1932

Abstract

Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-062923-022602
2024-07-22
2025-05-20
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-062923-022602.html?itemId=/content/journals/10.1146/annurev-arplant-062923-022602&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abu-Omar MM, Barta K, Beckham GT, Luterbacher JS, Ralph J, et al. 2021.. Guidelines for performing lignin-first biorefining. . Energy Environ. Sci. 14::26292
    [Crossref] [Google Scholar]
  2. 2.
    Adeyanju AO, Sattler SE, Rich PJ, Rivera-Burgos LA, Xu X, Ejeta G. 2021.. Sorghum brown midrib19 (Bmr19) gene links lignin biosynthesis to folate metabolism. . Genes 12::660
    [Crossref] [Google Scholar]
  3. 3.
    Alherech M, Omolabake S, Holland CM, Klinger GE, Hegg EL, Stahl SS. 2021.. From lignin to valuable aromatic chemicals: lignin depolymerization and monomer separation via centrifugal partition chromatography. . ACS Cent. Sci. 7::183137
    [Crossref] [Google Scholar]
  4. 4.
    Anderson EM, Stone ML, Katahira R, Reed M, Beckham GT, Román-Leshkov Y. 2017.. Flowthrough reductive catalytic fractionation of biomass. . Joule 1::61322 4. Describes a method allowing measurement of critical parameters for the scale-up of lignin conversion.
    [Crossref] [Google Scholar]
  5. 5.
    Anderson EM, Stone ML, Katahira R, Reed M, Muchero W, et al. 2019.. Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields. . Nat. Commun. 10::2033
    [Crossref] [Google Scholar]
  6. 6.
    Arts W, Van Aelst K, Cooreman E, Van Aelst J, Van den Bosch S, Sels BF. 2023.. Stepping away from purified solvents in reductive catalytic fractionation: a step forward towards a disruptive wood biorefinery process. . Energ. Environ. Sci. 16::251839
    [Crossref] [Google Scholar]
  7. 7.
    Bajwa DS, Pourhashem G, Ullah AH, Bajwa SG. 2019.. A concise review of current lignin production, applications, products and their environmental impact. . Ind. Crops Prod. 139::111526
    [Crossref] [Google Scholar]
  8. 8.
    Balch ML, Chamberlain MB, Worthen RS, Holwerda EK, Lynd LR. 2020.. Fermentation with continuous ball milling: effectiveness at enhancing solubilization for several cellulosic feedstocks and comparative tolerance of several microorganisms. . Biomass Bioenerg. 134::105468 8. Describes a new approach to eliminate the need for chemical pre-treatment of biomass.
    [Crossref] [Google Scholar]
  9. 9.
    Barros J, Serrani-Yarce JC, Chen F, Baxter D, Venables BJ, Dixon RA. 2016.. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. . Nat. Plants 2::16050
    [Crossref] [Google Scholar]
  10. 10.
    Barros J, Shrestha HK, Serrani-Yarce JC, Engle NL, Abraham PE, et al. 2022.. Proteomic and metabolic disturbances in lignin-modified Brachypodium distachyon. . Plant Cell 34::333963
    [Crossref] [Google Scholar]
  11. 11.
    Barros J, Temple S, Dixon RA. 2018.. Development and commercialization of reduced lignin alfalfa. . Curr. Opin. Biotechnol. 56::4854
    [Crossref] [Google Scholar]
  12. 12.
    Bartling AW, Stone ML, Hanes RJ, Bhatt A, Zhang Y, et al. 2021. Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation. . Energ. Environ. Sci. 14::414768
    [Crossref] [Google Scholar]
  13. 13.
    Bonawitz ND, Chapple C. 2013.. Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty?. Curr. Opin. Biotechnol. 24::33643
    [Crossref] [Google Scholar]
  14. 14.
    Cai C, Xu Z, Zhou H, Chen S, Jin M. 2021.. Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation. . Sci. Adv. 7::eabg4585
    [Crossref] [Google Scholar]
  15. 15.
    Chanoca A, de Vries L, Boerjan W. 2019.. Lignin engineering in forest trees. . Front. Plant Sci. 10::912
    [Crossref] [Google Scholar]
  16. 16.
    Chen F, Tobimatsu Y, Havkin-Frenkel D, Dixon RA, Ralph J. 2012.. A polymer of caffeyl alcohol in plant seeds. . PNAS 109::177277 16. Describes an unsuspected form of linear lignin with favorable properties for bioprocessing.
    [Crossref] [Google Scholar]
  17. 17.
    Constant S, Wienk HL, Frissen AE, de Peinder P, Boelens R, et al. 2016.. New insights into the structure and composition of technical lignins: a comparative characterisation study. . Green Chem. 18::265165
    [Crossref] [Google Scholar]
  18. 18.
    Cooreman E, Nicolaï T, Arts W, Aelst KV, Vangeel T, et al. 2023.. The future biorefinery: the impact of upscaling the reductive catalytic fractionation of lignocellulose biomass on the quality of the lignin oil, carbohydrate products, and pulp. . ACS Sust. Chem. Eng. 11::544050 18. Demonstrates the scaleability of RCF-based biorefining.
    [Crossref] [Google Scholar]
  19. 19.
    Cooreman E, Vangeel T, Van Aelst K, Van Aelst J, Lauwaert J, et al. 2020.. Perspective on overcoming scale-up hurdles for the reductive catalytic fractionation of lignocellulose biomass. . Ind. Eng. Chem. Res. 59::1703545
    [Crossref] [Google Scholar]
  20. 20.
    De Meester B, de Vries L, Özparpuc M, Gierlinger N, Corneillie S, et al. 2017.. Vessel-specific reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in dwarfed ccr1 mutants restores vessel and xylary fiber integrity and increases biomass. . Plant Physiol. 176::61133
    [Crossref] [Google Scholar]
  21. 21.
    De Meester B, Vanholme R, de Vries L, Wouters M, Van Doorsselaere J, et al. 2021.. Vessel- and ray-specific monolignol biosynthesis as an approach to engineer fiber-hypolignification and enhanced saccharification in poplar. . Plant J. 108::75265
    [Crossref] [Google Scholar]
  22. 22.
    De Meester B, Vanholme R, Mota T, Boerjan W. 2022.. Lignin engineering in forest trees: from gene discovery to field trials. . Plant Commun. 3::100465
    [Crossref] [Google Scholar]
  23. 23.
    Del Río JC, Rencoret J, Gutiérrez A, Elder T, Kim H, et al. 2020.. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. . ACS Sust. Chem. Eng. 8::49975012
    [Crossref] [Google Scholar]
  24. 24.
    Dixon RA, Barros J. 2019.. Lignin biosynthesis: old roads revisited and new roads explored. . Open Biol. 9::190215
    [Crossref] [Google Scholar]
  25. 25.
    Du Q, Lu W, Quan M, Xiao L, Song F, et al. 2018.. Genome-wide association studies to improve wood properties: challenges and prospects. . Front. Plant Sci. 9::1912
    [Crossref] [Google Scholar]
  26. 26.
    Facas GG, Brandner DG, Bussard JR, Román-Leshkov Y, Beckham GT. 2023.. Interdependence of solvent and catalyst selection on low pressure hydrogen-free reductive catalytic fractionation. . ACS Sust. Chem. Eng. 11::451722
    [Crossref] [Google Scholar]
  27. 27.
    Gallego-Giraldo L, Liu C, Pose-Albacete S, Pattathil S, Peralta AG, et al. 2020.. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content. . PNAS 117::328190
    [Crossref] [Google Scholar]
  28. 28.
    Gallego-Giraldo L, Pose-Albacete S, Pattathil S, Peralta AG, Hahn M, et al. 2018.. Elicitors and defense gene induction in plants with altered lignin compositions. . New Phytol. 219::123551
    [Crossref] [Google Scholar]
  29. 29.
    Gallego-Giraldo L, Shadle G, Shen H, Barros-Rios J, Corrales SF, et al. 2015.. Combining enhanced biomass density with reduced lignin level for improved forage quality. . Plant Biotech. J. 14::895904
    [Crossref] [Google Scholar]
  30. 30.
    Gioia C, Lo Re G, Lawoko M, Berglund L. 2018.. Tunable thermosetting epoxides based on fractionated and well-characterized lignins. . J. Am. Chem. Soc. 140::405461
    [Crossref] [Google Scholar]
  31. 31.
    Gosselink RJA, De Jong E, Guran B, Abächerli A. 2004.. Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). . Ind. Crops Prod. 20::12129
    [Crossref] [Google Scholar]
  32. 32.
    Gui J, Lam PY, Tobimatsu Y, Sun J, Huang C, et al. 2020.. Fibre-specific regulation of lignin biosynthesis improves biomass quality in Populus. . New Phytol. 226::107487
    [Crossref] [Google Scholar]
  33. 33.
    Gujjala LKS, Won W. 2022.. Process development, techno-economic analysis and life-cycle assessment for laccase catalyzed synthesis of lignin hydrogel. . Bioresour. Technol. 26::128028
    [Crossref] [Google Scholar]
  34. 34.
    Guragain YN, Srinivasa Rao P, Vara Prasad PV, Vadlani PV. 2017.. Evaluation of brown midrib sorghum mutants as a potential biomass feedstock for 2,3-butanediol biosynthesis. . Appl. Biochem. Biotechnol. 183::1093110
    [Crossref] [Google Scholar]
  35. 35.
    Ha CM, Escamilla-Trevino L, Zhuo C, Pu Y, Bryant N, et al. 2023.. Systematic approaches to C-lignin engineering in Medicago truncatula. . Biotechnol. Biofuels Bioprod. 16::100
    [Crossref] [Google Scholar]
  36. 36.
    Ha CM, Fine D, Bahtia A, Rao X, Martin MZ, et al. 2019.. Ectopic defense gene expression is associated with growth defects in Medicago truncatula lignin pathway mutants. . Plant Physiol. 181::6384
    [Crossref] [Google Scholar]
  37. 37.
    Ha CM, Rao X, Saxena G, Dixon RA. 2021.. Growth-defense trade-offs as a result of lignin pathway engineering. . New Phytol. 231::6074
    [Crossref] [Google Scholar]
  38. 38.
    Happs RM, Bartling AW, Doeppke C, Harman-Ware AE, Clark R, et al. 2020.. Economic impact of yield and composition variation in bioenergy crops: Populus trichocarpa. . Biofuels Bioprod. Biores. 15::17688 38. Describes a techno-economic analysis of bioprocessing that incorporates agronomic factors.
    [Crossref] [Google Scholar]
  39. 39.
    He F, Machemer-Noonan K, Golfier P, Unda F, Dechert J, et al. 2019.. The in vivo impact of MsLAC1, a Miscanthus laccase isoform, on lignification and lignin composition contrasts with its in vitro substrate preference. . BMC Plant Biol. 19::552
    [Crossref] [Google Scholar]
  40. 40.
    Hoengenaert L, Wouters M, Kim H, De Meester B, Morreel K, et al. 2022.. Overexpression of the scopoletin biosynthetic pathway enhances lignocellulosic biomass processing. . Sci. Adv. 8::eabo5738
    [Crossref] [Google Scholar]
  41. 41.
    Holladay J, Abdullah Z, Heyne J. 2020.. Sustainable aviation fuel: review of technical pathways. . Rep. DOE/EE-2041 8292, US Dept. Energy
  42. 42.
    Hu S, Kamimura N, Sakamoto S, Nagano S, Takata N, et al. 2022.. Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen. . Plant J. 110::35876
    [Crossref] [Google Scholar]
  43. 43.
    Huang K, Fasahati P, Maravelias CT. 2020.. System-level analysis of lignin valorization in lignocellulosic biorefineries. . iScience 23::100751
    [Crossref] [Google Scholar]
  44. 44.
    Humphreys JM, Chapple C. 2002.. Rewriting the lignin roadmap. . Curr. Opin. Plant Biol. 5::22429
    [Crossref] [Google Scholar]
  45. 45.
    Jang JH, Brandner DG, Dreiling RJ, Ringsby AJ, Bussard JR, et al. 2022.. Multi-pass flow-through reductive catalytic fractionation. . Joule 6::185975
    [Crossref] [Google Scholar]
  46. 46.
    Jang JH, Morais AR, Browning M, Brandner DG, Kenny JK, et al. 2023.. Feedstock-agnostic reductive catalytic fractionation in alcohol and alcohol-water mixtures. . Green Chem. 25::366070
    [Crossref] [Google Scholar]
  47. 47.
    Ji D, Chen T, Zhang Z, Li B, Tian S. 2020.. Versatile roles of the receptor-like kinase Feronia in plant growth, development and host-pathogen interaction. . Int. J. Mol. Sci. 21::7881
    [Crossref] [Google Scholar]
  48. 48.
    Jiang X, Abbati de Assis C, Kollman M, Sun R, Jameel H, et al. 2020.. Lignin fractionation from laboratory to commercialization: chemistry, scalability and techno-economic analysis. . Green Chem. 22::744859
    [Crossref] [Google Scholar]
  49. 49.
    Johnson CW, Beckham GT. 2015.. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. . Metab. Eng. 28::24047
    [Crossref] [Google Scholar]
  50. 50.
    Kainer D, Weighill D, Furches A, Large A, Joubert W, et al. 2019.. Finding new cell wall regulatory genes in Populus trichocarpus through multiple lines of evidence. . Front. Plant Sci. 10::1249
    [Crossref] [Google Scholar]
  51. 51.
    Karlen SD, Fasahati P, Mazaheri M, Serate J, Smith RA, et al. 2020.. Assessing the viability of recovery of hydroxycinnamic acids from lignocellulosic biorefinery alkaline pretreatment waste streams. . Chem. Sus. Chem. 13::201224
    [Crossref] [Google Scholar]
  52. 52.
    Kazzaz AE, Fatehi P. 2020.. Technical lignin and its potential modification routes: a mini-review. . Ind. Crops Prod. 154::112732
    [Crossref] [Google Scholar]
  53. 53.
    Kenny JK, Brandner DG, Neefe SR, Michener WE, Román-Leshkov Y, et al. 2022.. Catalyst choice impacts aromatic monomer yields and selectivity in hydrogen-free reductive catalytic fractionation. . React. Chem. Eng. 7::252733
    [Crossref] [Google Scholar]
  54. 54.
    Kim H, Li Q, Karlen SD, Smith RA, Shi R, et al. 2020.. Monolignol benzoates incorporate into the lignin of transgenic Populus trichocarpa depleted in C3H and C4H. . ACS Sust. Chem. Eng. 8::364454
    [Crossref] [Google Scholar]
  55. 55.
    Kim KH, Eudes A, Jeong K, Yoo CG, Kim CS, et al. 2019.. Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery. . PNAS 116::1381624
    [Crossref] [Google Scholar]
  56. 56.
    Kim SS, Wengier DL, Ragland CJ, Sattely ES. 2022.. Transcriptional reactivation of lignin biosynthesis for the heterologous production of etoposide aglycone in Nicotiana benthamiana. . ACS Synth. Biol. 11::337987
    [Crossref] [Google Scholar]
  57. 57.
    Kohlstedt M, Weimer A, Weiland F, Stolzenberger J, Selzer M, et al. 2022.. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. . Metab. Eng. 72::33752
    [Crossref] [Google Scholar]
  58. 58.
    Kolkman JM, Moreta DE, Repka A, Bradbury P, Nelson RJ. 2022.. Brown midrib mutant and genome-wide association analysis uncover lignin genes for disease resistance in maize. . Plant Genome 16::e20278
    [Crossref] [Google Scholar]
  59. 59.
    Kosir S, Heyne J, Graham J. 2020.. A machine learning framework for drop-in volume swell characteristics of sustainable aviation fuel. . Fuel 274::117832
    [Crossref] [Google Scholar]
  60. 60.
    Kuatsjah E, Zahn M, Chen X, Kato R, Hinchen DJ, et al. 2023.. Biochemical and structural characterization of a sphingomonad diarylpropane lyase for cofactorless deformylation. . PNAS 120::e2212246120
    [Crossref] [Google Scholar]
  61. 61.
    Lam P, Lui ACW, Wang L, Liu H, Umezawam T, et al. 2021.. Tricin biosynthesis and bioengineering. . Front. Plant Sci. 26::733198
    [Crossref] [Google Scholar]
  62. 62.
    Laskar DD, Yang B, Wang H, Lee J. 2013.. Pathways for biomass-derived lignin to hydrocarbon fuels. . Biofuels Bioprod. Bioref. 7::60226
    [Crossref] [Google Scholar]
  63. 63.
    Lawoko M, Berglund L, Johansson M. 2021.. Lignin as a renewable substrate for polymers: from molecular understanding and isolation to targeted applications. . ACS Sust. Chem. Eng. 9::548185
    [Crossref] [Google Scholar]
  64. 64.
    Lee Y, Rubio MC, Alassimone J, Geldner N. 2013.. A mechanism for localized lignin deposition in the endodermis. . Cell 153::40212
    [Crossref] [Google Scholar]
  65. 65.
    Li Q, Serem W, Dai W, Yue Y, Naik M, et al. 2017.. Molecular weight and uniformity define the mechanical performance of lignin-based carbon fiber. . J. Mat. Chem. A 5::1274046
    [Crossref] [Google Scholar]
  66. 66.
    Li Y, Ragauskas AJ. 2012.. Kraft lignin-based rigid polyurethane foam. . J. Wood Chem. Technol. 32::21024
    [Crossref] [Google Scholar]
  67. 67.
    Li Y, Shuai L, Kim H, Motagamwala AH, Mobley JK, et al. 2018.. An “idea lignin” facilitates full biomass utilization. . Sci. Adv. 4::eaau2968
    [Crossref] [Google Scholar]
  68. 68.
    Liao Y, Koelewijn SF, Van den Bossche G, Van Aelst J, Van den Bosch S, et al. 2020.. A sustainable wood biorefinery for low–carbon footprint chemicals production. . Science 367::138590
    [Crossref] [Google Scholar]
  69. 69.
    Ling C, Peabod G, Salvachúa D, Kim Y-M, Kneucker CM, et al. 2022.. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. . Nat. Commun. 13::4925
    [Crossref] [Google Scholar]
  70. 70.
    Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, et al. 2014.. Lignin valorization through integrated biological funneling and chemical catalysis. . PNAS 111::1201318
    [Crossref] [Google Scholar]
  71. 71.
    Liu C, Yu H, Rao X, Li L, Dixon RA. 2021.. Abscisic acid regulates secondary cell wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1. . PNAS 118::e2010911118
    [Crossref] [Google Scholar]
  72. 72.
    Liu C, Yu H, Voxeur A, Rao X, Dixon RA. 2023.. FERONIA and wall-associated kinases coordinate defense induced by lignin modification in plant cell walls. . Sci. Adv. 9::eadf7714
    [Crossref] [Google Scholar]
  73. 73.
    Lobato-Peralta DR, Duque-Brito E, Villafán-Vidales HI, Longoria A, Sebastian PJ, et al. 2021.. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications. . J. Clean. Prod. 293::126123
    [Crossref] [Google Scholar]
  74. 74.
    Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, et al. 2013.. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. . PNAS 110::1084885
    [Crossref] [Google Scholar]
  75. 75.
    Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, et al. 2014.. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. . Science 343::27780
    [Crossref] [Google Scholar]
  76. 76.
    Lynd LR, Beckham GT, Guss AM, Jayakody LN, Karp EM, et al. 2022.. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. . Energy Environ. Sci. 15::93890
    [Crossref] [Google Scholar]
  77. 77.
    Ma X, Chen J, Zhu J, Yan N. 2021.. Lignin-based polyurethane: recent advances and future perspectives. . Macromo. Rapid Commun. 42::2000492
    [Crossref] [Google Scholar]
  78. 78.
    Marita JM, Ralph J, Hatfield RD, Chapple C. 1999.. NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. . PNAS 96::1232832
    [Crossref] [Google Scholar]
  79. 79.
    Martins MM, Carvalheiro F, Gírio F. 2022.. An overview of lignin pathways of valorization: from isolation to refining and conversion into value-added products. . Biomass Conv. Bioref. https://doi.org/10.1007/s13399-022-02701-z
    [Google Scholar]
  80. 80.
    Millwood R, Nageswara-Rao M, Ye R, Terry-Emert E, Johnson CR, et al. 2017.. Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field. . BMC Biotechnol. 17::40
    [Crossref] [Google Scholar]
  81. 81.
    Moretti C, Corona B, Hoefnagels R, Vural-Gürsel I, Gosselink R, et al. 2021.. Review of life cycle assessments of lignin and derived products: lessons learned. . Sci. Total Environ. 770::144656
    [Crossref] [Google Scholar]
  82. 82.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, et al. 2005.. Features of promising technologies for pretreatment of lignocellulosic biomass. . Bioresour. Technol. 96::67386
    [Crossref] [Google Scholar]
  83. 83.
    Mottiar Y, Karlen SD, Goacher RE, Ralph J, Mansfield SD. 2023.. Metabolic engineering of p-hydroxybenzoate in poplar lignin. . Plant Biotech. J. 21::17688
    [Crossref] [Google Scholar]
  84. 84.
    Muro-Villanueva F, Kim H, Ralph J, Chapple C. 2022.. H-lignin can be deposited independently of CINNAMYL ALCOHOL DEHYDROGENASE C and D in Arabidopsis. . Plant Physiol. 189::201528
    [Crossref] [Google Scholar]
  85. 85.
    Nar M, Rizvi HR, Dixon RA, Chen F, Kovalcik A, et al. 2016.. Superior plant based carbon fibers from electronspun poly-(caffeyl alcohol). . Carbon 103::37283
    [Crossref] [Google Scholar]
  86. 86.
    Nguyen NA, Barnes SH, Bowland CC, Meek KM, Littrell KC, et al. 2018.. A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability. . Sci. Adv. 4::eaat4967
    [Crossref] [Google Scholar]
  87. 87.
    Notonier S, Werner AZ, Kuatsjah E, Dumalo L, Abraham PE, et al. 2021.. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. . Metab. Eng. 65::11122
    [Crossref] [Google Scholar]
  88. 88.
    O'Dea RM, Pranda PA, Luo Y, Amitrano A, Ebikade EO, et al. 2022.. Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. . Sci. Adv. 8::eabj7523
    [Crossref] [Google Scholar]
  89. 89.
    Ohtani M, Demura T. 2019.. The quest for transcriptional hubs of lignin biosynthesis: beyond the NAC-MYB-gene regulatory network model. . Curr. Opin. Biotechnol. 56::8287
    [Crossref] [Google Scholar]
  90. 90.
    Oyarce P, De Meester B, Fonseca F, de Vries L, Goeminne G, et al. 2019.. Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. . Nat. Plants 5::22537
    [Crossref] [Google Scholar]
  91. 91.
    Perez JM, Kontur WS, Alherech M, Coplien J, Karlen SD, et al. 2019.. Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6-dicarboxylic acid with Novosphingobium aromaticivorans. . Green Chem. 21::134050
    [Crossref] [Google Scholar]
  92. 92.
    Perkins ML, Schuetz M, Unda F, Chen KT, Ball MB, et al. 2022.. Monolignol export by diffusion down a polymerization-induced concentration gradient. . Plant Cell 34::208095 92. Presents evidence for monolignol transport as a diffusive process driven by laccase-mediated polymerization.
    [Crossref] [Google Scholar]
  93. 93.
    Presley GN, Werner AZ, Katahira R, Garcia DC, Haugen SJ, et al. 2021.. Pathway discovery and engineering for cleavage of a β-1 lignin-derived biaryl compound. . Metab. Eng. 65::110
    [Crossref] [Google Scholar]
  94. 94.
    Questell-Santiago Y, Galkin MV, Barta K, Luterbacher JS. 2020.. Stabilization strategies in biomass depolymerization using chemical functionalization. . Nat. Rev. Chem. 4::31130
    [Crossref] [Google Scholar]
  95. 95.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, et al. 2014.. Lignin valorization: improving lignin processing in the biorefinery. . Science 344::1246843
    [Crossref] [Google Scholar]
  96. 96.
    Ragnar M, Henriksson G, Lindström ME, Wimby M, Blechschmidt J, Heinemann S. 2014.. Pulp. . In Ullmann's Encyclopedia of Industrial Chemistry, ed. M Bohnet . Weinheim, Ger.:: Wiley. , 7th ed.. https://doi.org/10.1002/14356007.a18_545.pub4
    [Google Scholar]
  97. 97.
    Ralph J, Lapierre C, Boerjan W. 2019.. Lignin structure and its engineering. . Curr. Opin. Biotechnol. 56::24049 97. Summarizes how evolution has led to flexibility in incorporation of nontraditional lignin monomers.
    [Crossref] [Google Scholar]
  98. 98.
    Renders T, Van den Bosch S, Koelewijn SF, Schutyser W, Sels BF. 2017.. Lignin-first biomass fractionation: the advent of active stabilisation strategies. . Energ. Environ. Sci. 10::155157
    [Crossref] [Google Scholar]
  99. 99.
    Reyt G, Ramakrishna P, Salas-González I, Fujita S, Love A, et al. 2021.. Two chemically distinct root lignin barriers control solute and water balance. . Nat. Commun. 12::2320
    [Crossref] [Google Scholar]
  100. 100.
    Ribca I, Sochor B, Betker M, Roth SV, Lawoko M, et al. 2023.. Impact of lignin source on the performance of thermoset resins. . Eur. Polym. J. 194::112141
    [Crossref] [Google Scholar]
  101. 101.
    Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, et al. 2016.. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. . Angew. Chem. Int. Ed. Engl. 55::8164215
    [Crossref] [Google Scholar]
  102. 102.
    Robinson AJ, Giuliano A, Abdelaziz OY, Hulteberg CP, Koutinas A, et al. 2022.. Techno-economic optimization of a process superstructure for lignin valorization. . Biores. Technol. 364::128004
    [Crossref] [Google Scholar]
  103. 103.
    Sattler SE, Funnell-Harris DL, Pedersen JF. 2010.. Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. . Plant Sci. 178::22938
    [Crossref] [Google Scholar]
  104. 104.
    Schmitt CNZ, Politi Y, Reinecke A, Harrington MJ. 2015.. Role of sacrificial protein–metal bond exchange in mussel byssal thread self-healing. . Biomacromolecules 16::285261
    [Crossref] [Google Scholar]
  105. 105.
    Schutyser W, Renders T, Van den Bosch S, Koelewijn S-F, Beckham G, et al. 2018.. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. . Chem. Soc. Rev. 47::852908
    [Crossref] [Google Scholar]
  106. 106.
    Scown CD, Baral NR, Yang M, Vora N, Huntington T. 2021.. Technoeconomic analysis for biofuels and bioproducts. . Curr. Opin. Biotechnol. 67::5864
    [Crossref] [Google Scholar]
  107. 107.
    Stone ML, Anderson EM, Meek KM, Reed M, Katahira R, et al. 2018.. Reductive catalytic fractionation of C-lignin. . ACS Sust. Chem. Eng. 6::1121118
    [Crossref] [Google Scholar]
  108. 108.
    Stone ML, Webber MS, Mounfield WP, Bell DC, Christensen E, et al. 2022.. Continuous hydrodeoxygenation of lignin to jet-range aromatic hydrocarbons. . Joule 6::232437 108. Describes a process for conversion of lignin to jet-range aromatics at high carbon yields.
    [Crossref] [Google Scholar]
  109. 109.
    Strauss SH, Costanza A, Séguin A. 2015.. Genetically engineered trees: paralysis from good intentions. . Science 349::79495
    [Crossref] [Google Scholar]
  110. 110.
    Studer MH, Demartini JD, Davis MF, Sykes RW, Davison B, et al. 2011.. Lignin content in natural Populus variants affects sugar release. . PNAS 108::63005
    [Crossref] [Google Scholar]
  111. 111.
    Subbotina E, Rukkijakan T, Marquez-Medina MD, Yu X, Johnsson M, et al. 2021.. Oxidative cleavage of C=C bonds in lignin. . Nat. Chem. 13::111825
    [Crossref] [Google Scholar]
  112. 112.
    Sulis DB, Wang JP. 2020.. Regulation of lignin biosynthesis by post-translational protein modifications. . Front. Plant Sci. 11::914
    [Crossref] [Google Scholar]
  113. 113.
    Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K. 2018.. Bright side of lignin depolymerization: toward new platform chemicals. . Chem. Rev. 118::61478
    [Crossref] [Google Scholar]
  114. 114.
    Thornburg NE, Pecha MB, Brandner DG, Reed ML, Vermaas JV, et al. 2020.. Mesoscale reaction-diffusion phenomena governing lignin-first biomass fractionation. . ChemSusChem. 13::4495509
    [Crossref] [Google Scholar]
  115. 115.
    Tian D, Hu J, Bao J, Chandra RP, Saddler JN, et al. 2017.. Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. . Biotechnol. Biofuels 10::192
    [Crossref] [Google Scholar]
  116. 116.
    Tschulkow M, Compernolle T, Van den Bosch S, Van Aelst J, Storms I, et al. 2020.. Integrated techno-economic assessment of a biorefinery process: the high-end valorization of the lignocellulosic fraction in wood streams. . J. Clean. Prod. 266::122022
    [Crossref] [Google Scholar]
  117. 117.
    Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. 2006.. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). . Science 313::1596604
    [Crossref] [Google Scholar]
  118. 118.
    Tuskan GA, Muchero W, Tschaplinski TJ, Ragauskas AJ. 2019.. Population-level approaches reveal novel aspects of lignin biosynthesis, content, composition and structure. . Curr. Opin. Biotechnol. 56::25057
    [Crossref] [Google Scholar]
  119. 119.
    Unda F, Mottiar Y, Mahon EL, Karlen SD, Kim KH, et al. 2022.. A new approach to zip-lignin: 3,4-Dihydroxybenzoate is compatible with lignification. . New Phytol. 235::23446
    [Crossref] [Google Scholar]
  120. 120.
    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010.. Lignin biosynthesis and structure. . Plant Physiol. 153::895905
    [Crossref] [Google Scholar]
  121. 121.
    Vermaas JV, Dixon RA, Chen F, Mansfield SD, Boerjan W, et al. 2019.. Passive membrane transport of lignin-related compounds. . PNAS 116::2311723
    [Crossref] [Google Scholar]
  122. 122.
    Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, et al. 2011.. CCoAOMT suppression modifies lignin composition in Pinus radiata. . Plant J. 67::11929
    [Crossref] [Google Scholar]
  123. 123.
    Wan K, Tian B, Zhai Y, Liu Y, Wang H, et al. 2022.. Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation. . Nat. Commun. 13::5508
    [Crossref] [Google Scholar]
  124. 124.
    Wang H, Avci U, Nakashima J, Hahn MG, Chen F, et al. 2010.. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. . PNAS 107::2233843
    [Crossref] [Google Scholar]
  125. 125.
    Wang H, Liu W, Huang J, Yang D, Qiu X. 2018.. Bioinspired engineering towards tailoring advanced lignin/rubber eleastomers. . Polymers 10::1033
    [Crossref] [Google Scholar]
  126. 126.
    Wang P, Guo L, Morgan J, Dudareva N, Chapple C 2022.. Transcript and metabolite network perturbations in lignin biosynthetic mutants of Arabidopsis. . Plant Physiol. 190::282846
    [Crossref] [Google Scholar]
  127. 127.
    Wang X, Yao S, Htet WPPM, Yue Y, Zhang Z, et al. 2022.. MicroRNA828 negatively regulates lignin biosynthesis in stem of Populus tomentosa through MYB targets. . Tree Physiol. 42::164661
    [Crossref] [Google Scholar]
  128. 128.
    Wang X, Zhuo C, Xiao X, Wang X, Docampo-Palacios ML, et al. 2020.. Substrate-specificity of LACCASE 8 facilitates polymerization of caffeyl alcohol for C-lignin biosynthesis in the seed coat of Cleome hassleriana. . Plant Cell 32::382545
    [Crossref] [Google Scholar]
  129. 129.
    Weiland F, Kohlstedt M, Wittmann C. 2022.. Guiding stars to the field of dreams: metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. . Metab. Eng. 71::1341
    [Crossref] [Google Scholar]
  130. 130.
    Weng J-K, Mo H, Chapple C. 2010.. Over-expression of F5H in COMT- deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation. . Plant J. 64::898911
    [Crossref] [Google Scholar]
  131. 131.
    Werner AZ, Eltis LD. 2023.. Tandem chemocatalysis and biological funneling to valorize lignin. . Trends Biotechnol. 41::27072
    [Crossref] [Google Scholar]
  132. 132.
    Wilkerson CG, Mansfield SD, Lu F, Withers S, Park J-Y, et al. 2014.. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. . Science 344::9093 132. Introduces the concept of zip-lignins for improved biomass processing.
    [Crossref] [Google Scholar]
  133. 133.
    Wolf S. 2022.. Cell wall signaling in plant development and defense. . Annu. Rev. Plant Biol. 73::32353
    [Crossref] [Google Scholar]
  134. 134.
    Xie M, Muchero W, Bryan AC, Yee K, Guo H-B, et al. 2018.. A 5-enolpyruvylshikimate 3-phosphate synthase functions as a transcriptional repressor in Populus. . Plant Cell 30::164560
    [Crossref] [Google Scholar]
  135. 135.
    Xu L-H, Ma C-Y, Zhang C, Liu J, Peng X-P, et al. 2022.. Ultrafast fractionation of wild-type and CSE down-regulated poplars by microwave-assisted deep eutectic solvents (DES) for cellulose bioconversion enhancement and lignin nanoparticles fabrication. . Industr. Crops Products 176::114275
    [Crossref] [Google Scholar]
  136. 136.
    Yang Q-Q, Hua W-P, Zou H-L, Yang J-X, Wang X-Z, et al. 2022.. Overexpression of SmLAC25 promotes lignin accumulation and decreases salvianolic acid content in Salvia miltiorrhiza. . Plant Sci. 325::111462
    [Crossref] [Google Scholar]
  137. 137.
    Yang Z, Xu Z, Feng M, Cort JR, Gieleciak R, et al. 2022.. Lignin-based jet fuel and its blending effect with conventional jet fuel. . Fuel 321::124040
    [Crossref] [Google Scholar]
  138. 138.
    Yoshida K, Sakamoto S, Mitsuda N. 2021.. In planta cell wall engineering: from mutants to artificial cell walls. . Plant Cell Physiol. 62::181327
    [Crossref] [Google Scholar]
  139. 139.
    Yu H, Liu C, Dixon RA. 2021.. A gene-editing/complementation strategy for tissue-specific lignin reduction while preserving biomass yield. . Biotechnol. Biofuels 14::175
    [Crossref] [Google Scholar]
  140. 140.
    Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM. 2010.. The catalytic valorization of lignin for the production of renewable chemicals. . Chem. Rev. 110::355299
    [Crossref] [Google Scholar]
  141. 141.
    Zhang J, Liu Y, Li C, Yin B, Liu X, et al. 2022.. PtomtAPX is an autonomous lignification peroxidase during the earliest stage of secondary wall formation in Populus tomentosa Carr. . Nat. Plants 8::82839
    [Crossref] [Google Scholar]
  142. 142.
    Zhang J, Tuskan GA, Tschaplinski TJ, Muchero W, Chen J-G. 2020.. Transcriptional and post-transcriptional regulation of lignin biosynthesis pathway genes in Populus. . Front. Plant Sci. 11::652
    [Crossref] [Google Scholar]
  143. 143.
    Zhang Y, Shan X, Zhao Q, Shi F. 2022.. The MicroRNA397a-LACCASE17 module regulates lignin biosynthesis in Medicago ruthenica (L.). . Front. Plant Sci. 13::978515
    [Crossref] [Google Scholar]
  144. 144.
    Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, et al. 2013.. LACCASE is necessary and non-redundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis thaliana. . Plant Cell 25::397687
    [Crossref] [Google Scholar]
  145. 145.
    Zhao Q, Tobimatsu Y, Zhou R, Pattathil S, Gallego-Giraldo L, et al. 2013.. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and temperature-sensitive growth reduction in Medicago truncatula. . PNAS 110::1366065
    [Crossref] [Google Scholar]
  146. 146.
    Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H. 2008.. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. . Plant Cell 20::276382
    [Crossref] [Google Scholar]
  147. 147.
    Zhuo C, Rao X, Azad R, Pandey R, Xiao X, et al. 2019.. Enzymatic basis for C-lignin monomer biosynthesis in the seed coat of Cleome hassleriana. . Plant J. 99::50620
    [Crossref] [Google Scholar]
  148. 148.
    Zhuo C, Wang X, Docampo-Palacios M, Xiao X, Sanders BC, et al. 2022.. Developmental changes in lignin composition are driven by both monolignol supply and laccase specificity. . Sci. Adv. 8::eabm8145
    [Crossref] [Google Scholar]
  149. 149.
    Ziebell A, Gracom K, Katahir R, Chen F, Pu Y, et al. 2010.. Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. . J. Biol. Chem. 285::3896168
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-062923-022602
Loading
/content/journals/10.1146/annurev-arplant-062923-022602
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error