1932

Abstract

Autophagy has emerged as an essential quality control pathway in plants that selectively and rapidly removes damaged or unwanted cellular components to maintain cellular homeostasis. It can recycle a broad range of cargoes, including entire organelles, protein aggregates, and even invading microbes. It involves the de novo biogenesis of a new cellular compartment, making it intimately linked to endomembrane trafficking pathways. Autophagy is induced by a wide range of biotic and abiotic stress factors, and autophagy mutant plants are highly sensitive to stress, making it an attractive target for improving plant stress resilience. Here, we critically discuss recent discoveries related to plant autophagy and highlight open questions and future research areas.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-060324-094912
2025-05-20
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-060324-094912.html?itemId=/content/journals/10.1146/annurev-arplant-060324-094912&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acheampong AK, Shanks C, Cheng C-Y, Schaller GE, Dagdas Y, Kieber JJ. 2020.. EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. . PNAS 117:(43):2703443
    [Crossref] [Google Scholar]
  2. 2.
    Akita K, Takagi T, Kobayashi K, Kuchitsu K, Kuroiwa T, Nagata N. 2021.. Ultrastructural characterization of microlipophagy induced by the interaction of vacuoles and lipid bodies around generative and sperm cells in Arabidopsis pollen. . Protoplasma 258:(1):12938
    [Crossref] [Google Scholar]
  3. 3.
    Aroca A, Yruela I, Gotor C, Bassham DC. 2021.. Persulfidation of ATG18a regulates autophagy under ER stress in Arabidopsis. . PNAS 118:(20):e2023604118
    [Crossref] [Google Scholar]
  4. 4.
    Avin-Wittenberg T. 2019.. Autophagy and its role in plant abiotic stress management. . Plant Cell Environ. 42:(3):104553
    [Crossref] [Google Scholar]
  5. 5.
    Avin-Wittenberg T, Bajdzienko K, Wittenberg G, Alseekh S, Tohge T, et al. 2015.. Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation. . Plant Cell 27:(2):30622
    [Crossref] [Google Scholar]
  6. 6.
    Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou Y-H, et al. 2011.. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. . Cell 144:(2):25367
    [Crossref] [Google Scholar]
  7. 7.
    Brillada C, Teh O-K, Ditengou FA, Lee C-W, Klecker T, et al. 2021.. Exocyst subunit Exo70B2 is linked to immune signaling and autophagy. . Plant Cell 33:(2):40419
    [Crossref] [Google Scholar]
  8. 8.
    Broadbent DG, Barnaba C, Perez GI, Schmidt JC. 2023.. Quantitative analysis of autophagy reveals the role of ATG9 and ATG2 in autophagosome formation. . J. Cell Biol. 222:(7):e202210078
    [Crossref] [Google Scholar]
  9. 9.
    Chen L, Liao B, Qi H, Xie L-J, Huang L, et al. 2015.. Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana. . Autophagy 11:(12):223346
    [Crossref] [Google Scholar]
  10. 10.
    Chen L, Su Z-Z, Huang L, Xia F-N, Qi H, et al. 2017.. The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis. . Front. Plant Sci. 8::1201
    [Crossref] [Google Scholar]
  11. 11.
    Chen P, De Winne N, De Jaeger G, Ito M, Heese M, Schnittger A. 2023.. KNO1-mediated autophagic degradation of the Bloom syndrome complex component RMI1 promotes homologous recombination. . EMBO J. 42:(10):e111980
    [Crossref] [Google Scholar]
  12. 12.
    Chen W, Hu Z, Yu M, Zhu S, Xing J, et al. 2022.. A molecular link between autophagy and circadian rhythm in plants. . J. Integr. Plant Biol. 64:(5):104458
    [Crossref] [Google Scholar]
  13. 13.
    Chew LH, Lu S, Liu X, Li FK, Yu AY, et al. 2015.. Molecular interactions of the Saccharomyces cerevisiae Atg1 complex provide insights into assembly and regulatory mechanisms. . Autophagy 11:(6):891905
    [Crossref] [Google Scholar]
  14. 14.
    Chung T, Phillips AR, Vierstra RD. 2010.. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. . Plant J. 62:(3):48393
    [Crossref] [Google Scholar]
  15. 15.
    Dabrowski R, Tulli S, Graef M. 2023.. Parallel phospholipid transfer by Vps13 and Atg2 determines autophagosome biogenesis dynamics. . J. Cell Biol. 222:(7):e202211039
    [Crossref] [Google Scholar]
  16. 16.
    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, et al. 2016.. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. . eLife 5::e10856
    [Crossref] [Google Scholar]
  17. 17.
    Dagdas YF, Pandey P, Tumtas Y, Sanguankiattichai N, Belhaj K, et al. 2018.. Host autophagy machinery is diverted to the pathogen interface to mediate focal defense responses against the Irish potato famine pathogen. . eLife 7::e37476
    [Crossref] [Google Scholar]
  18. 18.
    Dengjel J, Høyer-Hansen M, Nielsen MO, Eisenberg T, Harder LM, et al. 2012.. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. . Mol. Cell. Proteom. 11:(3):M111.014035
    [Crossref] [Google Scholar]
  19. 19.
    Di Berardino J, Marmagne A, Berger A, Yoshimoto K, Cueff G, et al. 2018.. Autophagy controls resource allocation and protein storage accumulation in Arabidopsis seeds. . J. Exp. Bot. 69:(6):140314
    [Crossref] [Google Scholar]
  20. 20.
    Dündar G, Shao Z, Higashitani N, Kikuta M, Izumi M, Higashitani A. 2019.. Autophagy mitigates high-temperature injury in pollen development of Arabidopsis thaliana. . Dev. Biol. 456:(2):190200
    [Crossref] [Google Scholar]
  21. 21.
    Durgan J, Florey O. 2022.. Many roads lead to CASM: Diverse stimuli of noncanonical autophagy share a unifying molecular mechanism. . Sci. Adv. 8:(43):eabo1274
    [Crossref] [Google Scholar]
  22. 22.
    Erlichman OA, Weiss S, Abu-Arkia M, Ankary-Khaner M, Soroka Y, et al. 2023.. Autophagy in maternal tissues contributes to Arabidopsis seed development. . Plant Physiol. 193::61126 Uses an elegant approach to demonstrate the transgenerational contribution of autophagy to nutrient allocation.
    [Crossref] [Google Scholar]
  23. 23.
    Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE, Bartel B. 2013.. Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. . Plant Cell 25:(10):4085100
    [Crossref] [Google Scholar]
  24. 24.
    Feng Q, De Rycke R, Dagdas Y, Nowack MK. 2022.. Autophagy promotes programmed cell death and corpse clearance in specific cell types of the Arabidopsis root cap. . Curr. Biol. 32:(9):211019.e3Together with Goh et al. (32), established tools to study autophagy in a cell type–specific manner.
    [Crossref] [Google Scholar]
  25. 25.
    Fracchiolla D, Sawa-Makarska J, Zens B, de Ruiter A, Zaffagnini G, et al. 2016.. Mechanism of cargo-directed Atg8 conjugation during selective autophagy. . eLife 5::e18544
    [Crossref] [Google Scholar]
  26. 26.
    Fujiki Y, Yoshimoto K, Ohsumi Y. 2007.. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. . Plant Physiol. 143:(3):113239
    [Crossref] [Google Scholar]
  27. 27.
    Fujioka Y, Suzuki SW, Yamamoto H, Kondo-Kakuta C, Kimura Y, et al. 2014.. Structural basis of starvation-induced assembly of the autophagy initiation complex. . Nat. Struct. Mol. Biol. 21::51321
    [Crossref] [Google Scholar]
  28. 28.
    Furuta Y, Yamamoto H, Hirakawa T, Uemura A, Pelayo MA, et al. 2024.. Petal abscission is promoted by jasmonic acid-induced autophagy at Arabidopsis petal bases. . Nat. Commun. 15:(1):1098
    [Crossref] [Google Scholar]
  29. 29.
    Gao C, Zhuang X, Shen J, Jiang L. 2017.. Plant ESCRT complexes: moving beyond endosomal sorting. . Trends Plant Sci. 22:(11):98698
    [Crossref] [Google Scholar]
  30. 30.
    Gao J, Langemeyer L, Kümmel D, Reggiori F, Ungermann C. 2018.. Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the pre-autophagosomal structure. . eLife 7::e31145
    [Crossref] [Google Scholar]
  31. 31.
    Ghanbarpour A, Valverde DP, Melia TJ, Reinisch KM. 2021.. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. . PNAS 118:(16):e2101562118
    [Crossref] [Google Scholar]
  32. 32.
    Goh T, Sakamoto K, Wang P, Kozono S, Ueno K, et al. 2022.. Autophagy promotes organelle clearance and organized cell separation of living root cap cells in Arabidopsis thaliana. . Development 149:(11):dev200593Together with Feng et al. (24), established tools to study autophagy in a cell type–specific manner.
    [Crossref] [Google Scholar]
  33. 33.
    Gross AS, Ghillebert R, Schuetter M, Reinartz E, Rowland A, et al. 2024.. A metabolite sensor subunit of the Atg1/ULK complex regulates selective autophagy. . Nat. Cell Biol. 26::36677
    [Crossref] [Google Scholar]
  34. 34.
    Gross AS, Graef M. 2020.. Mechanisms of autophagy in metabolic stress response. . J. Mol. Biol. 432::2852
    [Crossref] [Google Scholar]
  35. 35.
    Guiboileau A, Yoshimoto K, Soulay F, Bataillé M-P, Avice J-C, Masclaux-Daubresse C. 2012.. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. . New Phytol. 194:(3):73240
    [Crossref] [Google Scholar]
  36. 36.
    Hachez C, Veljanovski V, Reinhardt H, Guillaumot D, Vanhee C, et al. 2014.. The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. . Plant Cell 26:(12):497490
    [Crossref] [Google Scholar]
  37. 37.
    Hafrén A, Macia J-L, Love AJ, Milner JJ, Drucker M, Hofius D. 2017.. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. . PNAS 114:(10):E202635
    [Crossref] [Google Scholar]
  38. 38.
    Hanamata S, Sawada J, Toh B, Ono S, Ogawa K, et al. 2019.. Monitoring autophagy in rice tapetal cells during pollen maturation. . Plant Biotechnol. 36:(2):99105
    [Crossref] [Google Scholar]
  39. 39.
    He Y, Gao J, Luo M, Gao C, Lin Y, et al. 2023.. VAMP724 and VAMP726 are involved in autophagosome formation in Arabidopsis thaliana. . Autophagy 19:(5):140623
    [Crossref] [Google Scholar]
  40. 40.
    Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NHT, et al. 2009.. Autophagic components contribute to hypersensitive cell death in Arabidopsis. . Cell 137:(4):77383
    [Crossref] [Google Scholar]
  41. 41.
    Hu S, Ye H, Cui Y, Jiang L. 2020.. AtSec62 is critical for plant development and is involved in ER-phagy in Arabidopsis thaliana. . J. Integr. Plant Biol. 62:(2):181200
    [Crossref] [Google Scholar]
  42. 42.
    Huang L, Yu L-J, Zhang X, Fan B, Wang F-Z, et al. 2019.. Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in Arabidopsis. . Autophagy 15:(3):40722
    [Crossref] [Google Scholar]
  43. 43.
    Huang S, Chen X, Zhong X, Li M, Ao K, et al. 2016.. Plant TRAF proteins regulate NLR immune receptor turnover. . Cell Host Microbe 19:(2):20415
    [Crossref] [Google Scholar]
  44. 44.
    Ince , Krahmer J, Fiorucci A-S, Trevisan M, Galvão VC, et al. 2022.. A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation. . Nat. Commun. 13:(1):5659Links autophagy to light signaling, demonstrating how autophagy could be regulated by major developmental regulators.
    [Crossref] [Google Scholar]
  45. 45.
    Ito Y, Uemura T, Nakano A. 2018.. The Golgi entry core compartment functions as a COPII-independent scaffold for ER-to-Golgi transport in plant cells. . J. Cell Sci. 131:(2):jcs203893
    [Crossref] [Google Scholar]
  46. 46.
    Izumi M, Wada S, Makino A, Ishida H. 2010.. The autophagic degradation of chloroplasts via Rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. . Plant Physiol. 154:(3):1196209
    [Crossref] [Google Scholar]
  47. 47.
    Ji C, Zhou J, Guo R, Lin Y, Kung C-H, et al. 2020.. AtNBR1 is a selective autophagic receptor for AtExo70E2 in Arabidopsis. . Plant Physiol. 184:(2):77791
    [Crossref] [Google Scholar]
  48. 48.
    Jia M, Liu X, Xue H, Wu Y, Shi L, et al. 2019.. Noncanonical ATG8–ABS3 interaction controls senescence in plants. . Nat. Plants 5:(2):21224
    [Crossref] [Google Scholar]
  49. 49.
    Jiang D, He Y, Zhou X, Cao Z, Pang L, et al. 2022.. Arabidopsis HOPS subunit VPS41 carries out plant-specific roles in vacuolar transport and vegetative growth. . Plant Physiol. 189:(3):141634
    [Crossref] [Google Scholar]
  50. 50.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  51. 51.
    Jung H, Lee HN, Marshall RS, Lomax AW, Yoon MJ, et al. 2020.. Arabidopsis cargo receptor NBR1 mediates selective autophagy of defective proteins. . J. Exp. Bot. 71:(1):7389
    [Crossref] [Google Scholar]
  52. 52.
    Kacprzak SM, Van Aken O. 2023.. FRIENDLY is required for efficient dark-induced mitophagy and controlled senescence in Arabidopsis. . Free Radic. Biol. Med. 204::17
    [Crossref] [Google Scholar]
  53. 53.
    Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. 2000.. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. . J. Cell Biol. 150:(6):150713
    [Crossref] [Google Scholar]
  54. 54.
    Kang Y, Lin W, Liu Y, Nagy PD. 2022.. Key tethering function of Atg11 autophagy scaffold protein in formation of virus-induced membrane contact sites during tombusvirus replication. . Virology 572::116
    [Crossref] [Google Scholar]
  55. 55.
    Kanne JV, Ishikawa M, Bressendorff S, Ansbøl J, Hasebe M, et al. 2022.. Overexpression of ATG8/LC3 enhances wound-induced somatic reprogramming in Physcomitrium patens. . Autophagy 18:(6):146366
    [Crossref] [Google Scholar]
  56. 56.
    Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser M-T, et al. 2011.. The Arabidopsis deubiquitinating enzyme AMSH3 interacts with ESCRT-III subunits and regulates their localization. . Plant Cell 23:(8):302640
    [Crossref] [Google Scholar]
  57. 57.
    Katsiarimpa A, Kalinowska K, Anzenberger F, Weis C, Ostertag M, et al. 2013.. The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. . Plant Cell 25:(6):223652
    [Crossref] [Google Scholar]
  58. 58.
    Kim J, Kundu M, Viollet B, Guan K-L. 2011.. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. . Nat. Cell Biol. 13:(2):13241
    [Crossref] [Google Scholar]
  59. 59.
    Kim JH, Lee HN, Huang X, Jung H, Otegui MS, et al. 2022.. FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis. . Plant Cell 34:(1):35173
    [Crossref] [Google Scholar]
  60. 60.
    Kraft C, Peter M, Hofmann K. 2010.. Selective autophagy: ubiquitin-mediated recognition and beyond. . Nat. Cell Biol. 12:(9):83641
    [Crossref] [Google Scholar]
  61. 61.
    Kurotani K, Tabata R, Kawakatsu Y, Sugita R, Okayasu K, et al. 2020.. Autophagy is induced during plant grafting for wound healing. . bioRxiv 2020.02.14.949453. https://www.biorxiv.org/content/10.1101/2020.02.14.949453v1.full
  62. 62.
    Kurusu T, Koyano T, Hanamata S, Kubo T, Noguchi Y, et al. 2014.. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. . Autophagy 10:(5):87888
    [Crossref] [Google Scholar]
  63. 63.
    Lai LTF, Yu C, Wong JSK, Lo HS, Benlekbir S, et al. 2020.. Subnanometer resolution cryo-EM structure of Arabidopsis thaliana ATG9. . Autophagy 16:(3):57583
    [Crossref] [Google Scholar]
  64. 64.
    Lai Z, Wang F, Zheng Z, Fan B, Chen Z. 2011.. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. . Plant J. 66:(6):95368
    [Crossref] [Google Scholar]
  65. 65.
    Lal NK, Thanasuwat B, Huang P, Cavanaugh KA, Carter A, et al. 2020.. Phytopathogen effectors use multiple mechanisms to manipulate plant autophagy. . Cell Host Microbe 28:(4):55871.e6
    [Crossref] [Google Scholar]
  66. 66.
    Le Bars R, Marion J, Le Borgne R, Satiat-Jeunemaitre B, Bianchi MW. 2014.. ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants. . Nat. Commun. 5:(1):4121
    [Crossref] [Google Scholar]
  67. 67.
    Lee HN, Chacko JV, Solís AG, Chen K-E, Barros J, et al. 2023.. The autophagy receptor NBR1 directs the clearance of photodamaged chloroplasts. . eLife 12::e86030
    [Crossref] [Google Scholar]
  68. 68.
    Lee JW, Park S, Takahashi Y, Wang H-G. 2010.. The association of AMPK with ULK1 regulates autophagy. . PLOS ONE 5:(11):e15394
    [Crossref] [Google Scholar]
  69. 69.
    Lee Y, Kim E-S, Choi Y, Hwang I, Staiger CJ, et al. 2008.. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. . Plant Physiol. 147:(4):188697
    [Crossref] [Google Scholar]
  70. 70.
    Lenz HD, Haller E, Melzer E, Kober K, Wurster K, et al. 2011.. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. . Plant J. 66:(5):81830
    [Crossref] [Google Scholar]
  71. 71.
    Leong JX, Langin G, Üstün S. 2022.. Selective autophagy: adding precision in plant immunity. . Essays Biochem. 66:(2):189206
    [Crossref] [Google Scholar]
  72. 72.
    Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, et al. 2022.. A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. . EMBO J. 41:(13):e110352Provides an elegant example of how autophagy is involved in host–microbe interactions..
    [Crossref] [Google Scholar]
  73. 73.
    Levine TP. 2022.. Sequence analysis and structural predictions of lipid transfer bridges in the repeating beta groove (RBG) superfamily reveal past and present domain variations affecting form, function and interactions of VPS13, ATG2, SHIP164, Hobbit and Tweek. . Contact 5::25152564221134328
    [Crossref] [Google Scholar]
  74. 74.
    Li C, Duckney P, Zhang T, Fu Y, Li X, et al. 2022.. TraB family proteins are components of ER-mitochondrial contact sites and regulate ER-mitochondrial interactions and mitophagy. . Nat. Commun. 13:(1):5658
    [Crossref] [Google Scholar]
  75. 75.
    Li F, Chung T, Vierstra RD. 2014.. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. . Plant Cell 26:(2):788807
    [Crossref] [Google Scholar]
  76. 76.
    Li X, Liao J, Bai H, Bei J, Li K, et al. 2022.. Arabidopsis flowering integrator SOC1 transcriptionally regulates autophagy in response to long-term carbon starvation. . J. Exp. Bot. 73:(19):658999Provides a clear example of transcriptional regulation of the autophagy pathway.
    [Crossref] [Google Scholar]
  77. 77.
    Li X, Liu Q, Feng H, Deng J, Zhang R, et al. 2020.. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. . Autophagy 16:(5):86277
    [Crossref] [Google Scholar]
  78. 78.
    Liao C-Y, Bassham DC. 2020.. Combating stress: the interplay between hormone signaling and autophagy in plants. . J. Exp. Bot. 71:(5):172333
    [Crossref] [Google Scholar]
  79. 79.
    Lin Y, Jones ML. 2021.. Silencing ATG6 and PI3K accelerates petal senescence and reduces flower number and shoot biomass in petunia. . Plant Sci. 302::110713
    [Crossref] [Google Scholar]
  80. 80.
    Lin Y, Zeng Y, Zhu Y, Shen J, Ye H, Jiang L. 2021.. Plant Rho GTPase signaling promotes autophagy. . Mol. Plant 14:(6):90520
    [Crossref] [Google Scholar]
  81. 81.
    Lingard MJ, Monroe-Augustus M, Bartel B. 2009.. Peroxisome-associated matrix protein degradation in Arabidopsis. . PNAS 106:(11):456166
    [Crossref] [Google Scholar]
  82. 82.
    Liu F, Hu W, Li F, Marshall RS, Zarza X, et al. 2020.. AUTOPHAGY-RELATED14 and its associated phosphatidylinositol 3-kinase complex promote autophagy in Arabidopsis. . Plant Cell 32:(12):393960
    [Crossref] [Google Scholar]
  83. 83.
    Liu Q, Xu L, Li Y, Xu W, Vetukuri RR, Xu X. 2023.. Overexpression of an autophagy-related gene DiATG3 from Davidia involucrata improves plant thermotolerance by enhancing the accumulation of polyamines and regulating genes in calcium and MAPK signaling pathways. . Environ. Exp. Bot. 208::105235
    [Crossref] [Google Scholar]
  84. 84.
    Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP. 2005.. Autophagy regulates programmed cell death during the plant innate immune response. . Cell 121:(4):56777
    [Crossref] [Google Scholar]
  85. 85.
    Luo M, Law KC, He Y, Chung KK, Po MK, et al. 2023.. Arabidopsis AUTOPHAGY-RELATED2 is essential for ATG18a and ATG9 trafficking during autophagosome closure. . Plant Physiol. 193:(1):30421
    [Crossref] [Google Scholar]
  86. 86.
    Ma J, Liang Z, Zhao J, Wang P, Ma W, et al. 2021.. Friendly mediates membrane depolarization-induced mitophagy in Arabidopsis. . Curr. Biol. 31:(9):193144.e4Sets the foundation of mitophagy studies in plants.
    [Crossref] [Google Scholar]
  87. 87.
    Maeda S, Otomo C, Otomo T. 2019.. The autophagic membrane tether ATG2A transfers lipids between membranes. . eLife 8::e45777
    [Crossref] [Google Scholar]
  88. 88.
    Mahfouz MM, Kim S, Delauney AJ, Verma DPS. 2006.. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. . Plant Cell 18:(2):47790
    [Crossref] [Google Scholar]
  89. 89.
    Mann D, Fromm SA, Martinez-Sanchez A, Gopaldass N, Choy R, et al. 2023.. Atg18 oligomer organization in assembled tubes and on lipid membrane scaffolds. . Nat. Commun. 14:(1):8086
    [Crossref] [Google Scholar]
  90. 90.
    Maqbool A, Hughes RK, Dagdas YF, Tregidgo N, Zess E, et al. 2016.. Structural basis of host autophagy-related protein 8 (ATG8) binding by the Irish potato famine pathogen effector protein PexRD54. . J. Biol. Chem. 291:(38):2027082
    [Crossref] [Google Scholar]
  91. 91.
    Martinek J, Cifrová P, Vosolsobě S, García-González J, Malínská K, et al. 2023.. ARP2/3 complex associates with peroxisomes to participate in pexophagy in plants. . Nat. Plants 9:(11):187489
    [Crossref] [Google Scholar]
  92. 92.
    Mathew R, Khor S, Hackett SR, Rabinowitz JD, Perlman DH, White E. 2014.. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. . Mol. Cell 55:(6):91630
    [Crossref] [Google Scholar]
  93. 93.
    Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, et al. 2002.. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. . PNAS 99:(9):642227
    [Crossref] [Google Scholar]
  94. 94.
    Michaeli S, Clavel M, Lechner E, Viotti C, Wu J, et al. 2019.. The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. . PNAS 116:(45):2287283
    [Crossref] [Google Scholar]
  95. 95.
    Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G. 2014.. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. . Plant Cell 26:(10):4084101
    [Crossref] [Google Scholar]
  96. 96.
    Minina EA, Moschou PN, Vetukuri RR, Sanchez-Vera V, Cardoso C, et al. 2018.. Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. . J. Exp. Bot. 69:(6):141532
    [Crossref] [Google Scholar]
  97. 97.
    Nair U, Yen W-L, Mari M, Cao Y, Xie Z, et al. 2012.. A role for Atg8-PE deconjugation in autophagosome biogenesis. . Autophagy 8:(5):78093
    [Crossref] [Google Scholar]
  98. 98.
    Ngou BPM, Ding P, Jones JDG. 2022.. Thirty years of resistance: zig-zag through the plant immune system. . Plant Cell 34:(5):144778
    [Crossref] [Google Scholar]
  99. 99.
    Nolan TM, Brennan B, Yang M, Chen J, Zhang M, et al. 2017.. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. . Dev. Cell 41:(1):3346.e7
    [Crossref] [Google Scholar]
  100. 100.
    Norizuki T, Minamino N, Sato M, Tsukaya H, Ueda T. 2022.. Dynamic rearrangement and autophagic degradation of mitochondria during spermiogenesis in the liverwort Marchantia polymorpha. . Cell Rep. 39:(11):110975Elegantly demonstrates how autophagy is involved in a developmental process and exemplifies the value of studying different model systems.
    [Crossref] [Google Scholar]
  101. 101.
    Ohsumi Y. 2014.. Historical landmarks of autophagy research. . Cell Res. 24:(1):923
    [Crossref] [Google Scholar]
  102. 102.
    Olivas TJ, Wu Y, Yu S, Luan L, Choi P, et al. 2023.. ATG9 vesicles comprise the seed membrane of mammalian autophagosomes. . J. Cell Biol. 222:(7):e202208088
    [Crossref] [Google Scholar]
  103. 103.
    Pandey P, Leary AY, Tumtas Y, Savage Z, Dagvadorj B, et al. 2021.. An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. . eLife 10::e65285
    [Crossref] [Google Scholar]
  104. 104.
    Phillips AR, Suttangkakul A, Vierstra RD. 2008.. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. . Genetics 178:(3):133953
    [Crossref] [Google Scholar]
  105. 105.
    Picchianti L, Sánchez de Medina Hernández V, Zhan N, Irwin NA, Groh R, et al. 2023.. Shuffled ATG8 interacting motifs form an ancestral bridge between UFMylation and autophagy. . EMBO J. 42:(10):e112053
    [Crossref] [Google Scholar]
  106. 106.
    Pu Y, Luo X, Bassham DC. 2017.. TOR-dependent and -independent pathways regulate autophagy in Arabidopsis thaliana. . Front. Plant Sci. 8::1204
    [Crossref] [Google Scholar]
  107. 107.
    Qi H, Lei X, Wang Y, Yu S, Liu T, et al. 2022.. 14-3-3 proteins contribute to autophagy by modulating SINAT-mediated degradation of ATG13. . Plant Cell 34:(12):485776
    [Crossref] [Google Scholar]
  108. 108.
    Qi H, Li J, Xia F-N, Chen J-Y, Lei X, et al. 2020.. Arabidopsis SINAT proteins control autophagy by mediating ubiquitylation and degradation of ATG13. . Plant Cell 32:(1):26384
    [Crossref] [Google Scholar]
  109. 109.
    Qi S, Kim DJ, Stjepanovic G, Hurley JH. 2015.. Structure of the human Atg13-Atg101 HORMA heterodimer: an interaction hub within the ULK1 complex. . Structure 23:(10):184857
    [Crossref] [Google Scholar]
  110. 110.
    Raffeiner M, Zhu S, González-Fuente M, Üstün S. 2023.. Interplay between autophagy and proteasome during protein turnover. . Trends Plant Sci. 28:(6):698714
    [Crossref] [Google Scholar]
  111. 111.
    Rehman NU, Zeng P, Mo Z, Guo S, Liu Y, et al. 2021.. Conserved and diversified mechanism of autophagy between plants and animals upon various stresses. . Antioxidants 10:(11):1736
    [Crossref] [Google Scholar]
  112. 112.
    Rodriguez E, Chevalier J, Olsen J, Ansbøl J, Kapousidou V, et al. 2020.. Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells. . EMBO J. 39:(4):e103315
    [Crossref] [Google Scholar]
  113. 113.
    Sawa-Makarska J, Baumann V, Coudevylle N, von Bülow S, Nogellova V, et al. 2020.. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. . Science 369:(6508):eaaz7714
    [Crossref] [Google Scholar]
  114. 114.
    Shi X, Yokom AL, Wang C, Young LN, Youle RJ, Hurley JH. 2020.. ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer. . J. Cell Biol. 219:(7):e201911047
    [Crossref] [Google Scholar]
  115. 115.
    Sjøgaard IMZ, Bressendorff S, Prestel A, Kausika S, Oksbjerg E, et al. 2019.. The transmembrane autophagy cargo receptors ATI1 and ATI2 interact with ATG8 through intrinsically disordered regions with distinct biophysical properties. . Biochem. J. 476:(3):44965
    [Crossref] [Google Scholar]
  116. 116.
    Soto-Burgos J, Bassham DC. 2017.. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. . PLOS ONE 12:(8):e0182591
    [Crossref] [Google Scholar]
  117. 117.
    Spitzer C, Li F, Buono R, Roschzttardtz H, Chung T, et al. 2015.. The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. . Plant Cell 27:(2):391402
    [Crossref] [Google Scholar]
  118. 118.
    Stephani M, Dagdas Y. 2020.. Plant selective autophagy—still an uncharted territory with a lot of hidden gems. . J. Mol. Biol. 432:(1):6379
    [Crossref] [Google Scholar]
  119. 119.
    Stephani M, Picchianti L, Gajic A, Beveridge R, Skarwan E, et al. 2020.. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. . eLife 9::e58396
    [Crossref] [Google Scholar]
  120. 120.
    Surpin M, Zheng H, Morita MT, Saito C, Avila E, et al. 2003.. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. . Plant Cell 15:(12):288599
    [Crossref] [Google Scholar]
  121. 121.
    Sutipatanasomboon A, Herberth S, Alwood EG, Häweker H, Müller B, et al. 2017.. Disruption of the plant-specific CFS1 gene impairs autophagosome turnover and triggers EDS1-dependent cell death. . Sci. Rep. 7:(1):8677
    [Crossref] [Google Scholar]
  122. 122.
    Suttangkakul A, Li F, Chung T, Vierstra RD. 2011.. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. . Plant Cell 23:(10):376179
    [Crossref] [Google Scholar]
  123. 123.
    Svenning S, Lamark T, Krause K, Johansen T. 2011.. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. . Autophagy 7:(9):9931010
    [Crossref] [Google Scholar]
  124. 124.
    Takatsuka C, Inoue Y, Matsuoka K, Moriyasu Y. 2004.. 3-Methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. . Plant Cell Physiol. 45:(3):26574
    [Crossref] [Google Scholar]
  125. 125.
    Tang J, Bassham DC. 2018.. Autophagy in crop plants: What's new beyond Arabidopsis?. Open Biol. 8:(12):180162
    [Crossref] [Google Scholar]
  126. 126.
    Testi S, Kuhn M-L, Allasia V, Auroy P, Kong F, et al. 2024.. The Phytophthora parasitica effector AVH195 interacts with ATG8, attenuates host autophagy, and promotes biotrophic infection. . BMC Biol. 22::100
    [Crossref] [Google Scholar]
  127. 127.
    Thirumalaikumar VP, Gorka M, Schulz K, Masclaux-Daubresse C, Sampathkumar A, et al. 2021.. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1. . Autophagy 17:(9):218499Shows how autophagy is involved in stress memory processes, a very exciting and poorly studied topic in plants.
    [Crossref] [Google Scholar]
  128. 128.
    Turco E, Savova A, Gere F, Ferrari L, Romanov J, et al. 2021.. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. . Nat. Commun. 12:(1):5212
    [Crossref] [Google Scholar]
  129. 129.
    Turco E, Witt M, Abert C, Bock-Bierbaum T, Su M-Y, et al. 2019.. FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. . Mol. Cell 74:(2):33046.e11
    [Crossref] [Google Scholar]
  130. 130.
    Üstün S, Hafrén A, Liu Q, Marshall RS, Minina EA, et al. 2018.. Bacteria exploit autophagy for proteasome degradation and enhanced virulence in plants. . Plant Cell 30:(3):66885
    [Crossref] [Google Scholar]
  131. 131.
    Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, et al. 2019.. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. . Nat. Plants 5:(3):31627
    [Crossref] [Google Scholar]
  132. 132.
    Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. 2011.. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. . Plant Cell 23:(2):785805
    [Crossref] [Google Scholar]
  133. 133.
    Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, et al. 2022.. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. . Nucleic Acids Res. 50:(D1):D43944
    [Crossref] [Google Scholar]
  134. 134.
    Wang C, Wang J, Lu J, Xiong Y, Zhao Z, et al. 2023.. A natural gene drive system confers reproductive isolation in rice. . Cell 186:(17):357792.e18
    [Crossref] [Google Scholar]
  135. 135.
    Wang P, Nolan TM, Yin Y, Bassham DC. 2020.. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. . Autophagy 16:(1):12339
    [Crossref] [Google Scholar]
  136. 136.
    Wang P, Richardson C, Hawes C, Hussey PJ. 2016.. Arabidopsis NAP1 regulates the formation of autophagosomes. . Curr. Biol. 26:(15):206069
    [Crossref] [Google Scholar]
  137. 137.
    Wang Q, Qin Q, Su M, Li N, Zhang J, et al. 2022.. Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis. . Plant Cell 34:(11):453153
    [Crossref] [Google Scholar]
  138. 138.
    Wang W, Liu N, Gao C, Cai H, Romeis T, Tang D. 2020.. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. . New Phytol. 227:(2):52944
    [Crossref] [Google Scholar]
  139. 139.
    Wang Y, Cai S, Yin L, Shi K, Xia X, et al. 2015.. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. . Autophagy 11:(11):203347
    [Crossref] [Google Scholar]
  140. 140.
    Wang Y, Cao J-J, Wang K-X, Xia X-J, Shi K, et al. 2019.. BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomato. . Plant Physiol. 179:(2):67185
    [Crossref] [Google Scholar]
  141. 141.
    Wang Y, Yu B, Zhao J, Guo J, Li Y, et al. 2013.. Autophagy contributes to leaf starch degradation. . Plant Cell 25:(4):138399
    [Crossref] [Google Scholar]
  142. 142.
    Wu J, Michaeli S, Picchianti L, Dagdas Y, Galili G, Peled-Zehavi H. 2021.. ATI1 (ATG8-interacting protein 1) and ATI2 define a plant starvation-induced reticulophagy pathway and serve as MSBP1/MAPR5 cargo receptors. . Autophagy 17:(11):337588
    [Crossref] [Google Scholar]
  143. 143.
    Xie Q, Tzfadia O, Levy M, Weithorn E, Peled-Zehavi H, et al. 2016.. hfAIM: a reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms. . Autophagy 12:(5):87687
    [Crossref] [Google Scholar]
  144. 144.
    Xiong Y, Contento AL, Bassham DC. 2005.. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. . Plant J. 42:(4):53546
    [Crossref] [Google Scholar]
  145. 145.
    Xiong Y, Contento AL, Bassham DC. 2007.. Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. . Autophagy 3:(3):25758
    [Crossref] [Google Scholar]
  146. 146.
    Xu N, Gao X-Q, Zhao XY, Zhu DZ, Zhou LZ, Zhang XS. 2011.. Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation. . Plant Mol. Biol. 77:(3):25160
    [Crossref] [Google Scholar]
  147. 147.
    Yan H, Zhuang M, Xu X, Li S, Yang M, et al. 2023.. Autophagy and its mediated mitochondrial quality control maintain pollen tube growth and male fertility in Arabidopsis. . Autophagy 19:(3):76883
    [Crossref] [Google Scholar]
  148. 148.
    Yang C, Shen W, Yang L, Sun Y, Li X, et al. 2020.. HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation. . Mol. Plant 13:(3):51531
    [Crossref] [Google Scholar]
  149. 149.
    Yang F, Kimberlin AN, Elowsky CG, Liu Y, Gonzalez-Solis A, et al. 2019.. A plant immune receptor degraded by selective autophagy. . Mol. Plant 12:(1):11323
    [Crossref] [Google Scholar]
  150. 150.
    Yang M, Ismayil A, Jiang Z, Wang Y, Zheng X, et al. 2022.. A viral protein disrupts vacuolar acidification to facilitate virus infection in plants. . EMBO J. 41:(2):e108713
    [Crossref] [Google Scholar]
  151. 151.
    Yang M, Zhang Y, Xie X, Yue N, Li J, et al. 2018.. Barley stripe mosaic virus γb protein subverts autophagy to promote viral infection by disrupting the ATG7-ATG8 interaction. . Plant Cell 30:(7):158295
    [Crossref] [Google Scholar]
  152. 152.
    Ye H, Gao J, Liang Z, Lin Y, Yu Q, et al. 2022.. Arabidopsis ORP2A mediates ER-autophagosomal membrane contact sites and regulates PI3P in plant autophagy. . PNAS 119:(43):e2205314119
    [Crossref] [Google Scholar]
  153. 153.
    Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, et al. 2004.. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. . Plant Cell 16:(11):296783
    [Crossref] [Google Scholar]
  154. 154.
    Young PG, Passalacqua MJ, Chappell K, Llinas RJ, Bartel B. 2019.. A facile forward-genetic screen for Arabidopsis autophagy mutants reveals twenty-one loss-of-function mutations disrupting six ATG genes. . Autophagy 15:(6):94159
    [Crossref] [Google Scholar]
  155. 155.
    Yuen ELH, Shepherd S, Bozkurt TO. 2023.. Traffic control: subversion of plant membrane trafficking by pathogens. . Annu. Rev. Phytopathol. 61::32550
    [Crossref] [Google Scholar]
  156. 156.
    Zeng Y, Li B, Huang S, Li H, Cao W, et al. 2023.. The plant unique ESCRT component FREE1 regulates autophagosome closure. . Nat. Commun. 14:(1):1768Uses cutting-edge imaging approaches to reveal the molecular players involved in autophagosome closure.
    [Crossref] [Google Scholar]
  157. 157.
    Zeng Y, Li B, Lin Y, Jiang L. 2019.. The interplay between endomembranes and autophagy in plants. . Curr. Opin. Plant Biol. 52::1422
    [Crossref] [Google Scholar]
  158. 158.
    Zess EK, Jensen C, Cruz-Mireles N, De la Concepcion JC, Sklenar J, et al. 2019.. N-terminal β-strand underpins biochemical specialization of an ATG8 isoform. . PLOS Biol. 17:(7):e3000373
    [Crossref] [Google Scholar]
  159. 159.
    Zhan N, Wang C, Chen L, Yang H, Feng J, et al. 2018.. S-Nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. . Mol. Cell 71:(1):14254.e6
    [Crossref] [Google Scholar]
  160. 160.
    Zhang B, Shao L, Wang J, Zhang Y, Guo X, et al. 2020.. Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens. . Autophagy 17:(9):2093110
    [Crossref] [Google Scholar]
  161. 161.
    Zhang X, Ding X, Marshall RS, Paez-Valencia J, Lacey P, et al. 2020.. Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. . eLife 9::e51918
    [Crossref] [Google Scholar]
  162. 162.
    Zhao J, Bui MT, Ma J, Künzl F, Picchianti L, et al. 2022.. Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. . J. Cell Biol. 221:(12):e202203139
    [Crossref] [Google Scholar]
  163. 163.
    Zhao P, Zhou X-M, Zhao L-L, Cheung AY, Sun M-X. 2020.. Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility. . Autophagy 16:(12):218092
    [Crossref] [Google Scholar]
  164. 164.
    Zhou J, Ma J, Yang C, Zhu X, Li J, et al. 2023.. A non-canonical role of ATG8 in Golgi recovery from heat stress in plants. . Nat. Plants 9:(5):74965
    [Crossref] [Google Scholar]
  165. 165.
    Zhou J, Wang J, Cheng Y, Chi Y-J, Fan B, et al. 2013.. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. . PLOS Genet. 9:(1):e1003196
    [Crossref] [Google Scholar]
  166. 166.
    Zhou J, Wang Z, Wang X, Li X, Zhang Z, et al. 2018.. Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses. . Autophagy 14:(3):487504
    [Crossref] [Google Scholar]
  167. 167.
    Zhou Z, Liu J, Fu T, Wu P, Peng C, et al. 2021.. Phosphorylation regulates the binding of autophagy receptors to FIP200 Claw domain for selective autophagy initiation. . Nat. Commun. 12:(1):1570
    [Crossref] [Google Scholar]
  168. 168.
    Zhu T, Zou L, Li Y, Yao X, Xu F, et al. 2018.. Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. . Plant Biotechnol. J. 16:(12):206376
    [Crossref] [Google Scholar]
  169. 169.
    Zhuang X, Chung KP, Cui Y, Lin W, Gao C, et al. 2017.. ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. . PNAS 114:(3):E42635
    [Crossref] [Google Scholar]
  170. 170.
    Zhuang X, Wang H, Lam SK, Gao C, Wang X, et al. 2013.. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. . Plant Cell 25:(11):4596615
    [Crossref] [Google Scholar]
  171. 171.
    Zientara-Rytter K, Subramani S. 2020.. Mechanistic insights into the role of Atg11 in selective autophagy. . J. Mol. Biol. 432:(1):104122
    [Crossref] [Google Scholar]
  172. 172.
    Zouhar J, Rojo E, Bassham DC. 2009.. AtVPS45 is a positive regulator of the SYP41/SYP61/VTI12 SNARE complex involved in trafficking of vacuolar cargo. . Plant Physiol. 149:(4):166878
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-060324-094912
Loading
/content/journals/10.1146/annurev-arplant-060324-094912
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error