1932

Abstract

Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO assimilation () have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10–40% of potential crop CO assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070221-024745
2022-05-20
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-070221-024745.html?itemId=/content/journals/10.1146/annurev-arplant-070221-024745&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acevedo-Siaca LG, Coe R, Quick WP, Long SP. 2021. Variation between rice accessions in photosynthetic induction in flag leaves and underlying mechanisms. J. Exp. Bot. 72:1282–94
    [Google Scholar]
  2. 2.
    Acevedo-Siaca LG, Coe R, Wang Y, Kromdijk J, Quick WP, Long SP. 2020. Variation in photosynthetic induction between rice accessions and its potential for improving productivity. New Phytol 227:1097–108
    [Google Scholar]
  3. 3.
    Acevedo-Siaca LG, Dionora J, Laza R, Quick WP, Long SP. 2021. Dynamics of photosynthetic induction and relaxation within the canopy of rice and two wild relatives. Food Energy Secur 10:e286
    [Google Scholar]
  4. 4.
    Ainsworth EA, Long SP. 2021. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?. Glob. Change Biol. 27:27–49
    [Google Scholar]
  5. 5.
    Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–70
    [Google Scholar]
  6. 6.
    Aldukhi F, Deb A, Zhao C, Moffett AS, Shukla D. 2020. Molecular mechanism of brassinosteroid perception by the plant growth receptor BRI1. J. Phys. Chem. B 124:355–65
    [Google Scholar]
  7. 7.
    Allen MT, Pearcy RW 2000. Stomatal versus biochemical limitations to dynamic photosynthetic performance in four tropical rainforest shrub species. Oecologia 122:479–86
    [Google Scholar]
  8. 8.
    Amstutz CL, Fristedt R, Schultink A, Merchant SS, Niyogi KK, Malnoë A. 2020. An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis. Nat. Plants 6:154–66
    [Google Scholar]
  9. 9.
    Armbruster U, Carrillo LR, Venema K, Pavlovic L, Schmidtmann E et al. 2014. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat. Commun. 5:5439
    [Google Scholar]
  10. 10.
    Armbruster U, Correa Galvis V, Kunz H-H, Strand DD 2017. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light. Curr. Opin. Plant Biol. 37:56–62
    [Google Scholar]
  11. 11.
    Armbruster U, Leonelli L, Correa Galvis V, Strand D, Quinn EH et al. 2016. Regulation and levels of the thylakoid K+/H+ antiporter KEA3 shape the dynamic response of photosynthesis in fluctuating light. Plant Cell Physiol 57:1557–67
    [Google Scholar]
  12. 12.
    Arora L, Narula A. 2017. Gene editing and crop improvement using CRISPR-Cas9 System. Front. Plant Sci. 8:1932
    [Google Scholar]
  13. 13.
    Arrivault S, Alexandre Moraes T, Obata T, Medeiros DB, Fernie AR et al. 2019. Metabolite profiles reveal interspecific variation in operation of the Calvin–Benson cycle in both C4 and C3 plants. J. Exp. Bot. 70:1843–58
    [Google Scholar]
  14. 14.
    Badger MR, Lorimer GH. 1976. Activation of ribulose-1,5-bisphosphate oxygenase: the role of Mg2+, CO2, and pH. Arch. Biochem. Biophys. 175:723–29
    [Google Scholar]
  15. 15.
    Bailey S, Grossman A 2008. Photoprotection in cyanobacteria: regulation of light harvesting. Photochem. Photobiol. 84:1410–20
    [Google Scholar]
  16. 16.
    Baker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89–113
    [Google Scholar]
  17. 17.
    Barradas VL, Jones HG. 1996. Responses of CO2 assimilation to changes in irradiance: laboratory and field data and a model for beans (Phaseolus vulgaris L.). J. Exp. Bot. 47:639–45
    [Google Scholar]
  18. 18.
    Bassi R, Dall'Osto L. 2021. Dissipation of light energy absorbed in excess: the molecular mechanisms. Annu. Rev. Plant Biol. 72:47–76
    [Google Scholar]
  19. 19.
    Bennett DIG, Amarnath K, Park S, Steen CJ, Morris JM, Fleming GR 2019. Models and mechanisms of the rapidly reversible regulation of photosynthetic light harvesting. Open Biol 9:190043
    [Google Scholar]
  20. 20.
    Bennett DIG, Fleming GR, Amarnath K. 2018. Energy-dependent quenching adjusts the excitation diffusion length to regulate photosynthetic light harvesting. PNAS 115:E9523–31
    [Google Scholar]
  21. 21.
    Bertolino LT, Caine RS, Gray JE. 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Front. Plant Sci. 10:225
    [Google Scholar]
  22. 22.
    Blatt MR. 2000. Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16:221–41
    [Google Scholar]
  23. 23.
    Blatt MR 2004. Concepts and techniques in plant membrane physiology. Membrane Transport in Plants, Vol. 15 MR Blatt 1–15 Oxford, UK: Wiley
    [Google Scholar]
  24. 24.
    Blatt MR, Thiel G, Trentham DR. 1990. Reversible inactivation of K+ channels of Vicia stomatal guard-cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature 346:766–69
    [Google Scholar]
  25. 25.
    Borghi GL, Moraes TA, Günther M, Feil R, Mengin V et al. 2019. Relationship between irradiance and levels of Calvin-Benson cycle and other intermediates in the model eudicot Arabidopsis and the model monocot rice. J. Exp. Bot. 70:5809–25
    [Google Scholar]
  26. 26.
    Bracher A, Whitney SM, Hartl FU, Hayer-Hartl M 2017. Biogenesis and metabolic maintenance of Rubisco. Annu. Rev. Plant Biol. 68:29–60
    [Google Scholar]
  27. 27.
    Briantais J-M, Vernotte C, Picaud M, Krause GH 1979. A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim. Biophys. Acta Bioenerget. 548:128–38
    [Google Scholar]
  28. 28.
    Büchsenschütz K, Marten I, Becker D, Philippar K, Ache P, Hedrich R 2005. Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex. Planta 222:968–76
    [Google Scholar]
  29. 29.
    Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P, Scholes JD. 1999. Unusual carotenoid composition and a new type of xanthophyll cycle in plants. PNAS 96:1135–39
    [Google Scholar]
  30. 30.
    Büssis D, von Groll U, Fisahn J, Altmann T 2006. Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Funct. Plant Biol. 33:1037–43
    [Google Scholar]
  31. 31.
    Cai S, Papanatsiou M, Blatt MR, Chen ZH. 2017. Speedy grass stomata: emerging molecular and evolutionary features. Mol. Plant 10:912–14
    [Google Scholar]
  32. 32.
    Carmo-Silva AE, Salvucci ME. 2013. The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant Physiol 161:1645–55
    [Google Scholar]
  33. 33.
    Carmo-Silva E, Andralojc PJ, Scales JC, Driever SM, Mead A et al. 2017. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. J. Exp. Bot. 68:3473–86
    [Google Scholar]
  34. 34.
    Carter R, Woolfenden H, Baillie A, Amsbury S, Carroll S et al. 2017. Stomatal opening involves polar, not radial, stiffening of guard cells. Curr. Biol. 27:2974–83.E2
    [Google Scholar]
  35. 35.
    Chazdon RL, Pearcy RW. 1986. Photosynthetic responses to light variation in rainforest species. 1. Induction under constant and fluctuating light conditions. Oecologia 69:517–23
    [Google Scholar]
  36. 36.
    Chen Z-H, Hills A, Bätz U, Amtmann A, Lew VL, Blatt MR. 2012. Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol 159:1235–51
    [Google Scholar]
  37. 37.
    Davis GA, Kanazawa A, Schöttler MA, Kohzuma K, Froehlich JE et al. 2016. Limitations to photosynthesis by proton motive force-induced photosystem II photodamage. eLife 5:e16921
    [Google Scholar]
  38. 38.
    De Angeli A, Monachello D, Ephritikhine G, Frachisse J-M, Thomine S et al. 2009. CLC-mediated anion transport in plant cells. Philos. Trans. R. Soc. B 364:195–201
    [Google Scholar]
  39. 39.
    De Souza AP, Wang Y, Orr DJ, Carmo-Silva E, Long SP 2020. Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady state, but by stomatal conductance in fluctuating light. New Phytol 225:2498–512
    [Google Scholar]
  40. 40.
    Deans RM, Brodribb TJ, Busch FA, Farquhar GD. 2019. Plant water-use strategy mediates stomatal effects on the light induction of photosynthesis. New Phytol 222:382–95
    [Google Scholar]
  41. 41.
    Deans RM, Farquhar GD, Busch FA. 2019. Estimating stomatal and biochemical limitations during photosynthetic induction. Plant Cell Environ 42:3227–40
    [Google Scholar]
  42. 42.
    Demmig B, Winter K, Krüger A, Czygan F-C. 1987. Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218–24
    [Google Scholar]
  43. 43.
    Demmig-Adams B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39:474–82
    [Google Scholar]
  44. 44.
    Demmig-Adams B, Adams WW III 1992. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:599–626
    [Google Scholar]
  45. 45.
    Demmig-Adams B, Adams WW III 2006. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21
    [Google Scholar]
  46. 46.
    Demmig-Adams B, Ebbert V, Mellman DL, Mueh KE, Schaffer L et al. 2006. Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiol. Plant. 127:670–80
    [Google Scholar]
  47. 47.
    Demmig-Adams B, Winter K, Krüger A, Czygan F-C. 1989. Zeaxanthin and the induction and relaxation kinetics of the dissipation of excess excitation energy in leaves in 2% O2, 0% CO2. Plant Physiol 90:887–93
    [Google Scholar]
  48. 48.
    Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE. 2012. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos. Trans. R. Soc. B 367:547–55
    [Google Scholar]
  49. 49.
    Doi M, Wada M, Shimazaki K. 2006. The fern Adiantum capillus-veneris lacks stomatal responses to blue light. Plant Cell Physiol 47:748–55
    [Google Scholar]
  50. 50.
    Dow GJ, Berry JA, Bergmann DC. 2014. The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana. New Phytol 201:1205–17
    [Google Scholar]
  51. 51.
    Drake PL, Froend RH, Franks PJ. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 64:495–505
    [Google Scholar]
  52. 52.
    Dukic E, Herdean A, Cheregi O, Sharma A, Nziengui H et al. 2019. K+ and Cl channels/transporters independently fine-tune photosynthesis in plants. Sci. Rep. 9:8639
    [Google Scholar]
  53. 53.
    Ebenhöh O, Houwaart T, Lokstein H, Schlede S, Tirok K 2011. A minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence. Biosystems 103:196–204
    [Google Scholar]
  54. 54.
    Edmondson DL, Badger MR, Andrews TJ. 1990. Slow inactivation of ribulosebisphosphate carboxylase during catalysis is caused by accumulation of a slow, tight-binding inhibitor at the catalytic site. Plant Physiol 93:1390–97
    [Google Scholar]
  55. 55.
    Eisenhut M, Bräutigam A, Timm S, Florian A, Tohge T et al. 2017. Photorespiration is crucial for dynamic response of photosynthetic metabolism and stomatal movement to altered CO2 availability. Mol. Plant 10:47–61
    [Google Scholar]
  56. 56.
    Eisinger W, Ehrhardt D, Briggs W 2012. Microtubules are essential for guard-cell function in Vicia and Arabidopsis. Mol. Plant 5:3601–10
    [Google Scholar]
  57. 57.
    Elliott-Kingston C, Haworth M, Yearsley JM, Batke SP, Lawson T, McElwain JC 2016. Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2. Front. Plant Sci. 7:1253
    [Google Scholar]
  58. 58.
    Ermakova M, Arrivault S, Giuliani R, Danila F, Alonso-Cantabrana H et al. 2021. Installation of C4 photosynthetic pathway enzymes in rice using a single construct. Plant Biotechnol. J. 19:575–88
    [Google Scholar]
  59. 59.
    Ernstsen J, Woodrow IE, Mott KA 1999. Effects of growth-light quantity, growth-light quality and CO2 concentration on Rubisco deactivation during low PFD or darkness. Photosynth. Res. 61:65–75
    [Google Scholar]
  60. 60.
    Esteban R, Matsubara S, Jiménez MS, Morales D, Brito P et al. 2010. Operation and regulation of the lutein epoxide cycle in seedlings of Ocotea foetens. Funct. Plant Biol. 37:859–69
    [Google Scholar]
  61. 61.
    Evans LT. 1997. Adapting and improving crops: the endless task. Philos. Trans. R. Soc. Lond. B 352:901–6
    [Google Scholar]
  62. 62.
    Evenson RE, Gollin D. 2003. Assessing the impact of the Green Revolution, 1960 to 2000. Science 300:758–62
    [Google Scholar]
  63. 63.
    FAO (Food Agric. Organ. U. N.) 2011. Save and Grow: A Policymaker's Guide to the Sustainable Intensification of Smallholder Crop Production Rome: Food Agric. Organ. U. N.
  64. 64.
    FAO (Food Agric. Organ. U. N.) 2021. The state of food security and nutrition in the world 2021: transforming food systems for food security, improved nutrition and affordable healthy diets for all Rep., Food Agric. Organ. U. N. Rome: https://www.fao.org/3/cb4474en/online/cb4474en.html
  65. 65.
    Faralli M, Matthews J, Lawson T. 2019. Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement. Curr. Opin. Plant Biol. 49:1–7
    [Google Scholar]
  66. 66.
    Farquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:503–37
    [Google Scholar]
  67. 67.
    Farquhar GD, Sharkey TD. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33:317–45
    [Google Scholar]
  68. 68.
    Fatichi S, Leuzinger S, Körner C 2014. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–95
    [Google Scholar]
  69. 69.
    Flügel F, Timm S, Arrivault S, Florian A, Stitt M et al. 2017. The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 29:2537–51
    [Google Scholar]
  70. 70.
    Flütsch S, Nigro A, Conci F, Fajkus J, Thalmann M et al. 2020. Glucose uptake to guard cells via STP transporters provides carbon sources for stomatal opening and plant growth. EMBO Rep 21:e49719
    [Google Scholar]
  71. 71.
    Flütsch S, Wang YZ, Takemiya A, Vialet-Chabrand SRM, Klejchová M et al. 2020. Guard cell starch degradation yields glucose for rapid stomatal opening in Arabidopsis. Plant Cell 32:2325–44
    [Google Scholar]
  72. 72.
    Foo CC, Burgess AJ, Retkute R, Tree-Intong P, Ruban AV, Murchie EH. 2020. Photoprotective energy dissipation is greater in the lower, not the upper, regions of a rice canopy: a 3D analysis. J. Exp. Bot. 71:7382–92
    [Google Scholar]
  73. 73.
    Franks PJ, Farquhar GD. 2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143:78–87
    [Google Scholar]
  74. 74.
    Fricker M, Willmer C. 1995. Stomata New York: Springer
  75. 75.
    Fukayama H, Mizumoto A, Ueguchi C, Katsunuma J, Morita R et al. 2018. Expression level of Rubisco activase negatively correlates with Rubisco content in transgenic rice. Photosynth. Res. 137:465–74
    [Google Scholar]
  76. 76.
    Fukayama H, Ueguchi C, Nishikawa K, Katoh N, Ishikawa C et al. 2012. Overexpression of Rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing Rubisco content in rice leaves. Plant Cell Physiol 53:976–86
    [Google Scholar]
  77. 77.
    Garcia-Molina A, Leister D. 2020. Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis. Nat. Plants 6:9–12
    [Google Scholar]
  78. 78.
    García-Plazaola JI, Matsubara S, Osmond CB 2007. The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Funct. Plant Biol. 34:759–73
    [Google Scholar]
  79. 79.
    Gifford RM, Evans LT. 1981. Photosynthesis, carbon partitioning, and yield. Annu. Rev. Plant Physiol. 32:485–509
    [Google Scholar]
  80. 80.
    Glowacka K, Kromdijk J, Kucera K, Xie JY, Cavanagh AP et al. 2018. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat. Commun. 9:868
    [Google Scholar]
  81. 81.
    Grantz DA, Assmann SM. 1991. Stomatal response to blue light: water use efficiency in sugarcane and soybean. Plant Cell Environ 14:683–90
    [Google Scholar]
  82. 82.
    Gutteridge S, Parry MAJ, Burton S, Keys AJ, Mudd A et al. 1986. A nocturnal inhibitor of carboxylation in leaves. Nature 324:274–76
    [Google Scholar]
  83. 83.
    Hager A. 1969. Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-→ Zeaxanthin-Umwandlung; Beziehungen zur Photophosphorylierung. Planta 89:224–43
    [Google Scholar]
  84. 84.
    Hamilton DWA, Hills A, Köhler B, Blatt MR. 2000. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. PNAS 97:4967–72
    [Google Scholar]
  85. 85.
    Hammond ET, Andrews TJ, Mott KA, Woodrow IE. 1998. Regulation of Rubisco activation in antisense plants of tobacco containing reduced levels of Rubisco activase. Plant J 14:101–10
    [Google Scholar]
  86. 86.
    Hammond ET, Andrews TJ, Woodrow IE. 1998. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase by carbamylation and 2-carboxyarabinitol 1-phosphate in tobacco: insights from studies of antisense plants containing reduced amounts of Rubisco activase. Plant Physiol 118:1463–71
    [Google Scholar]
  87. 87.
    Hanson DT, Stutz SS, Boyer JS. 2016. Why small fluxes matter: the case and approaches for improving measurements of photosynthesis and (photo)respiration. J. Exp. Bot. 67:3027–39
    [Google Scholar]
  88. 88.
    Harrison EL, Arce Cubas L, Gray JE, Hepworth C 2020. The influence of stomatal morphology and distribution on photosynthetic gas exchange. Plant J 101:768–79
    [Google Scholar]
  89. 89.
    Hashimoto-Sugimoto M, Higaki T, Yaeno T, Nagami A, Irie M et al. 2013. A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat. Commun. 4:2215
    [Google Scholar]
  90. 90.
    Hazra S, Henderson JN, Liles K, Hilton MT, Wachter RM 2015. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase product inhibition, cooperativity, and magnesium activation. J. Biol. Chem. 290:24222–36
    [Google Scholar]
  91. 91.
    Henry C, John GP, Pan R, Bartlett MK, Fletcher LR et al. 2019. A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nat. Commun. 10:3398
    [Google Scholar]
  92. 92.
    Hepworth C, Doheny-Adams T, Hunt L, Cameron DD, Gray JE 2015. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol 208:336–41
    [Google Scholar]
  93. 93.
    Herdean A, Nziengui H, Zsiros O, Solymosi K, Garab G et al. 2016. The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport. Front. Plant Sci. 7:115
    [Google Scholar]
  94. 94.
    Herritt M, Dhanapal AP, Fritschi FB. 2016. Identification of genomic loci associated with the photochemical reflectance index by genome-wide association study in soybean. Plant Genome 9:plantgenome2015.08.0072
    [Google Scholar]
  95. 95.
    Herritt M, Dhanapal AP, Purcell LC, Fritschi FB 2018. Identification of genomic loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean. BMC Plant Biol 18:312
    [Google Scholar]
  96. 96.
    Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424:901–8
    [Google Scholar]
  97. 97.
    Hettenhausen C, Baldwin IT, Wu JQ 2012. Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv tomato DC3000. Plant Physiol 158:759–76
    [Google Scholar]
  98. 98.
    Hieber AD, Bugos RC, Yamamoto HY. 2000. Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1482:84–91
    [Google Scholar]
  99. 99.
    Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S 2010. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J 61:156–65
    [Google Scholar]
  100. 100.
    Hills A, Chen Z-H, Amtmann A, Blatt MR, Lew VL. 2012. OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol 159:1026–42
    [Google Scholar]
  101. 101.
    Horton P, Ruban AV, Walters RG. 1996. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:655–84
    [Google Scholar]
  102. 102.
    Hubbart S, Smillie IRA, Heatley M, Swarup R, Foo CC et al. 2018. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Commun. Biol. 1:22
    [Google Scholar]
  103. 103.
    Hwang J-U, Suh S, Yi HJ, Kim J, Lee Y 1997. Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiol 115:335–42
    [Google Scholar]
  104. 104.
    Ishijima S, Uchlbori A, Takagi H, Maki R, Ohnishi M. 2003. Light-induced increase in free Mg2+ concentration in spinach chloroplasts: measurement of free Mg2+ by using a fluorescent probe and necessity of stromal alkalinization. Arch. Biochem. Biophys. 412:126–32
    [Google Scholar]
  105. 105.
    Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H 2011. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol 156:1603–11
    [Google Scholar]
  106. 106.
    Isner J-C, Xu Z, Costa JM, Monnet F, Batstone T et al. 2017. Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness. New Phytol 215:1059–67
    [Google Scholar]
  107. 107.
    Jackson RB, Woodrow IE, Mott KA 1991. Nonsteady-state photosynthesis following an increase in photon flux density (PFD): effects of magnitude and duration of initial PFD. Plant Physiol 95:498–503
    [Google Scholar]
  108. 108.
    Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta Bioenerget. 1817:182–93
    [Google Scholar]
  109. 109.
    Jalink H, van der Schoor R. 2011. LED induced chlorophyll fluorescence transient imager for measurements of health and stress status of whole plants. Acta Horticult 893:307–15
    [Google Scholar]
  110. 110.
    Jia H, Förster B, Chow WS, Pogson BJ, Osmond CB. 2013. Decreased photochemical efficiency of photosystem II following sunlight exposure of shade-grown leaves of avocado: because of, or in spite of, two kinetically distinct xanthophyll cycles?. Plant Physiol. 161:836–52
    [Google Scholar]
  111. 111.
    Jiang K, Sorefan K, Deeks MJ, Bevan M, Hussey PJ, Hetherington AM. 2012. The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell 24:2031–40
    [Google Scholar]
  112. 112.
    Johnson MP, Ruban AV 2011. Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. J. Biol. Chem. 286:19973–81
    [Google Scholar]
  113. 113.
    Jung H-S, Niyogi KK. 2009. Quantitative genetic analysis of thermal dissipation in Arabidopsis. Plant Physiol 150:977–86
    [Google Scholar]
  114. 114.
    Kaiser E, Kromdijk J, Harbinson J, Heuvelink E, Marcelis LFM. 2017. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. Ann. Bot. 119:191–205
    [Google Scholar]
  115. 115.
    Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis LFM 2015. Dynamic photosynthesis in different environmental conditions. J. Exp. Bot. 66:2415–26
    [Google Scholar]
  116. 116.
    Kaiser E, Walther D, Armbruster U 2020. Growth under fluctuating light reveals large trait variation in a panel of Arabidopsis accessions. Plants 9:316
    [Google Scholar]
  117. 117.
    Kaiser E, Zhou DF, Heuvelink E, Harbinson J, Morales A, Marcelis LFM. 2017. Elevated CO2 increases photosynthesis in fluctuating irradiance regardless of photosynthetic induction state. J. Exp. Bot. 68:5629–40
    [Google Scholar]
  118. 118.
    Kaiser H, Kappen L. 1997. In situ observations of stomatal movements in different light-dark regimes: the influence of endogenous rhythmicity and long-term adjustments. J. Exp. Bot. 48:1583–89
    [Google Scholar]
  119. 119.
    Kanazawa A, Kramer DM. 2002. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. PNAS 99:12789–94
    [Google Scholar]
  120. 120.
    Kannan K, Wang Y, Lang M, Challa GS, Long SP, Marshall-Colon A. 2019. Combining gene network, metabolic and leaf-level models shows means to future-proof soybean photosynthesis under rising CO2. in silico Plants 1:diz008
    [Google Scholar]
  121. 121.
    Kardiman R, Ræbild A. 2018. Relationship between stomatal density, size and speed of opening in Sumatran rainforest species. Tree Physiol 38:696–705
    [Google Scholar]
  122. 122.
    Karlsson PM, Herdean A, Adolfsson L, Beebo A, Nziengui H et al. 2015. The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. Plant J 84:99–110
    [Google Scholar]
  123. 123.
    Kasajima I, Ebana K, Yamamoto T, Takahara K, Yano M et al. 2011. Molecular distinction in genetic regulation of nonphotochemical quenching in rice. PNAS 108:13835–40
    [Google Scholar]
  124. 124.
    Khachik F, Beecher GR, Goli MB, Lusby WR. 1991. Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high performance liquid chromatography. Pure Appl. Chem. 63:71–80
    [Google Scholar]
  125. 125.
    Kim M, Hepler PK, Fun SO, Ha KS, Lee Y. 1995. Actin filaments in mature guard cells are radially distributed and involved in stomatal movement. Plant Physiol 109:1077–84
    [Google Scholar]
  126. 126.
    Kimura H, Hashimoto-Sugimoto M, Iba K, Terashima I, Yamori W 2020. Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light. J. Exp. Bot. 71:2339–50
    [Google Scholar]
  127. 127.
    Kirilovsky D. 2007. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth. Res. 93:7
    [Google Scholar]
  128. 128.
    Kirschbaum MUF, Farquhar GD. 1984. Temperature-dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng. Aust. J. Plant Physiol. 11:519–38
    [Google Scholar]
  129. 129.
    Kirschbaum MUF, Kuppers M, Schneider H, Giersch C, Noe S 1998. Modelling photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates. Planta 204:16–26
    [Google Scholar]
  130. 130.
    Kirschbaum MUF, Pearcy RW. 1988. Gas exchange analysis of the fast phase of photosynthetic induction in Alocasia macrorrhiza. Plant Physiol 87:818–21
    [Google Scholar]
  131. 131.
    Koester RP, Nohl BM, Diers BW, Ainsworth EA. 2016. Has photosynthetic capacity increased with 80 years of soybean breeding? An examination of historical soybean cultivars. Plant Cell Environ 39:1058–67
    [Google Scholar]
  132. 132.
    Koester RP, Skoneczka JA, Cary TR, Diers BW, Ainsworth EA. 2014. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J. Exp. Bot. 65:3311–21
    [Google Scholar]
  133. 133.
    Krause GH. 1977. Light-induced movement of magnesium ions in intact chloroplasts. Spectroscopic determination with Eriochrome Blue SE. Biochim. Biophys. Acta Bioenerg. 460:500–10
    [Google Scholar]
  134. 134.
    Krause GH, Jahns P. 2003. Pulse amplitude modulated chlorophyll fluorometry and its application in plant science. Light-Harvesting Antennas in Photosynthesis BR Green, WW Parson 373–99 Dordrecht, Neth: Springer
    [Google Scholar]
  135. 135.
    Krause GH, Vernotte C, Briantais J-M. 1982. Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components. Biochim. Biophys. Acta Bioenerget. 679:116–24
    [Google Scholar]
  136. 136.
    Krieger-Liszkay A. 2005. Singlet oxygen production in photosynthesis. J. Exp. Bot. 56:337–46
    [Google Scholar]
  137. 137.
    Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M et al. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–61
    [Google Scholar]
  138. 138.
    Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D et al. 2016. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. R. Soc. Open Sci. 3:160592
    [Google Scholar]
  139. 139.
    Külheim C, Ågren J, Jansson S. 2002. Rapid regulation of light harvesting and plant fitness in the field. Science 297:91–93
    [Google Scholar]
  140. 140.
    Laing WA, Christeller JT. 1976. A model for kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem. J. 159:563–70
    [Google Scholar]
  141. 141.
    Laisk A, Eichelmann H, Oja V 2009. Leaf C3 photosynthesis in silico: integrated carbon/nitrogen metabolism. Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems A Laisk, L Nedbal, Govindjee 295–322 Dordrecht, Neth: Springer
    [Google Scholar]
  142. 142.
    Laisk A, Oja V, Kiirats O, Raschke K, Heber U 1989. The state of the photosynthetic apparatus in leaves as analyzed by rapid gas exchange and optical methods: the pH of the chloroplast stroma and activation of enzymes in vivo. Planta 177:350–58
    [Google Scholar]
  143. 143.
    Lawson T. 2009. Guard cell photosynthesis and stomatal function. New Phytol 181:13–34
    [Google Scholar]
  144. 144.
    Lawson T, Blatt MR 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–70
    [Google Scholar]
  145. 145.
    Lawson T, Kramer DM, Raines CA. 2012. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr. Opin. Biotechnol. 23:215–20
    [Google Scholar]
  146. 146.
    Lawson T, Matthews J. 2020. Guard cell metabolism and stomatal function. Annu. Rev. Plant Biol. 71:273–302
    [Google Scholar]
  147. 147.
    Lawson T, Morison JIL 2004. Stomatal function and physiology. The Evolution of Plant Physiology: From Whole Plants to Ecosystems AR Hemsley, I Poole 217–42 Cambridge, MA: Academic
    [Google Scholar]
  148. 148.
    Lawson T, Oxborough K, Morison JIL, Baker NR. 2002. Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiol 128:52–62
    [Google Scholar]
  149. 149.
    Lawson T, Terashima I, Fujita T, Wang Y 2018. Coordination between photosynthesis and stomatal behavior. The Leaf: A Platform for Performing Photosynthesis WW Adams III, I Terashima 141–61 Cham, Switz: Springer
    [Google Scholar]
  150. 150.
    Lawson T, Vialet-Chabrand S. 2019. Speedy stomata, photosynthesis and plant water use efficiency. New Phytol. 221:93–98
    [Google Scholar]
  151. 151.
    Lawson T, von Caemmerer S, Baroli I. 2011. Photosynthesis and stomatal behaviour. Prog. Bot. 72:265–304
    [Google Scholar]
  152. 152.
    Leakey ADB, Ferguson JN, Pignon CP, Wu A, Jin Z et al. 2019. Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Annu. Rev. Plant Biol. 70:781–808
    [Google Scholar]
  153. 153.
    Lehmann P, Or D. 2015. Effects of stomata clustering on leaf gas exchange. New Phytol 207:1015–25
    [Google Scholar]
  154. 154.
    Leonelli L, Brooks MD, Niyogi KK. 2017. Engineering the lutein epoxide cycle into Arabidopsis thaliana. PNAS 114:E7002–8
    [Google Scholar]
  155. 155.
    Leuenberger M, Morris JM, Chan AM, Leonelli L, Niyogi KK, Fleming GR. 2017. Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana. PNAS 114:E7009–17
    [Google Scholar]
  156. 156.
    Li J, Yokosho K, Liu S, Cao HR, Yamaji N et al. 2020. Diel magnesium fluctuations in chloroplasts contribute to photosynthesis in rice. Nat. Plants 6:848–59
    [Google Scholar]
  157. 157.
    Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M et al. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–95
    [Google Scholar]
  158. 158.
    Li X-P, Müller-Moulé P, Gilmore AM, Niyogi KK. 2002. PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. PNAS 99:15222–27
    [Google Scholar]
  159. 159.
    Li Z, Wakao S, Fischer BB, Niyogi KK. 2009. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60:239–60
    [Google Scholar]
  160. 160.
    Lobo AKM, Orr DJ, Gutierrez MO, Andralojc PJ, Sparks C et al. 2019. Overexpression of ca1pase decreases Rubisco abundance and grain yield in wheat. Plant Physiol 181:471–79
    [Google Scholar]
  161. 161.
    Long SP, Ainsworth EA, Rogers A, Ort DR 2004. Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol. 55:591–628
    [Google Scholar]
  162. 162.
    Long SP, Humphries S, Falkowski PG. 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:633–62
    [Google Scholar]
  163. 163.
    Long SP, Marshall-Colon A, Zhu XG. 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56–66
    [Google Scholar]
  164. 164.
    Long SP, Spence AK. 2013. Toward cool C4 crops. Annu. Rev. Plant Biol. 64:701–22
    [Google Scholar]
  165. 165.
    López-Calcagno PE, Brown KL, Simkin AJ, Fisk SJ, Vialet-Chabrand S et al. 2020. Stimulating photosynthetic processes increases productivity and water-use efficiency in the field. Nat. Plants 6:1054–63
    [Google Scholar]
  166. 166.
    Lorimer GH. 1981. The carboxylation and oxygenation of ribulose 1,5-bisphosphate: the primary events in photosynthesis and photorespiration. Annu. Rev. Plant. Physiol. 32:349–83
    [Google Scholar]
  167. 167.
    Lorimer GH, Badger MR, Andrews TJ. 1976. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry 15:529–36
    [Google Scholar]
  168. 168.
    Lorimer GH, Miziorko HM. 1980. Carbamate formation on the ε-amino group of a lysyl residue as the basis for the activation of ribulosebisphosphate carboxylase by CO2 and MG2+. Biochemistry 19:5321–28
    [Google Scholar]
  169. 169.
    Majore I, Wilhelm B, Marten I 2002. Identification of K+ channels in the plasma membrane of maize subsidiary cells. Plant Cell Physiol 43:844–52
    [Google Scholar]
  170. 170.
    Malnoë A, Schultink A, Shahrasbi S, Rumeau D, Havaux M, Niyogi KK. 2018. The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in Arabidopsis. Plant Cell 30:196–208
    [Google Scholar]
  171. 171.
    Martins S, Detmann K, dos Reis J, Pereira L, Sanglard L et al. 2013. Photosynthetic induction and activity of enzymes related to carbon metabolism: insights into the varying net photosynthesis rates of coffee sun and shade leaves. Theor. Exp. Plant Physiol. 25:62–69
    [Google Scholar]
  172. 172.
    Mate CJ, von Caemmerer S, Evans JR, Hudson GS, Andrews TJ 1996. The relationship between CO2-assimilation rate, Rubisco carbamylation and Rubisco activase content in activase-deficient transgenic tobacco suggests a simple model of activase action. Planta 198:604–13
    [Google Scholar]
  173. 173.
    Matsubara S, Chen Y-C, Caliandro R, Govindjee, Clegg RM 2011. Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violaxanthin cycles to fluorescence quenching. J. Photochem. Photobiol. B Biol. 104:271–84
    [Google Scholar]
  174. 174.
    Matsubara S, Gilmore AM, Osmond CB. 2001. Diurnal and acclimatory responses of violaxanthin and lutein epoxide in the Australian mistletoe Amyema miquelii. Funct. Plant Biol. 28:793–800
    [Google Scholar]
  175. 175.
    Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG et al. 2009. Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct. Plant Biol. 36:20–36
    [Google Scholar]
  176. 176.
    Matsubara S, Naumann M, Martin R, Nichol C, Rascher U et al. 2005. Slowly reversible de-epoxidation of lutein-epoxide in deep shade leaves of a tropical tree legume may ‘lock-in’ lutein-based photoprotection during acclimation to strong light. J. Exp. Bot. 56:461–68
    [Google Scholar]
  177. 177.
    Matsuoka M, Furbank RT, Fukayama H, Miyao M. 2001. Molecular engineering of C4 photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:297–314
    [Google Scholar]
  178. 178.
    Matthews JSA, Vialet-Chabrand S, Lawson T. 2020. Role of blue and red light in stomatal dynamic behaviour. J. Exp. Bot. 71:2253–69
    [Google Scholar]
  179. 179.
    Matuszyńska A, Heidari S, Jahns P, Ebenhöh O 2016. A mathematical model of non-photochemical quenching to study short-term light memory in plants. Biochim. Biophys. Acta Bioenerget. 1857:1860–69
    [Google Scholar]
  180. 180.
    Matuszyńska A, Saadat NP, Ebenhöh O. 2019. Balancing energy supply during photosynthesis—a theoretical perspective. Physiol. Plant. 166:392–402
    [Google Scholar]
  181. 181.
    Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51:659–68
    [Google Scholar]
  182. 182.
    McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T. 2016. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol 211:1209–20
    [Google Scholar]
  183. 183.
    Melis A. 1999. Photosystem-II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo?. Trends Plant Sci 4:130–35
    [Google Scholar]
  184. 184.
    Moore B, Seemann JR 1992. Metabolism of 2′-carboxyarabinitol in leaves. Plant Physiol 99:1551–55
    [Google Scholar]
  185. 185.
    Morales A, Kaiser E, Yin X, Harbinson J, Molenaar J et al. 2018. Dynamic modelling of limitations on improving leaf CO2 assimilation under fluctuating irradiance. Plant Cell Environ 41:589–604
    [Google Scholar]
  186. 186.
    Morales A, Yin X, Harbinson J, Driever SM, Molenaar J et al. 2018. In silico analysis of the regulation of the photosynthetic electron transport chain in C3 plants. Plant Physiol 176:1247–61
    [Google Scholar]
  187. 187.
    Mott KA, Woodrow IE. 1993. Effects of O2 and CO2 on nonsteady-state photosynthesis: further evidence for ribulose-1,5-bisphosphate carboxylase/oxygenase limitation. Plant Physiol 102:859–66
    [Google Scholar]
  188. 188.
    Muller B, Pantin F, Génard M, Turc O, Freixes S et al. 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62:1715–29
    [Google Scholar]
  189. 189.
    Müller P, Li X-P, Niyogi KK. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–66
    [Google Scholar]
  190. 190.
    Murchie EH. 2017. Safety conscious or living dangerously: What is the ‘right’ level of plant photoprotection for fitness and productivity?. Plant Cell Environ 40:1239–42
    [Google Scholar]
  191. 191.
    Murchie EH, Kefauver S, Araus JL, Muller O, Rascher U et al. 2018. Measuring the dynamic photosynthome. Ann. Bot. 122:207–20
    [Google Scholar]
  192. 192.
    Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64:3983–98
    [Google Scholar]
  193. 193.
    Murchie EH, Niyogi KK. 2011. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92
    [Google Scholar]
  194. 194.
    Murchie EH, Ruban AV. 2020. Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. Plant J 101:885–96
    [Google Scholar]
  195. 195.
    Nasti RA, Voytas DF. 2021. Attaining the promise of plant gene editing at scale. PNAS 118:e2004846117
    [Google Scholar]
  196. 196.
    Nasyrov YS. 1978. Genetic control of photosynthesis and improving of crop productivity. Annu. Rev. Plant Physiol. 29:215–37
    [Google Scholar]
  197. 197.
    Nedbal L, Soukupová J, Kaftan D, Whitmarsh J, Trtílek M 2000. Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynth. Res. 66:3–12
    [Google Scholar]
  198. 198.
    Nilkens M, Kress E, Lambrev P, Miloslavina Y, Müller M et al. 2010. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta Bioenerget. 1797:466–75
    [Google Scholar]
  199. 199.
    Niyogi KK. 1999. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:333–59
    [Google Scholar]
  200. 200.
    Nunes TDG, Zhang D, Raissig MT. 2020. Form, development and function of grass stomata. Plant J 101:780–99
    [Google Scholar]
  201. 201.
    Nuruzzaman M, Kanno T, Amada R, Habu Y, Kasajima I et al. 2014. Does the upstream region possessing MULE-like sequence in rice upregulate PsbS1 gene expression?. PLOS ONE 9:e102742
    [Google Scholar]
  202. 202.
    Ogren E, Sundin U. 1996. Photosynthetic responses to variable light: a comparison of species from contrasting habitats. Oecologia 106:18–27
    [Google Scholar]
  203. 203.
    Ortiz-Bobea A, Ault TR, Carrillo CM, Chambers RG, Lobel DB. 2021. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 11:306–12
    [Google Scholar]
  204. 204.
    Oxborough K, Horton P. 1988. A study of the regulation and function of energy-dependent quenching in pea chloroplasts. Biochim. Biophys. Acta Bioenerget. 934:135–43
    [Google Scholar]
  205. 205.
    Packer L, Murakami S, Mehard CW 1970. Ion transport in chloroplasts and plant mitochondria. Annu. Rev. Plant Physiol. 21:271–302
    [Google Scholar]
  206. 206.
    Papanatsiou M, Amtmann A, Blatt MR 2016. Stomatal spacing safeguards stomatal dynamics by facilitating guard cell ion transport independent of the epidermal solute reservoir. Plant Physiol 172:254–63
    [Google Scholar]
  207. 207.
    Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM, Blatt MR 2019. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363:1456–59
    [Google Scholar]
  208. 208.
    Parry MAJ, Keys AJ, Madgwick PJ, Carmo-Silva AE, Andralojc PJ. 2008. Rubisco regulation: a role for inhibitors. J. Exp. Bot. 59:1569–80
    [Google Scholar]
  209. 209.
    Pearcy RW. 1990. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:421–53
    [Google Scholar]
  210. 210.
    Pearcy RW, Krall JP, Sassenrath-Cole GF. 1996. Photosynthesis in fluctuating light environments. Photosynthesis and the Environment NR Baker 321–46 Dordrecht, Neth: Springer
    [Google Scholar]
  211. 211.
    Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM et al. 1999.. ‘ Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–61
    [Google Scholar]
  212. 212.
    Perchorowicz JT, Raynes DA, Jensen RG. 1981. Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings. PNAS 78:2985–89
    [Google Scholar]
  213. 213.
    Perdomo JA, Degen GE, Worrall D, Carmo-Silva E. 2019. Rubisco activation by wheat Rubisco activase isoform 2β is insensitive to inhibition by ADP. Biochem. J. 476:2595–606
    [Google Scholar]
  214. 214.
    Pignon CP, Long SP. 2020. Retrospective analysis of biochemical limitations to photosynthesis in 49 species: C4 crops appear still adapted to pre-industrial atmospheric [CO2]. Plant Cell Environ 43:2606–22
    [Google Scholar]
  215. 215.
    Portis AR Jr. 1981. Evidence of a low stromal Mg2+ concentration in intact chloroplasts in the dark: I. Studies with the ionophore A23187. Plant Physiol 67:985–89
    [Google Scholar]
  216. 216.
    Portis AR Jr., Heldt HW. 1976. Light-dependent changes of Mg2+ concentration in stroma in relation to Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim. Biophys. Acta Bioenerget. 449:434–46
    [Google Scholar]
  217. 217.
    Portis AR Jr., Lilley RM, Andrews TJ. 1995. Subsaturating ribulose-1,5-bisphosphate concentration promotes inactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco): studies using continuous substrate addition in the presence and absence of Rubisco activase. Plant Physiol 109:1441–51
    [Google Scholar]
  218. 218.
    Portis AR Jr., Salvucci ME, Ogren WL. 1986. Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase. Plant Physiol 82:967–71
    [Google Scholar]
  219. 219.
    Pottosin I, Shabala S. 2016. Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions. Mol. Plant 9:356–70
    [Google Scholar]
  220. 220.
    Qu YC, Sakoda K, Fukayama H, Kondo E, Suzuki Y et al. Overexpression of both Rubisco and Rubisco activase rescues rice photosynthesis and biomass under heat stress. Plant Cell Environ 44:2308–20
    [Google Scholar]
  221. 221.
    Quick WP, Stitt M. 1989. An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochim. Biophys. Acta Bioenerget. 977:287–96
    [Google Scholar]
  222. 222.
    Raissig MT, Matos JL, Anleu Gil MX, Kornfeld A, Bettadapur A et al. 2017. Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science 355:1215–18
    [Google Scholar]
  223. 223.
    Raschke K, Fellows MP. 1971. Stomatal movement in Zea mays: shuttle of potassium and chloride between guard cells and subsidiary cells. Planta 101:296–316
    [Google Scholar]
  224. 224.
    Raven JA. 1989. Fight or flight: the economics of repair and avoidance of photoinhibition of photosynthesis. Funct. Ecol. 3:5–19
    [Google Scholar]
  225. 225.
    Raven JA. 2014. Speedy small stomata?. J. Exp. Bot. 65:1415–24
    [Google Scholar]
  226. 226.
    Ray DK, Mueller ND, West PC, Foley JA. 2013. Yield trends are insufficient to double global crop production by 2050. PLOS ONE 8:e66428
    [Google Scholar]
  227. 227.
    Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA. 2012. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3:1293
    [Google Scholar]
  228. 228.
    Robinson SP, Portis AR Jr 1988. Involvement of stromal ATP in the light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase in intact isolated chloroplasts. Plant Physiol 86:293–98
    [Google Scholar]
  229. 229.
    Robinson SP, Portis AR Jr. 1989. Adenosine triphosphate hydrolysis by purified Rubisco activase. Arch. Biochem. Biophys. 268:93–99
    [Google Scholar]
  230. 230.
    Ruban AV. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–16
    [Google Scholar]
  231. 231.
    Rungrat T, Almonte AA, Cheng R, Gollan PJ, Stuart T et al. 2019. A genome-wide association study of non-photochemical quenching in response to local seasonal climates in Arabidopsis thaliana. Plant Direct 3:e00138
    [Google Scholar]
  232. 232.
    Sage RF, Reid CD, Moore BD, Seemann JR 1993. Long-term kinetics of the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in plants with and without 2-carboxyarabinitol 1-phosphate. Planta 191:222–30
    [Google Scholar]
  233. 233.
    Sakoda K, Yamori W, Groszmann M, Evans JR 2021. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant Physiol 185:146–60
    [Google Scholar]
  234. 234.
    Sakoda K, Yamori W, Shimada T, Sugano SS, Hara-Nishimura I, Tanaka Y. 2020. Higher stomatal density improves photosynthetic induction and biomass production in Arabidopsis under fluctuating light. Front. Plant Sci. 11:589603
    [Google Scholar]
  235. 235.
    Salesse-Smith CE, Sharwood RE, Busch FA, Kromdijk J, Bardal V, Stern DB. 2018. Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize. Nat. Plants 4:802–10
    [Google Scholar]
  236. 236.
    Salter WT, Merchant AM, Richards RA, Trethowan R, Buckley TN 2019. Rate of photosynthetic induction in fluctuating light varies widely among genotypes of wheat. J. Exp. Bot. 70:2787–96
    [Google Scholar]
  237. 237.
    Salvucci ME, Portis AR Jr., Ogren WL. 1986. Light and CO2 response of ribulose-1,5-bisphosphate carboxylase/oxygenase activation in Arabidopsis leaves. Plant Physiol 80:655–59
    [Google Scholar]
  238. 238.
    Salvucci ME, Werneke JM, Ogren WL, Portis AR Jr 1987. Purification and species distribution of Rubisco activase. Plant Physiol 84:930–36
    [Google Scholar]
  239. 239.
    Sassenrath-Cole GF, Pearcy RW. 1992. The role of ribulose-1,5-bisphosphate regeneration in the induction-requirement of photosynthetic CO2 exchange under transient light conditions. Plant Physiol 99:227–34
    [Google Scholar]
  240. 240.
    Sassenrath-Cole GF, Pearcy RW. 1994. Regulation of photosynthetic induction state by the magnitude and duration of low light exposure. Plant Physiol 105:1115–23
    [Google Scholar]
  241. 241.
    Scafaro AP, De Vleesschauwer D, Bautsoens N, Hannah MA, den Boer B et al. 2019. A single point mutation in the C-terminal extension of wheat Rubisco activase dramatically reduces ADP inhibition via enhanced ATP binding affinity. J. Biol. Chem. 294:17931–40
    [Google Scholar]
  242. 242.
    Schiller K, Bräutigam A. 2021. Engineering of crassulacean acid metabolism. Annu. Rev. Plant Biol. 72:77–103
    [Google Scholar]
  243. 243.
    Schreiber U, Quayle P, Schmidt S, Escher BI, Mueller JF. 2007. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosens. Bioelectron. 22:2554–63
    [Google Scholar]
  244. 244.
    Schuler ML, Mantegazza O, Weber APM 2016. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. Plant J 87:51–65
    [Google Scholar]
  245. 245.
    Shaul O. 2002. Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–23
    [Google Scholar]
  246. 246.
    Shen JR. 2015. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66:23–48
    [Google Scholar]
  247. 247.
    Shimazaki K-i, Doi M, Assmann SM, Kinoshita T. 2007. Light regulation of stomatal movement. Annu. Rev. Plant Biol. 58:219–47
    [Google Scholar]
  248. 248.
    Sinclair TR, Rufty TW, Lewis RS. 2019. Increasing photosynthesis: unlikely solution for world food problem. Trends Plant Sci 24:1032–39
    [Google Scholar]
  249. 249.
    Slattery RA, Walker BJ, Weber APM, Ort DR. 2018. The impacts of fluctuating light on crop performance. Plant Physiol 176:990–1003
    [Google Scholar]
  250. 250.
    Snellenburg JJ, Johnson MP, Ruban AV, van Grondelle R, van Stokkum IHM. 2017. A four state parametric model for the kinetics of the non-photochemical quenching in Photosystem II. Biochim. Biophys. Acta Bioenerget. 1858:854–64
    [Google Scholar]
  251. 251.
    Soleh MA, Tanaka Y, Kim SY, Huber SC, Sakoda K, Shiraiwa T. 2017. Identification of large variation in the photosynthetic induction response among 37 soybean [Glycine max (L.) Merr.] genotypes that is not correlated with steady-state photosynthetic capacity. Photosynth. Res. 131:305–15
    [Google Scholar]
  252. 252.
    Soleh MA, Tanaka Y, Nomoto Y, Iwahashi Y, Nakashima K et al. 2016. Factors underlying genotypic differences in the induction of photosynthesis in soybean [Glycine max (L.) Merr].. Plant Cell Environ 39:685–93
    [Google Scholar]
  253. 253.
    Somerville CR. 1986. Analysis of photosynthesis with mutants of higher plants and algae. Annu. Rev. Plant Physiol. 37:467–507
    [Google Scholar]
  254. 254.
    South PF, Cavanagh AP, Liu HW, Ort DR 2019. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363:eaat9077 Erratum. 2019. Science 365:aay8818
    [Google Scholar]
  255. 255.
    Spetea C, Herdean A, Allorent G, Carraretto L, Finazzi G, Szabo I 2017. An update on the regulation of photosynthesis by thylakoid ion channels and transporters in Arabidopsis. Physiol. Plant. 161:16–27
    [Google Scholar]
  256. 256.
    Stitt M, Sonnewald U. 1995. Regulation of metabolism in transgenic plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:341–68
    [Google Scholar]
  257. 257.
    Strand DD, Kramer DM. 2014. Control of non-photochemical exciton quenching by the proton circuit of photosynthesis. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria B Demmig-Adams, G Garab, W Adams III, Govindjee, pp. 387–408. Dordrecht, Neth. Springer
    [Google Scholar]
  258. 258.
    Suganami M, Suzuki Y, Tazoe Y, Yamori W, Makino A 2021. Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in rice. Plant Physiol 185:108–19
    [Google Scholar]
  259. 259.
    Takahashi S, Badger MR. 2011. Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60
    [Google Scholar]
  260. 260.
    Tanaka Y, Adachi S, Yamori W 2019. Natural genetic variation of the photosynthetic induction response to fluctuating light environment. Curr. Opin. Plant Biol. 49:52–59
    [Google Scholar]
  261. 261.
    Tanaka Y, Sugano SS, Shimada T, Hara-Nishimura I. 2013. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol 198:757–64
    [Google Scholar]
  262. 262.
    Taylor SH, Gonzalez-Escobar E, Page R, Parry MAJ, Long SP, Carmo-Silva AE. 2022. Faster than expected Rubisco deactivation in shade reduces cowpea photosynthetic potential in variable light conditions. Nat. Plants 8:118–24
    [Google Scholar]
  263. 263.
    Taylor SH, Long SP. 2017. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philos. Trans. R. Soc. B 372:20160543
    [Google Scholar]
  264. 264.
    Taylor SH, Orr DJ, Carmo-Silva E, Long SP 2020. During photosynthetic induction, biochemical and stomatal limitations differ between Brassica crops. Plant Cell Environ 43:2623–36
    [Google Scholar]
  265. 265.
    Thiel G, MacRobbie EAC, Blatt MR. 1992. Membrane transport in stomatal guard cells: the importance of voltage control. J. Membr. Biol. 126:1–18
    [Google Scholar]
  266. 266.
    Thornber JP. 1975. Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annu. Rev. Plant Physiol. 26:127–58
    [Google Scholar]
  267. 267.
    Thurow R. 2013. The Last Hunger Season: A Year in an African Farm Community on the Brink of Change New York: Public Affairs
  268. 268.
    Timm S, Woitschach F, Heise C, Hagemann M, Bauwe H 2019. Faster removal of 2-phosphoglycolate through photorespiration improves abiotic stress tolerance of Arabidopsis. Plants 8:563
    [Google Scholar]
  269. 269.
    Ting Z, Shen Z, Yu J. 2018. A method for improving crop yield WO Patent CN109207508A
  270. 270.
    Tinoco-Ojanguren C, Pearcy RW. 1993. Stomatal dynamics and its importance to carbon gain in two rainforest Piper species: II. Stomatal versus biochemical limitations during photosynthetic induction. Oecologia 94:395–402
    [Google Scholar]
  271. 271.
    Uflewski M, Mielke S, Galvis VC, von Bismarck T, Chen X et al. 2021. Functional characterization of proton antiport regulation in the thylakoid membrane. Plant Physiol 187:2209–29
    [Google Scholar]
  272. 272.
    van Rooijen R, Aarts MGM, Harbinson J. 2015. Natural genetic variation for acclimation of photosynthetic light use efficiency to growth irradiance in Arabidopsis. Plant Physiol 167:1412–29
    [Google Scholar]
  273. 273.
    Vialet-Chabrand S, Hills A, Wang Y, Griffiths H, Lew VL et al. 2017. Global sensitivity analysis of OnGuard models identifies key hubs for transport interaction in stomatal dynamics. Plant Physiol 174:680–88
    [Google Scholar]
  274. 274.
    Vialet-Chabrand S, Matthews JSA, Lawson T. 2021. Light, power, action! Interaction of respiratory energy- and blue light-induced stomatal movements. New Phytol 231:2231–46
    [Google Scholar]
  275. 275.
    Vialet-Chabrand SRM, Matthews JSA, McAusland L, Blatt MR, Griffiths H, Lawson T. 2017. Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. Plant Physiol 174:603–13
    [Google Scholar]
  276. 276.
    Vico G, Manzoni S, Palmroth S, Katul G 2011. Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. New Phytol 192:640–52
    [Google Scholar]
  277. 277.
    Wachendorf M, Küppers M. 2017. The effect of initial stomatal opening on the dynamics of biochemical and overall photosynthetic induction. Trees 31:981–95
    [Google Scholar]
  278. 278.
    Wang H, Yan S, Xin H, Huang W, Zhang H et al. 2019. A subsidiary cell-localized glucose transporter promotes stomatal conductance and photosynthesis. Plant Cell 31:1328–43
    [Google Scholar]
  279. 279.
    Wang Q, Zhao H, Jiang J, Xu J, Xie W et al. 2017. Genetic architecture of natural variation in rice nonphotochemical quenching capacity revealed by genome-wide association study. Front. Plant Sci. 8:1773
    [Google Scholar]
  280. 280.
    Wang X, Du T, Huang J, Peng S, Xiong D. 2018. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. J. Exp. Bot. 69:4033–45
    [Google Scholar]
  281. 281.
    Wang Y, Burgess SJ, de Becker EM, Long SP. 2020. Photosynthesis in the fleeting shadows: an overlooked opportunity for increasing crop productivity?. Plant J 101:874–84
    [Google Scholar]
  282. 282.
    Wang Y, Chan KX, Long SP. Towards a dynamic photosynthesis model to guide yield improvement in C4 crops. Plant J 107:343–59
    [Google Scholar]
  283. 283.
    Wang Y, Hills A, Blatt MR. 2014. Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency. Plant Physiol 164:1593–99
    [Google Scholar]
  284. 284.
    Weeks DP, Spalding MH, Yang B. 2016. Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol. J. 14:483–95
    [Google Scholar]
  285. 285.
    Werner C, Ryel RJ, Correia O, Beyschlag W. 2001. Effects of photoinhibition on whole-plant carbon gain assessed with a photosynthesis model. Plant Cell Environ 24:27–40
    [Google Scholar]
  286. 286.
    Whiteman PC, Koller D. 1967. Interactions of carbon dioxide concentration, light intensity and temperature on plant resistances to water vapour and carbon dioxide diffusion. New Phytol 66:463–73
    [Google Scholar]
  287. 287.
    Wong SC, Cowan IR, Farquhar GD. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–26
    [Google Scholar]
  288. 288.
    Woodrow IE, Berry JA 1988. Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:533–94
    [Google Scholar]
  289. 289.
    Woodrow IE, Kelly ME, Mott KA 1996. Limitation of the rate of ribulosebisphosphate carboxylase activation by carbamylation and ribulosebisphosphate carboxylase activase activity: development and tests of a mechanistic model. Aust. J. Plant Physiol. 23:141–49
    [Google Scholar]
  290. 290.
    Woodrow IE, Mott KA. 1989. Rate limitation of non-steady-state photosynthesis by ribulose-1,5-bisphosphate carboxylase in spinach. Aust. J. Plant Physiol. 16:487–500
    [Google Scholar]
  291. 291.
    Woodrow IE, Mott KA. 1992. Biphasic activation of ribulose bisphosphate carboxylase in spinach leaves as determined from nonsteady-state CO2 exchange. Plant Physiol 99:298–303
    [Google Scholar]
  292. 292.
    Woolfenden HC, Bourdais G, Kopischke M, Miedes E, Molina A et al. 2017. A computational approach for inferring the cell wall properties that govern guard cell dynamics. Plant J 92:5–18
    [Google Scholar]
  293. 293.
    Yamamoto HY, Bugos RC, Hieber AD 1999. Biochemistry and molecular biology of the xanthophyll cycle. The Photochemistry of Carotenoids HA Frank, AJ Young, G Britton, RJ Cogdell 293–303 Dordrecht, Neth: Springer
    [Google Scholar]
  294. 294.
    Yamori W, Masumoto C, Fukayama H, Makino A. 2012. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. Plant J 71:871–80
    [Google Scholar]
  295. 295.
    Yamori W, Shikanai T. 2016. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu. Rev. Plant Biol. 67:81–106
    [Google Scholar]
  296. 296.
    Yang C-Y, Chen Y-C, Jauh GY, Wang C-S. 2005. A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol 139:836–46
    [Google Scholar]
  297. 297.
    Yao Y, Liu X, Li Z, Ma X, Rennenberg H et al. 2013. Drought-induced H2O2 accumulation in subsidiary cells is involved in regulatory signaling of stomatal closure in maize leaves. Planta 238:217–27
    [Google Scholar]
  298. 298.
    Yoon D-K, Ishiyama K, Suganami M, Tazoe Y, Watanabe M et al. 2020. Transgenic rice overproducing Rubisco exhibits increased yields with improved nitrogen-use efficiency in an experimental paddy field. Nat. Food 1:134–39
    [Google Scholar]
  299. 299.
    Zaks J, Amarnath K, Kramer DM, Niyogi KK, Fleming GR. 2012. A kinetic model of rapidly reversible nonphotochemical quenching. PNAS 109:15757–62
    [Google Scholar]
  300. 300.
    Zhang N, Kallis RP, Ewy RG, Portis AR Jr 2002. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. PNAS 99:3330–34
    [Google Scholar]
  301. 301.
    Zhang N, Portis AR Jr 1999. Mechanism of light regulation of Rubisco: A specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. PNAS 96:9438–43
    [Google Scholar]
  302. 302.
    Zhang N, Schürmann P, Portis AR Jr 2001. Characterization of the regulatory function of the 46-kDa isoform of Rubisco activase from Arabidopsis. Photosynth. Res. 68:29–37
    [Google Scholar]
  303. 303.
    Zhang Q, Peng S, Li Y. 2019. Increase rate of light-induced stomatal conductance is related to stomatal size in the genus Oryza. J. Exp. Bot. 70:5259–69
    [Google Scholar]
  304. 304.
    Zhu G, Jensen RG. 1991. Fallover of ribulose 1,5-bisphosphate carboxylase/oxygenase activity: Decarbamylation of catalytic sites depends on pH. Plant Physiol 97:1354–58
    [Google Scholar]
  305. 305.
    Zhu X-G, de Sturler E, Long SP. 2007. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–26
    [Google Scholar]
  306. 306.
    Zhu X-G, Long SP, Ort DR 2010. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61:235–61
    [Google Scholar]
  307. 307.
    Zhu X-G, Ort DR, Whitmarsh J, Long SP 2004. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J. Exp. Bot. 55:1167–75
    [Google Scholar]
  308. 308.
    Zhu X-G, Wang Y, Ort DR, Long SP 2013. e-Photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose synthesis. Plant Cell Environ 36:1711–27
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070221-024745
Loading
/content/journals/10.1146/annurev-arplant-070221-024745
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error