google Scholar]
  164. 163. 
    Weiss JN. 1997. The Hill equation revisited: uses and misuses. FASEB J 11:835–41
    [Google Scholar]
  165. 164. 
    Weng JK, Noel JP. 2012. The remarkable pliability and promiscuity of specialized metabolism. Cold Spring Harb. Symp. Quant. Biol. 77:309–20
    [Google Scholar]
  166. 165. 
    Wiechert W. 2001. 13C metabolic flux analysis. Metab. Eng. 3:195–206
    [Google Scholar]
  167. 166. 
    Wiechert W, de Graaf AA 1997. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol. Bioeng. 55:101–17
    [Google Scholar]
  168. 167. 
    Wiechert W, Nöh K. 2013. Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr. Opin. Biotechnol. 24:979–86
    [Google Scholar]
  169. 168. 
    Young JD, Shastri AA, Stephanopoulos G, Morgan JA 2011. Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab. Eng. 13:656–65
    [Google Scholar]
  170. 169. 
    Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G 2008. An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol. Bioeng. 99:686–99
    [Google Scholar]
  171. 170. 
    Yu H, Li X, Duchoud F, Chuang DS, Liao JC 2018. Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway. Nat. Commun. 9:2008
    [Google Scholar]
  172. 171. 
    Yuan H, Cheung CY, Hilbers PA, van Riel NA 2016. Flux balance analysis of plant metabolism: the effect of biomass composition and model structure on model predictions. Front. Plant Sci. 7:537
    [Google Scholar]
  173. 172. 
    Yuan J, Bennett BD, Rabinowitz JD 2008. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat. Protoc. 3:1328–40
    [Google Scholar]
  174. 173. 
    Zakhartsev M, Medvedeva I, Orlov Y, Akberdin I, Krebs O, Schulze WX 2016. Metabolic model of central carbon and energy metabolisms of growing Arabidopsis thaliana in relation to sucrose translocation. BMC Plant Biol 16:262
    [Google Scholar]
  175. 174. 
    Zhang P, Dreher K, Karthikeyan A, Chi A, Pujar A et al. 2010. Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol 153:1479–91
    [Google Scholar]
  176. 175. 
    Zhu XG, de Sturler E, Long SP 2007. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–26
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100221
Loading
/content/journals/10.1146/annurev-arplant-050718-100221
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error